1
|
Navab F, Rezaei A, Rouhani MH, Shahdadian F, Alikord M. Vitamin D3 capsulation using maillard reaction complex of sodium caseinate and tragacanth gum. Food Chem X 2024; 24:101910. [PMID: 39553234 PMCID: PMC11564911 DOI: 10.1016/j.fochx.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
The encapsulation of vitamin D3 (VitD3) using the Maillard reaction complex of sodium caseinate-tragacanth gum (TG) to the production of water-soluble vitamins were studied. Spray drying was used to prepare the complex. Its physicochemical properties, stability, and release characteristics were evaluated. The results showed that containing sodium caseinate- Tragacanth gum (TG) 1 % (w/v) and VitD3 1 % (w/v) had the highest encapsulation efficiency (71 %). The resulting microcapsules showed suitable particle size, strong negative zeta potential, and good stability with spherical morphology. Thermal and spectroscopic analyses showed proper interaction between wall and core components. In vitro, release and simulated digestion studies demonstrated the ability of microcapsules to protect VitD3 under gastric conditions and provide controlled release in the intestine. This encapsulation system shows potential for enriching food with VitD3 and increasing its stability and bioavailability.
Collapse
Affiliation(s)
- Fatemeh Navab
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shahdadian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Alikord
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Kamalpour R, Koocheki A, Ghorani B. Encapsulation of D-limonene in Lepidium perfoliatum seed gum/PVA electrospun nanofibers: Physicochemical characterization and modeling the kinetics of release. Curr Res Food Sci 2024; 10:100966. [PMID: 39830780 PMCID: PMC11741907 DOI: 10.1016/j.crfs.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
To improve the stability of D-limonene, a protective barrier is essential to prevent degradation and maintain its integrity. Therefore, the potential of using Lepidium perfoliatum seed gum (LPSG) as a novel source for creating electrospun nanofibers for D-limonene encapsulation was investigated by varying LPSG concentrations (0.25%, 0.5%, 0.75%, and 1% w/v) and LPSG/PVA (Polyvinyl alcohol) mixing ratios (ranging from 100:0 to 0:100 v/v). Surface tension, electrical conductivity, zeta potential, and viscosity of solutions increased as LPSG concentration and its ratio in the LPSG/PVA blend increased. Uniform, smooth, and small size nanofibers were created by electrospinning a LPSG to PVA ratio of 30:70 (v/v) using LPSG concentrations of 0.5% (w/v) and 0.75% (w/v). The FTIR analysis demonstrated that D-limonene was physically trapped within the nanofibers and confirmed the compatibility of LPSG and PVA. Following its encapsulation inside LPSG/PVA nanofibers, D-limonene's thermal stability increased. The highest D-limonene encapsulation efficiency was 96.23% for 0.75% LPSG/PVA nanofibers, which was chosen to measure the D-limonene release kinetics in simulated food models. D-limonene was most readily released in distilled water with an explosive release mechanism. The mechanism of D-limonene release from LPSG/PVA electrospun nanofibers was best described by the Peppas-Sahlin model, and the release followed Fickian diffusion mechanism. The results of this study confirmed the potential of LPSG/PVA electrospun nanofibers to effectively trap D-limonene and improve its thermal stability.
Collapse
Affiliation(s)
- Roya Kamalpour
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
3
|
Garg A, Lai WC, Chopra H, Agrawal R, Singh T, Chaudhary R, Dubey BN. Nanosponge: A promising and intriguing strategy in medical and pharmaceutical Science. Heliyon 2024; 10:e23303. [PMID: 38163139 PMCID: PMC10757015 DOI: 10.1016/j.heliyon.2023.e23303] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
The complicated chemical reactions involved in the production of the newer drug delivery systems have mainly impeded efforts to build successful targeted drug delivery systems for a prolonged duration of time. Nanosponges, a recently created colloidal system, have the potential to overcome issues with medication toxicity, decreased bioavailability, and drug release over a wide area because they can be modified to work with both hydrophilic and hydrophobic types of drugs. Nanosponges are small sized with a three-dimensional network having a porous cavity. They can be prepared easily by crosslinking cyclodextrins with different compounds. Due to Cyclodextrin's outstanding biocompatibility, stability, and safety, a number of Cyclodextrin-based drug delivery systems have been developed promptly. The nanosponge drug delivery system possesses various applications in various ailments such as cancer, autoimmune diseases, theranostic applications, enhanced bioavailability, stability, etc. This review elaborates on benefits and drawbacks, preparation techniques, factors affecting their preparation, characterization techniques, applications, and most current developments in nanosponges.
Collapse
Affiliation(s)
- Akash Garg
- Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, Uttar Pradesh, 281001, India
| | - Wen-Cheng Lai
- Dept. of Electrical Engineering, Ming Chi University of Technology, Taiwan
| | - Himansu Chopra
- Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, Uttar Pradesh, 281001, India
| | - Rutvi Agrawal
- Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, Uttar Pradesh, 281001, India
| | - Talever Singh
- Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, Uttar Pradesh, 281001, India
| | - Ramkumar Chaudhary
- Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, Uttar Pradesh, 281001, India
| | - Braj Nandan Dubey
- Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, Uttar Pradesh, 281001, India
| |
Collapse
|
4
|
Hamidian M, Salehi A, Naghiha R, Dehnavi MM, Castangia I, Mirfathi MN. The comparative perspective of phytochemistry and biological properties of the Apiaceae family plants. Sci Rep 2023; 13:12390. [PMID: 37524766 PMCID: PMC10390506 DOI: 10.1038/s41598-023-39254-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Despite the availability of numerous reports on the discovery of medicinal plant compounds and their properties, one may encounter contradictory results released by these reports at the level of plant families and even within species. To establish an accurate perspective of the Apiaceae family, this study examined the fruit essential oil and methanolic extract of wild and common species of this family. According to the measurement of the antioxidant property in the methanolic extract of the fruits using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, Ferula gummosa, Pimpinella anisum and Cuminum cyminum have high power in inhibiting free radicals. However, Bunium persicum had the strongest DPPH radicals inhibitory potential among all essential oils. The results of antimicrobial tests and their classification analysis showed that C. cyminum and B. persicum fruit essential oil with a high amount of cuminaldehyde had the most antibacterial properties. At the same time, the antifungal properties of H. persicum essential oil (rich in aliphatic ester) were stronger than those of the all the studied plants. Also, the essential oils of F. gummosa and Kelussia odoratissima had favourable antimicrobial properties compared to other studied plants. The investigation of the bacterial structure by scanning electron microscope confirmed the effect of the applied essential oils dose and their antibacterial potential. In general, for the first time, this paper determined the biological values of the fruit essential oil of some wild plants, such as K. odoratissima and H. persicum. Besides, in vitro examination and the mathematical models provided a suitable classification, which makes a comprehensive view in terms of the properties of the Apiaceae family.
Collapse
Affiliation(s)
- Mohammad Hamidian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Amin Salehi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran.
| | - Reza Naghiha
- Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohsen Movahhedi Dehnavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
5
|
Neagu R, Popovici V, Ionescu LE, Ordeanu V, Popescu DM, Ozon EA, Gîrd CE. Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils. Antibiotics (Basel) 2023; 12:1191. [PMID: 37508287 PMCID: PMC10376212 DOI: 10.3390/antibiotics12071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) have gained economic importance due to their biological activities, and increasing amounts are demanded everywhere. However, substantial differences between the same essential oil samples from different suppliers are reported-concerning their chemical composition and bioactivities-due to numerous companies involved in EOs production and the continuous development of online sales. The present study investigates the antibacterial and antibiofilm activities of two to four samples of five commercially available essential oils (Oregano, Eucalyptus, Rosemary, Clove, and Peppermint oils) produced by autochthonous companies. The manufacturers provided all EOs' chemical compositions determined through GC-MS. The EOs' bioactivities were investigated in vitro against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The antibacterial and antibiofilm effects (ABE% and, respectively, ABfE%) were evaluated spectrophotometrically at 562 and 570 nm using microplate cultivation techniques. The essential oils' calculated parameters were compared with those of three standard broad-spectrum antibiotics: Amoxicillin/Clavulanic acid, Gentamycin, and Streptomycin. The results showed that at the first dilution (D1 = 25 mg/mL), all EOs exhibited antibacterial and antibiofilm activity against all Gram-positive and Gram-negative bacteria tested, and MIC value > 25 mg/mL. Generally, both effects progressively decreased from D1 to D3. Only EOs with a considerable content of highly active metabolites revealed insignificant differences. E. coli showed the lowest susceptibility to all commercially available essential oils-15 EO samples had undetected antibacterial and antibiofilm effects at D2 and D3. Peppermint and Clove oils recorded the most significant differences regarding chemical composition and antibacterial/antibiofilm activities. All registered differences could be due to different places for harvesting the raw plant material, various technological processes through which these essential oils were obtained, the preservation conditions, and complex interactions between constituents.
Collapse
Affiliation(s)
- Răzvan Neagu
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Regenerative Medicine Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Lucia Elena Ionescu
- Experimental Microbiology Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Viorel Ordeanu
- Experimental Microbiology Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Diana Mihaela Popescu
- Regenerative Medicine Laboratory, "Cantacuzino" National Military Medical Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
6
|
Salazar Sandoval S, Bruna T, Maldonado-Bravo F, Bolaños K, Adasme-Reyes S, Riveros A, Caro N, Yutronic N, Silva N, Kogan MJ, Jara P. β-Cyclodextrin Nanosponges Inclusion Compounds Associated with Silver Nanoparticles to Increase the Antimicrobial Activity of Quercetin. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093538. [PMID: 37176420 PMCID: PMC10179898 DOI: 10.3390/ma16093538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
This work aimed to synthesize and characterize a nanocarrier that consisted of a ternary system, namely β-cyclodextrin-based nanosponge (NS) inclusion compounds (ICs) associated with silver nanoparticles (AgNPs) to increase the antimicrobial activity of quercetin (QRC). The nanosystem was developed to overcome the therapeutical limitations of QRC. The host-guest interaction between NSs and QRC was confirmed by field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), and proton nuclear magnetic resonance (1H-NMR). Moreover, the association of AgNPs with the NS-QRC was characterized using FE-SEM, energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), dynamic light scattering (DLS), ζ-potential, and UV-Vis. Finally, the antimicrobial activity of the novel formulations was tested, which depicted that the complexation of QRC inside the supramolecular interstices of NSs increases the inhibitory effects against Escherichia coli ATCC25922, as compared to that observed in the free QRC. In addition, at the same concentrations used to generate an antibacterial effect, the NS-QRC system with AgNPs does not affect the metabolic activity of GES-1 cells. Therefore, these results suggest that the use of NSs associated with AgNPs resulted in an efficient strategy to improve the physicochemical features of QRC.
Collapse
Affiliation(s)
- Sebastián Salazar Sandoval
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7610658, Chile
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago 7610658, Chile
| | - Tamara Bruna
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile
| | - Francisca Maldonado-Bravo
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile
| | - Karen Bolaños
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Sofía Adasme-Reyes
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Ana Riveros
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile
| | - Nicolás Yutronic
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7610658, Chile
| | - Nataly Silva
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago 7610658, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Paul Jara
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7610658, Chile
| |
Collapse
|
7
|
Miao W, Yue M, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Wang J, Jin Z. Interactions between plant-derived antioxidants and cyclodextrins and their application for improving separation, detection, and food quality issues. Crit Rev Food Sci Nutr 2023; 64:7085-7100. [PMID: 36798974 DOI: 10.1080/10408398.2023.2180479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Plant-derived antioxidants (PD-AOs) are important for food preservation, as well as for human health and nutrition. However, the poor chemical stability and water solubility of many PD-AOs currently limit their application as functional ingredients in foods and pharmaceuticals. Moreover, it is often difficult to isolate and detect specific antioxidants in multi-component systems, which again limits their potential in the food and medical industries. In this review, we highlight recent advances in the use of cyclodextrins (CDs) to overcome these limitations by forming simple, modified and competitive host-guest interactions with PD-AO. The host-guest properties of CDs can be used to enhance the separation efficiency of PD-AOs, as well as to improve their dispersion and stability in food systems. Moreover, the competitive complexation properties of CDs with target molecules can be used to selectively isolate PD-AOs from multi-component systems and develop detection technologies for PD-AOs. Overall, CD-antioxidant interactions have great potential for addressing isolation, detection, and food quality issues.
Collapse
Affiliation(s)
- Wenbo Miao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengyun Yue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - Shangyuan Sang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Nair AB, Dalal P, Kadian V, Kumar S, Kapoor A, Garg M, Rao R, Aldhubiab B, Sreeharsha N, Almuqbil RM, Attimarad M, Elsewedy HS, Shinu P. Formulation, Characterization, Anti-Inflammatory and Cytotoxicity Study of Sesamol-Laden Nanosponges. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4211. [PMID: 36500833 PMCID: PMC9740471 DOI: 10.3390/nano12234211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into β-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (-17 to -26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (β-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 μg/mL) in comparison to SES (106 μg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| |
Collapse
|
9
|
Hoti G, Matencio A, Rubin Pedrazzo A, Cecone C, Appleton SL, Khazaei Monfared Y, Caldera F, Trotta F. Nutraceutical Concepts and Dextrin-Based Delivery Systems. Int J Mol Sci 2022; 23:4102. [PMID: 35456919 PMCID: PMC9031143 DOI: 10.3390/ijms23084102] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (G.H.); (A.M.); (A.R.P.); (C.C.); (S.L.A.); (Y.K.M.); (F.C.)
| |
Collapse
|
10
|
Parın FN, Ullah A, Yeşilyurt A, Parın U, Haider MK, Kharaghani D. Development of PVA-Psyllium Husk Meshes via Emulsion Electrospinning: Preparation, Characterization, and Antibacterial Activity. Polymers (Basel) 2022; 14:polym14071490. [PMID: 35406364 PMCID: PMC9002688 DOI: 10.3390/polym14071490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, polyvinyl alcohol (PVA) and psyllium husk (PSH)/D-limonene electrospun meshes were produced by emulsion electrospinning for use as substrates to prevent the growth of bacteria. D-limonene and modified microcrystalline cellulose (mMCC) were preferred as antibacterial agents. SEM micrographs showed that PVA–PSH electrospun mesh with a 4% amount of D-limonene has the best average fiber distribution with 298.38 ± 62.8 nm. Moreover, the fiber morphology disrupts with the addition of 6% D-limonene. FT-IR spectroscopy was used to analyze the chemical structure between matrix–antibacterial agents (mMCC and D-limonene). Although there were some partial physical interactions in the FT-IR spectrum, no chemical reactions were seen between the matrixes and the antibacterial agents. The thermal properties of the meshes were determined using thermal gravimetric analysis (TGA). The thermal stability of the samples increased with the addition of mMCC. Further, the PVA–PSH–mMCC mesh had the highest value of contact angle (81° ± 4.05). The antibacterial activity of functional meshes against Gram (−) (Escherichia coli, Pseudomonas aeruginosa) and Gram (+) bacteria (Staphylococcus aureus) was specified based on a zone inhibition test. PPMD6 meshes had the highest antibacterial results with 21 mm, 16 mm, and 15 mm against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, respectively. While increasing the amount of D-limonene enhanced the antibacterial activity, it significantly decreased the amount of release in cases of excess D-limonene amount. Due to good fiber morphology, the highest D-limonene release value (83.1%) was observed in PPMD4 functional meshes. The developed functional meshes can be utilized as wound dressing material based on our data.
Collapse
Affiliation(s)
- Fatma Nur Parın
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
- Correspondence: (F.N.P.); (D.K.)
| | - Azeem Ullah
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan; (A.U.); (M.K.H.)
| | - Ayşenur Yeşilyurt
- Central Research Laboratory, Bursa Technical University, Bursa 16310, Turkey;
| | - Uğur Parın
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın 09100, Turkey;
| | - Md. Kaiser Haider
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan; (A.U.); (M.K.H.)
| | - Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Hiroshima, Japan
- Correspondence: (F.N.P.); (D.K.)
| |
Collapse
|
11
|
Liu Y, Qiu C, Li X, McClements DJ, Wang C, Zhang Z, Jiao A, Long J, Zhu K, Wang J, Jin Z. Application of starch-based nanoparticles and cyclodextrin for prebiotics delivery and controlled glucose release in the human gut: a review. Crit Rev Food Sci Nutr 2022; 63:6126-6137. [PMID: 35040740 DOI: 10.1080/10408398.2022.2028127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Starches are a major constituent of staple foods and are the main source of energy in the human diet (55-70%). In the gastrointestinal tract, starches are hydrolyzed into glucose by α-amylase and α-glucosidase, which leads to a postprandial glucose elevation. High levels of blood glucose levels over sustained periods may promote type 2 diabetes mellitus (T2DM) and obesity. Increasing consumption of starchy foods with a lower glycemic index may therefore contribute to improved health. In this paper, the preparation and properties of several starch-based nanoparticles (SNPs) and cyclodextrins (CDs) derivatives are reviewed. In particular, we focus on the various mechanisms responsible for the ability of these edible nanomaterials to modulate glucose release and the gut microbiome in the gastrointestinal tract. The probiotic functions are achieved through encapsulation and protection of prebiotics or bioactive components in foods or the human gut. This review therefore provides valuable information that could be used to design functional foods for improving human health and wellbeing.
Collapse
Affiliation(s)
- Yuwan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Chenxi Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Kunfu Zhu
- Shandong Zhushi Pharmaceutical Group Co., LTD, Heze, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|