1
|
Mammolenti D, Lupi FR, Baldino N, Gabriele D. Technological Advancements of Insoluble Dietary Fiber from Food By-Product Processing: A Review. Foods 2025; 14:1822. [PMID: 40428601 PMCID: PMC12110818 DOI: 10.3390/foods14101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Insoluble dietary fibers (IDFs) represent one of the most promising candidates for novel food formulations, since they can be produced from a wide range of food by-products and wastes, have health benefits, and often enhance the rheology and stability of foods. Recently, the most innovative engineering and processing aspects of these attractive ingredients have received considerable attention. The present work is aimed at enlightening the technological state of the art regarding IDFs (much less investigated than soluble fibers, as discussed in this review). The review begins with a brief but crucial discussion on the definition of this type of dietary fiber by highlighting the raw materials, functional properties, physiological activity, and stabilization capacity in food products. The analysis of the rheological methods dedicated to the technical investigations of these ingredients and recent advancements are discussed. Finally, food processing technologies used in the formulation of foods containing insoluble IDFs, such as homogenization techniques, are discussed.
Collapse
Affiliation(s)
| | - Francesca Romana Lupi
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, 87036 Rende, Italy; (D.M.); (N.B.)
| | | | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, 87036 Rende, Italy; (D.M.); (N.B.)
| |
Collapse
|
2
|
Zhang H, Goff HD, Liu C, Luo S, Hu X. Blending pectin and κ-carrageenan converted the liquid yogurt induced by pectin into the solid yogurt. Carbohydr Polym 2025; 348:122869. [PMID: 39562132 DOI: 10.1016/j.carbpol.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Effects of 0.11 %-0.17 % pectin and the mixture of 0.03 % κ-carrageenan and 0.11 %-0.17 % pectin on texture and microstructure of yogurt were investigated in this work. Rheology analysis demonstrated that adding 0.11 %-0.17 % pectin before fermentation inhibited gelation of yogurt and liquid yogurt was formed. However, when the above κ-carrageenan/pectin mixture was added, yogurt was gelled and solid-like. It was demonstrated by CLSM that milk protein aggregated into separated particles in the liquid yogurt induced by pectin, while milk protein aggregated into a continuous network in the solid yogurt induced by the mixture. Adding 0.11 %-0.17 % pectin into the casein micelle suspension induced aggregation of casein micelles into separated particles, which was the same in the corresponding liquid yogurt samples. Moreover, casein micelles precipitated in the pectin/casein micelle mixtures after storage for 3 h. However, when the above mixture was added into the casein micelle suspension, tightly-connected casein micelle aggregates appeared and the resultant κ-carrageenan/pectin/casein micelle mixtures were stable after storage for 3 h. These results indicated that the pectin-casein micelle interaction played an essential role in formation of the liquid yogurt and κ-carrageenan altered this interaction. Thus, blending κ-carrageenan and pectin converted the liquid yogurt induced by pectin into the solid yogurt.
Collapse
Affiliation(s)
- Hongkai Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co. Ltd., Nanchang 330200, Jiangxi, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co. Ltd., Nanchang 330200, Jiangxi, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co. Ltd., Nanchang 330200, Jiangxi, China
| | - Xiuting Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co. Ltd., Nanchang 330200, Jiangxi, China.
| |
Collapse
|
3
|
Li X, Wang L, Tan B, Li R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int J Biol Macromol 2024; 269:132214. [PMID: 38729489 DOI: 10.1016/j.ijbiomac.2024.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Liping Wang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Gao K, Liu T, Zhang Q, Wang Y, Song X, Luo X, Ruan R, Deng L, Cui X, Liu Y. Stabilization of emulsions prepared by ball milling and cellulase treated pomelo peel insoluble dietary fiber: Integrity of porous fiber structure dominates the stability. Food Chem 2024; 440:138189. [PMID: 38100965 DOI: 10.1016/j.foodchem.2023.138189] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Emulsion gels from the pomelo peel insoluble dietary fiber (PIDF) were developed. The emulsification potentials of PIDFs subjected to various degrees of ball milling (M-PIDFs), cellulase hydrolysis (C-PIDF), and cellulase hydrolysis followed by ball milling (CM-PIDFs) were evaluated. Emulsions prepared by M-PIDFs for different lengths of ball milling time exhibited similar stability characteristics, confirming that M-PIDF emulsion stability might be determined by the three-dimensional structure formed by M-PIDF stacking and oil droplet capture. C-PIDF had characteristics resembling those of Pickering particles. CM-PIDF emulsions got destabilized with ball milling time prolongation. Interface tension and particle size of C/CM-PIDF decreased gradually during ball milling. Rheological and fluorescence microscopy results revealed that the intact internal crosslinking structure frameworks were disrupted in CM-PIDF emulsions. Therefore, intact fiber-based networks, rather than small particle size or low interfacial tension, determine the stability of PIDF emulsions. This study deepens the understanding of PIDF as a clean emulsifier.
Collapse
Affiliation(s)
- Kaili Gao
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China; Key Laboratory of Plant Resources and Biodiversity of Jiangxi Province, Jingdezhen University, Jingdezhen 333000, China
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang Jiangxi 330006, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xuan Luo
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Roger Ruan
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul MN 55108, USA
| | - Le Deng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
5
|
Silva Zamora R, Baldelli A, Pratap-Singh A. Characterization of selected dietary fibers microparticles and application of the optimized formulation as a fat replacer in hazelnut spreads. Food Res Int 2023; 165:112466. [PMID: 36869479 DOI: 10.1016/j.foodres.2023.112466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/04/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The present work demonstrates the application of the spray drying technique to produce microparticulates of different dietary fibers with particle sizes<10 µm. It examines their role as potential fat replacers for hazelnut spread creams. Optimization of a dietary fiber formulation containing inulin, glucomannan, psyllium husk, and chia mucilage to obtain high viscosity, water holding capacity, and oil holding capacity was conducted. Microparticles containing 46.1, 46.2, and 7.6 weight percentages of chia seed mucilage, konjac glucomannan, and psyllium husk showed a spraying yield of 83.45 %, a solubility of 84.63 %, and viscosity of 40.49 Pas. When applied to hazelnut spread creams, microparticles substituted palm oil by 100 %; they produced a product with a total unsaturated and saturated fat reduction of 41 and 77 %, respectively. An increase in dietary fibers of 4 % and a decrease in total calories of 80 % were also induced when compared with the original formulation. Hazelnut spread with dietary fiber microparticles were preferred by 73.13 % of the panelist in the sensory study due to an enhancement in brightness. The demonstrated technique could be used to increase the fiber content while decreasing the fat content in some commercial products, such as peanut butter or chocolate cream.
Collapse
Affiliation(s)
- Rocio Silva Zamora
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition, and Health, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
6
|
Ma Q, Yu Y, Zhou Z, Wang L, Cao R. Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
7
|
Zhu C, Zhang S, Zhu N, Wu Q, Du M, He X, Bai Y, Wang S. Effects of citrus fiber on the emulsifying properties and molecular structure of mutton myofibrillar protein: An underlying mechanisms study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Lu Y, Kokje T, Schutyser MA, Zhang L. The effect of colloid milling on the microstructure and functional properties of asparagus dietary fibre concentrates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lin J, Tang ZS, Brennan CS, Zeng XA. Thermomechanically micronized sugar beet pulp: Dissociation mechanism, physicochemical characteristics, and emulsifying properties. Food Res Int 2022; 160:111675. [DOI: 10.1016/j.foodres.2022.111675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 12/22/2022]
|
10
|
Tang C, Yang J, Zhang F, Kan J, Wu L, Zheng J. Insight into the physicochemical, structural, and
in vitro
hypoglycemic properties of bamboo shoot dietary fibre: comparison of physical modification methods. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caidie Tang
- College of Food Science Southwest University Chongqing 400715 China
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and Chongqing Chongqing 400715 China
| | - Jinlai Yang
- China National Bamboo Research Center Hangzhou 310012 China
| | - Fusheng Zhang
- College of Food Science Southwest University Chongqing 400715 China
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and Chongqing Chongqing 400715 China
| | - Jianquan Kan
- College of Food Science Southwest University Chongqing 400715 China
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and Chongqing Chongqing 400715 China
| | - Liangru Wu
- China National Bamboo Research Center Hangzhou 310012 China
| | - Jiong Zheng
- College of Food Science Southwest University Chongqing 400715 China
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and Chongqing Chongqing 400715 China
| |
Collapse
|
11
|
Zhang Y, Duan F, Fang J, Lu J, Wang J, Zhang J, Gao J, Yu H, Fan H. Preparation of soybean dreg fiber solid emulsifier and its effect on the stability of Pickering emulsion. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
High purity insoluble dietary fiber (HPIDF) was extracted from Okara by compound enzyme method, and solid emulsifiers with different particle sizes were prepared by wet grinding. Its composition, structure and physicochemical properties were studied, and the influence mechanism of solid emulsifiers with different particle sizes on emulsifying properties and interface stability of Pickering emulsion was systematically studied. The results showed that the particle size of HPIDF decreased significantly, the ζ-potential, contact Angle and swelling capacity of HPIDF ncrease significantly (p < 0.05). HPIDF forms an adsorption layer at the oil-water interface, and some of them are connected to form a bridge network structure, which plays a role of steric hindrance. And the emulsion has excellent stability under different environmental factors. HPIDF are suitable raw materials as natural food-grade solid emulsifiers. It is cost-effective and eco-friendly to realize the high-value utilization of Okara resources, reduce resource waste, and extend the industrial chain.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Fangyu Duan
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
| | - Jiaqi Fang
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Jiahong Lu
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Jinyu Wang
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Jiarui Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Junpeng Gao
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
| | - Hansong Yu
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Hongliang Fan
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| |
Collapse
|
12
|
Li Y, Wang L, Wang H, Li Z, Qiu J, Wang L. Correlation of microstructure, pore characteristics and hydration properties of wheat bran modified by airflow impact mill. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Xiao Z, Yang X, Zhao W, Wang Z, Ge Q. Physicochemical properties of insoluble dietary fiber from pomelo (
Citrus grandis
) peel modified by ball milling. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhuqian Xiao
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing Zhejiang University of Science and Technology Hangzhou P.R. China
| | - Xinyi Yang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing Zhejiang University of Science and Technology Hangzhou P.R. China
| | - Wenwen Zhao
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing Zhejiang University of Science and Technology Hangzhou P.R. China
| | - Zhenzhen Wang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing Zhejiang University of Science and Technology Hangzhou P.R. China
| | - Qing Ge
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing Zhejiang University of Science and Technology Hangzhou P.R. China
| |
Collapse
|
14
|
Interaction between β-lactoglobulin and chlorogenic acid and its effect on antioxidant activity and thermal stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|