1
|
Shi W, Li H, Fu Y, Tang X, Yu J, Wang X. Preparation of functional oils rich in phytosterol esters and diacylglycerols by enzymatic transesterification. Food Chem 2024; 448:139100. [PMID: 38552457 DOI: 10.1016/j.foodchem.2024.139100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
Phytosterol esters (PEs) and diacylglycerols (DAGs) have various health benefits in humans. In this study, PEs and DAGs were synthesized by lipase-catalyzed transesterification between a natural oil and phytosterols. First, commercial lipases were screened for transesterification and were further verified using multiple-ligand molecular docking. AYS "Amano" (a lipase from Candida rugosa) was found to be the optimum lipase. Subsequently, the enzymatic transesterification conditions were optimized. The optimized conditions were determined to be a 1:2 M ratio of phytosterols to oil, 100 mmol/L phytosterols, and 9 % AYS "Amano", and 50 °C for 24 h in 20 mL n-hexane. Under these conditions, over 70 % of phytosterols were converted to PEs. In this study, an efficient enzymatic process was developed to produce value-added functional oils rich in PEs and DAGs, with PEs content ≥ 31.6 %, DAGs content ≥ 11.2 %, acid value ≤ 0.91 mg KOH/g, and peroxide value ≤ 2.38 mmol/kg.
Collapse
Affiliation(s)
- Wangxu Shi
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Houyue Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiao Tang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Junwen Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi 030801, PR China.
| |
Collapse
|
2
|
Staudt A, Brack Y, Jr II, Leal ICR. Biocatalytic synthesis of monoterpene esters – A review study on the phylogenetic evolution of biocatalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Wafti NSA, Yunus R, Lau HLN, Yaw TCS, Aziz SA. Immobilized lipase-catalyzed transesterification for synthesis of biolubricant from palm oil methyl ester and trimethylolpropane. Bioprocess Biosyst Eng 2021; 44:2429-2444. [PMID: 34269888 DOI: 10.1007/s00449-021-02615-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
The present study reports the effects of three commercial immobilized lipases namely Novozyme 435 from Candida antarctica lipase B (CALB), Lipozyme TL IM from Thermomyces lanuginosus and Lipozyme RM IM from Rhizomucor miehei on the production of trimethylolpropane (TMP) ester from high oleic palm methyl ester (HO-PME) and TMP. The TMP ester is a promising base oil for biolubricants that are easily biodegradable and non-toxic to humans and the environment. Enzymatic catalysts are insensitive to free fatty acid (FFA) content, hence able to mitigate the side reactions and consequently reduce product separation cost. The potential of these enzymes to produce TMP ester in a solvent-free medium was screened at various reaction time (8, 23, 30 and 48 h), operating pressure (0.1, 0.3 and 1.0 mbar) and enzyme dosage (1, 3, 5 and 10% w/w). The reaction was conducted at a constant temperature of 70 °C and a molar ratio of 3.9:1 (HO-PME: TMP). Novozyme 435 produced the highest yield of TMP ester of 95.68 ± 3.60% under the following conditions: 23 h reaction time, 0.1 mbar operating pressure and 5% w/w of enzyme dosage. The key lubrication properties of the produced TMP ester are viscosity index (208 ± 2), pour point (- 30 ± - 2 °C), cloud point (- 15 ± - 2 °C), onset thermal degradation temperature (427.8 °C), and oxidation stability, RPVOT (42 ± 4 min). The properties of the TMP ester produced from the enzymatic transesterification are comparable to other vegetable oil-based biolubricants produced by chemical transesterification.
Collapse
Affiliation(s)
- Nur Sulihatimarsyila Abd Wafti
- Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.,Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Robiah Yunus
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Harrison Lik Nang Lau
- Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suraini Abdul Aziz
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|