1
|
Li Y, Wang P, Liu Y, Wu X, Long G, Chen Y, Wang J, Tong F, Wang X. Fe 3O 4-Based Nanospheres with High Photothermal Conversion Efficiency for Dual-Effect and Mild Biofilm Eradication against Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14832-14845. [PMID: 40007476 DOI: 10.1021/acsami.4c17966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Periodontitis, a chronic inflammatory oral disease resulting from plaque biofilms, affects about 743 million individuals worldwide. However, the efficacy of current treatments is hampered by challenges in delivering antibiotics to recalcitrant oral biofilms and bacterial resistance, thereby impeding successful treatment of infectious diseases. To address the issues, an antibacterial photothermal material was designed, comprising a spherical structure of zinc oxide (ZnO) wrapped with triiron tetraoxide (Fe3O4). The outer layer of the material adsorbed epsilon-polylysine (EPL) by electrostatic action, ultimately leading to the fabrication of Fe3O4/ZnO/EPL nanoparticles (FZE NPs). The Fe3O4 core endowed the nanoparticles with efficient photothermal properties, facilitating the dispersion of dense biofilms, which dramatically promoted the adsorption and penetration of ZnO and EPL into the biofilms to effectively kill bacteria in biofilms in vitro with enhanced sterilization ability. Additionally, upon dissolution in aqueous media, EPL acts as a positively charged antimicrobial peptide that adsorbs onto the surface of negatively charged bacterial membranes, thereby effectively modulating inflammatory responses. In order to ascertain the efficacy of FZE NPs, an investigation was conducted into their antimicrobial effects against the periodontitis-associated pathogen Porphyromonas gingivalis (P. gingivalis) in vitro. Furthermore, the antiperiodontitis potential of FZE NPs was evaluated in Sprague-Dawley (SD) rats of ligamentous periodontitis. In addition, toxicity evaluations indicated that the material had an acceptable biosafety profile in vitro and in vivo. In summary, the nanospheres (FZE NPs) represent a promising therapeutic strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
| | - Xuefei Wu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Guangning Long
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
| | - Jiyan Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang, Jiangxi 330088, P. R. China
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
2
|
Song Y, Chen W, Yin Y, Li J, Wang M, Liu Y, Ren X. Advancements in the Transdermal Drug Delivery Systems Utilizing Microemulsion-based Gels. Curr Pharm Des 2024; 30:2753-2764. [PMID: 39092731 DOI: 10.2174/0113816128305190240718112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.
Collapse
Affiliation(s)
- Yongjian Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Yin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiunian Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Oehler MA, Hayes DG, D’Souza DH, Senanayake M, Gurumoorthy V, Pingali SV, O’Neill HM, Bras W, Urban VS. Assessment of antimicrobial activity of melittin encapsulated in bicontinuous microemulsions prepared using renewable oils. J SURFACTANTS DETERG 2023; 26:387-399. [PMID: 37470058 PMCID: PMC10353728 DOI: 10.1002/jsde.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
The objective of this study is to demonstrate that melittin, a well-studied antimicrobial peptide (AMP), can be solubilized in an active form in bicontinuous microemulsions (BMEs) that employ biocompatible oils. The systems investigated consisted of Winsor-III and -IV BME phases composed of Water/Aerosol-OT (AOT)/Polysorbate 85/isopropyl myristate and a Winsor-IV BME employing Polysorbate 80 and limonene. We found that melittin resided in an α-helix-rich configuration and was in an apolar environment for the AOT/Polysorbate 85 Winsor-III system, suggesting that melittin interacted with the surfactant monolayer and was in an active conformation. An apolar environment was also detected for melittin in the two Winsor-IV systems, but to a lesser extent than the Winsor-III system. Small-angle X-ray scattering analysis indicated that melittin at a concentration of 1.0 g/Laq in the aqueous subphase of the Winsor-IV systems led to the greatest impact on the BME structure (e.g., decrease of quasi-periodic repeat distance and correlation length and induction of interfacial fluidity). The antimicrobial activity of the Polysorbate 80 Winsor-IV system was evaluated against several bacteria prominent in chronic wounds and surgical site infections (SSIs). Melittin-free BMEs inhibited the growth of all tested bacteria due to its oil, limonene, while the inclusion of 1.0 g/Laq of melittin in the BMEs enhanced the activity against several bacteria. A further increase of melittin concentration in the BMEs had no further enhancement. These results demonstrate the potential utility of BMEs as a delivery platform for AMPs and other hydrophilic and lipophilic drugs to inhibit antibiotic-resistant microorganisms in chronic wounds and SSIs.
Collapse
Affiliation(s)
- Madison A. Oehler
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Douglas G. Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Doris H. D’Souza
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Manjula Senanayake
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wim Bras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Volker S. Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
4
|
Zhang M, Liu J, Feng Z, Wang Z, An T, Liu F. Peony seed oil microemulsion that enhances the antioxidant, antitumor, and antibacterial activities of berberine hydrochloride. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2158853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meng Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jinpeng Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhenhua Feng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhongni Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Tao An
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feng Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|