1
|
Fitzner M, Schreiner M, Baldermann S. Between eustress and distress: UVB induced changes in carotenoid accumulation in halophytic Salicornia europaea. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154124. [PMID: 37944241 DOI: 10.1016/j.jplph.2023.154124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Halophytes are potential future crops with a valuable nutritional profile. Produced in indoor farming, they are considered to contribute to sustainable and resilient food systems. Indoor farms operate using artificial light. In this context narrowband and low dose UVB radiation can be used to increase plant secondary metabolites, such as carotenoids, and provide an improved nutritional profile for a human diet. UVB radiation can cause eustress or distress in the plant depending on the lighting situation. The aim of this study was to identify the doses of UVB that lead to either eustress or distress and to analyze these responses in Salicornia europaea. Therefore, S. europaea plants were exposed to different UVB radiation levels, low, medium and high, and analyzed for reactive oxygen species (ROS), plant hormones, amino acids, and photosynthetic pigments. High UVB treatment was found to affect phenotype and growth, and the metabolite profile was affected in a UVB dose-dependent manner. Specifically, medium UVB radiation resulted in an increase in carotenoids, whereas high UVB resulted in a decrease. We also observed an altered oxidative stress status and increased SA and decreased ABA contents in response to UVB treatment. This was supported by the results of menadione treatment that induces oxidative stress in plants, which also indicated an altered oxidative stress status in combination with altered carotenoid content. Thus, we show that a moderate dose of UVB can increase the carotenoid content of S. europaea. Furthermore, the UVB stress-dependent response led to a better understanding of carotenoid accumulation upon UVB exposure, which can be used to improve lighting systems and in turn the nutritional profile of future crops in indoor farming.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Institute of Nutritional Science, Food Chemistry, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Faculty of Life Science: Food, Nutrition and Health, Food Metabolome, University of Bayreuth, Fritz-Hornschuch-Straße 13, 95326, Kulmbach, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| |
Collapse
|
2
|
Jan R, Kim N, Asaf S, Lubna, Asif S, Du XX, Kim EG, Jang YH, Kim KM. OsCM regulates rice defence system in response to UV light supplemented with drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:902-914. [PMID: 37641387 DOI: 10.1111/plb.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023]
Abstract
Studies on plant responses to combined abiotic stresses are very limited, especially in major crop plants. The current study evaluated the response of chorismate mutase overexpressor (OxCM) rice line to combined UV light and drought stress. The experiments were conducted in pots in a growth chamber, and data were assessed for gene expression, antioxidant and hormone regulation, flavonoid accumulation, phenotypic variation, and amino acid accumulation. Wild-type (WT) rice had reduced the growth and vigour, while transgenic rice maintained growth and vigour under combined UV light and drought stress. ROS and lipid peroxidation analysis revealed that chorismate mutase (OsCM) reduced oxidative stress mediated by ROS scavenging and reduced lipid peroxidation. The combined stresses reduced biosynthesis of total flavonoids, kaempferol and quercetin in WT plants, but increased significantly in plants with OxCM. Phytohormone analysis showed that SA was reduced by 50% in WT and 73% in transgenic plants, while ABA was reduced by 22% in WT plants but increased to 129% in transgenic plants. Expression of chorismate mutase regulates phenylalanine biosynthesis, UV light and drought stress-responsive genes, e.g., phenylalanine ammonia lyase (OsPAL), dehydrin (OsDHN), dehydration-responsive element-binding (OsDREB), ras-related protein 7 (OsRab7), ultraviolet-B resistance 8 (OsUVR8), WRKY transcription factor 89 (OsWRKY89) and tryptophan synthase alpha chain (OsTSA). Moreover, OsCM also increases accumulation of free amino acids (aspartic acid, glutamic acid, leucine, tyrosine, phenylalanine and proline) and sodium (Na), potassium (K), and calcium (Ca) ions in response to the combined stresses. Together, these results suggest that chorismate mutase expression induces physiological, biochemical and molecular changes that enhance rice tolerance to combined UV light and drought stresses.
Collapse
Affiliation(s)
- R Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| | - N Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - S Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - S Asif
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - X-X Du
- Biosafty Division, National Academy of Agriculture Science, Rural Development, Administration, Jeonju, South Korea
| | - E-G Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Y-H Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - K-M Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Weiland M, Weßler CF, Filler T, Glaab J, Lobo Ploch N, Winterwerber U, Wiesner-Reinhold M, Schreiner M, Neugart S. A comparison of consistent UV treatment versus inconsistent UV treatment in horticultural production of lettuce. Photochem Photobiol Sci 2023; 22:1611-1624. [PMID: 36988788 DOI: 10.1007/s43630-023-00402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
UV radiation is an underrated radiation currently missing in many horticultural production systems of vegetables in protected cultivation. It can be added e.g., in LED light sources. Using lettuce as a model plant, this study determined whether the use of UVB LEDs is suitable (1) for use in consistent systems (indoor farming) or (2) inconsistent systems (greenhouse). Blue and red LEDs were selected as additional artificial lighting to UVB LEDs. Both approaches led to a reproducible increase of desired flavonol glycosides, such as quercetin-3-O-(6''-O-malonyl)-glucoside or quercetin-3-O-glucuronide and the anthocyanin cyanidin-3-O-(6''-O-malonyl)-glucoside in lettuce. The impact of the consistent UVB treatment is higher with up to tenfold changes than that of the inconsistent UVB treatment in the greenhouse. Varying natural light and temperature conditions in greenhouses might affect the efficiency of the artificial UVB treatment. Here, UVB LEDs have been tested and can be recommended for further development of lighting systems in indoor farming and greenhouse approaches.
Collapse
Affiliation(s)
- Martin Weiland
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
- Leibniz Institute of Vegetable and Ornamental Crops e.v., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Caspar Friedrich Weßler
- Leibniz Institute of Vegetable and Ornamental Crops e.v., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas Filler
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Johannes Glaab
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Neysha Lobo Ploch
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Ulrike Winterwerber
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
| | - Melanie Wiesner-Reinhold
- Leibniz Institute of Vegetable and Ornamental Crops e.v., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops e.v., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075, Goettingen, Germany.
| |
Collapse
|
4
|
Fitzner M, Schreiner M, Baldermann S. The interaction of salinity and light regime modulates photosynthetic pigment content in edible halophytes in greenhouse and indoor farming. FRONTIERS IN PLANT SCIENCE 2023; 14:1105162. [PMID: 37082347 PMCID: PMC10110887 DOI: 10.3389/fpls.2023.1105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Given its limited land and water use and the changing climate conditions, indoor farming of halophytes has a high potential to contribute significantly to global agriculture in the future. Notably, indoor farming and classical greenhouse cultivation differ in their light regime between artificial and solar lighting, which can influence plant metabolism, but how this affects the cultivation of halophytes has not yet been investigated. To address this question, we studied the yield and content of abscisic acid, carotenoids, and chlorophylls as well as chloride of three halophyte species (Cochlearia officinalis, Atriplex hortensis, and Salicornia europaea) differing in their salt tolerance mechanisms and following four salt treatments (no salt to 600 mM of NaCl) in two light regimes (greenhouse/indoor farming). In particular, salt treatment had a strong influence on chloride accumulation which is only slightly modified by the light regime. Moreover, fresh and dry mass was influenced by the light regime and salinity. Pigments exhibited different responses to salt treatment and light regime, reflecting their differing functions in the photosynthetic apparatus. We conclude that the interaction of light regime and salt treatment modulates the content of photosynthetic pigments. Our study highlights the potential applications of the cultivation of halophytes for indoor farming and underlines that it is a promising production system, which provides food alternatives for future diets.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
- Food Metabolome, Faculty of Life Science: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| |
Collapse
|
5
|
Zheng S, Szymański J, Shahaf N, Malitsky S, Meir S, Wang X, Aharoni A, Rogachev I. Metabolic diversity in a collection of wild and cultivated Brassica rapa subspecies. Front Mol Biosci 2022; 9:953189. [DOI: 10.3389/fmolb.2022.953189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Brassica rapa (B. rapa) and its subspecies contain many bioactive metabolites that are important for plant defense and human health. This study aimed at investigating the metabolite composition and variation among a large collection of B. rapa genotypes, including subspecies and their accessions. Metabolite profiling of leaves of 102 B. rapa genotypes was performed using ultra-performance liquid chromatography coupled with a photodiode array detector and quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF-MS/MS). In total, 346 metabolites belonging to different chemical classes were tentatively identified; 36 out of them were assigned with high confidence using authentic standards and 184 were those reported in B. rapa leaves for the first time. The accumulation and variation of metabolites among genotypes were characterized and compared to their phylogenetic distance. We found 47 metabolites, mostly representing anthocyanins, flavonols, and hydroxycinnamic acid derivatives that displayed a significant correlation to the phylogenetic relatedness and determined four major phylometabolic branches; 1) Chinese cabbage, 2) yellow sarson and rapid cycling, 3) the mizuna-komatsuna-turnip-caitai; and 4) a mixed cluster. These metabolites denote the selective pressure on the metabolic network during B. rapa breeding. We present a unique study that combines metabolite profiling data with phylogenetic analysis in a large collection of B. rapa subspecies. We showed how selective breeding utilizes the biochemical potential of wild B. rapa leading to highly diverse metabolic phenotypes. Our work provides the basis for further studies on B. rapa metabolism and nutritional traits improvement.
Collapse
|
6
|
Yoon HI, Kim J, Oh MM, Son JE. Prediction of Phenolic Contents Based on Ultraviolet-B Radiation in Three-Dimensional Structure of Kale Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:918170. [PMID: 35755700 PMCID: PMC9228028 DOI: 10.3389/fpls.2022.918170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) radiation has been known as an elicitor to enhance bioactive compound contents in plants. However, unpredictable yield is an obstacle to the application of UV-B radiation to controlled environments such as plant factories. A typical three-dimensional (3D) plant structure causes uneven UV-B exposure with leaf position and age-dependent sensitivity to UV-B radiation. The purpose of this study was to develop a model for predicting phenolic accumulation in kale (Brassica oleracea L. var. acephala) according to UV-B radiation interception and growth stage. The plants grown under a plant factory module were exposed to UV-B radiation from UV-B light-emitting diodes with a peak at 310 nm for 6 or 12 h at 23, 30, and 38 days after transplanting. The spatial distribution of UV-B radiation interception in the plants was quantified using ray-tracing simulation with a 3D-scanned plant model. Total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), UV-B absorbing pigment content (UAPC), and the antioxidant capacity were significantly higher in UV-B-exposed leaves. Daily UV-B energy absorbed by leaves and developmental age was used to develop stepwise multiple linear regression models for the TPC, TFC, TAC, and UAPC at each growth stage. The newly developed models accurately predicted the TPC, TFC, TAC, and UAPC in individual leaves with R 2 > 0.78 and normalized root mean squared errors of approximately 30% in test data, across the three growth stages. The UV-B energy yields for TPC, TFC, and TAC were the highest in the intermediate leaves, while those for UAPC were the highest in young leaves at the last stage. To the best of our knowledge, this study proposed the first statistical models for estimating UV-B-induced phenolic contents in plant structure. These results provided the fundamental data and models required for the optimization process. This approach can save the experimental time and cost required to optimize the control of UV-B radiation.
Collapse
Affiliation(s)
- Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Jaewoo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Yang J, Li X, Yang H, Zhao W, Li Y. OPFRs in e-waste sites: Integrating in silico approaches, selective bioremediation, and health risk management of residents surrounding. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128304. [PMID: 35074750 DOI: 10.1016/j.jhazmat.2022.128304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A multilevel index system of organophosphate flame retardant bioremediation effect in an e-waste handling area was established under three bioremediation scenarios (scenario I, plant absorption; scenario II, plant-microbial combined remediation; scenario III, microbial degradation). Directional modification of OPFR substitutes with high selective bioremediation was performed. The virtual amino acid mutation approach was utilised to generate high-efficiency selective absorption/degradation mutant proteins (MPs) in a plant-microbial system under varying conditions. In scenario III, the MP's microbial degrading ability to replace molecules was increased to the greatest degree (165.82%). Appropriate foods such as corn, pig liver, and yam should be consumed, whereas the simultaneous consumption of high protein foods such as pig liver and walnut should be avoided; sweet potato and yam are believed to be prevent OPFRs and substitute molecules from entering the human body through multiple pathways for reduced genotoxicity of OPFRs in the populations of e-waste handling areas (the reduction degree can reach 85.12%). The study provides a theoretical basis for the development of ecologically acceptable OPFR substitutes and innovative high-efficiency bioremediation MPs, as well as for the reduction of the joint toxicity risk of multiple ingestion route exposure/gene damage of OPFRs in high OPFR exposure sites.
Collapse
Affiliation(s)
- Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's NL A1B 3X5, Canada.
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
8
|
Hao J, Lou P, Han Y, Zheng L, Lu J, Chen Z, Ni J, Yang Y, Xu M. Ultraviolet-B Irradiation Increases Antioxidant Capacity of Pakchoi (Brassica rapa L.) by Inducing Flavonoid Biosynthesis. PLANTS 2022; 11:plants11060766. [PMID: 35336648 PMCID: PMC8949486 DOI: 10.3390/plants11060766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
As an important abiotic stress factor, ultraviolet-B (UV-B) light can stimulate the accumulation of antioxidants in plants. In this study, the possibility of enhancing antioxidant capacity in pakchoi (Brassica rapa L.) by UV-B supplementation was assessed. Irradiation with 4 µmol·m−2·s−1 UV-B for 4 h or 2 µmol·m−2·s−1 UV-B for 24 h significantly increased the 1,1–diphenyl–2–picrylhydrazyl (DPPH) scavenging activity and total reductive capacity, as a result of inducing a greater accumulation of total polyphenols and flavonoids without affecting the plant biomass. A high performance liquid chromatography (HPLC) analysis showed that the concentrations of many flavonoids significantly increased in response to UV-B treatment. The activities of three enzymes involved in the early steps of flavonoid biosynthesis, namely phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate: coenzyme A (CoA) ligase (4CL), were significantly increased after the corresponding UV-B treatment. Compared with the control, the expression levels of several flavonoid biosynthesis genes (namely BrPAL, BrC4H, Br4CL, BrCHS, BrF3H, BrF3′H, BrFLS, BrDFR, BrANS, and BrLDOX) were also significantly up–regulated in the UV-B treatment group. The results suggest that appropriate preharvest UV-B supplementation could improve the nutritional quality of greenhouse-grown pakchoi by promoting the accumulation of antioxidants.
Collapse
Affiliation(s)
- Juan Hao
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Panpan Lou
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Yidie Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Lijun Zheng
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Zhehao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Jun Ni
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Yanjun Yang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
| | - Maojun Xu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China; (J.H.); (P.L.); (Y.H.); (L.Z.); (J.L.); (Z.C.); (J.N.); (Y.Y.)
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: ; Tel.: +86-0571-2886-5335
| |
Collapse
|