1
|
Ben Dassi R, Ibidhi S, Jemai H, Cherif A, Driouich Chaouachi R. Resveratrol: Challenges and prospects in extraction and hybridization with nanoparticles, polymers, and bio-ceramics. Phytother Res 2024; 38:5309-5322. [PMID: 39228146 DOI: 10.1002/ptr.8319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Resveratrol (RSV), a bioactive natural phenolic compound found in plants, fruits, and vegetables, has garnered significant attention in pharmaceutical, food, and cosmetic industries due to its remarkable biological and pharmacological activities. Despite its potential in treating various diseases, its poor pharmacokinetic properties, such as low solubility, stability, bioavailability, and susceptibility to rapid oxidation, limit its biomedical applications. Recent advancements focus on incorporating resveratrol into innovative materials like nanoparticles, polymers, and bio-ceramics to enhance its properties and bioavailability. In this review, an exhaustive literature search was conducted from PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases to explore these advancements, to compares conventional and innovative extraction methods, and to highlights resveratrol's therapeutic potential, including its anti-inflammatory, anti-oxidative, anti-cancerogenic, antidiabetic, neuroprotective, and cardio-protective properties. Additionally, we discuss the challenges and prospects of hybrid materials combining resveratrol with nanoparticles, polymers, and bio-ceramics for therapeutic applications. Rigorous studies are still needed to confirm their clinical efficacy.
Collapse
Affiliation(s)
- Roua Ben Dassi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Salah Ibidhi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Hedya Jemai
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Rim Driouich Chaouachi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| |
Collapse
|
2
|
Ferreyra S, Bottini R, Fontana A. Background and Perspectives on the Utilization of Canes' and Bunch Stems' Residues from Wine Industry as Sources of Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267502 DOI: 10.1021/acs.jafc.3c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Viticulture activity produces a significant amount of grapevine woody byproducts, such as bunch stems and canes, which constitute potential sources of a wide range of phenolic compounds (PCs) with purported applications. Recently, the study of these byproducts has been increased as a source of health-promoting phytochemicals. Antioxidant, antimicrobial, antifungal, and antiaging properties have been reported, with most of these effects being linked to the high content of PCs with antioxidant properties. This Review summarizes the data related to the qualitative and quantitative composition of PCs recovered from canes and bunch stems side streams of the wine industry, the influence that the different environmental and storage conditions have on the final concentration of PCs, and the current reported applications in specific technological fields. The objective is to give a complete valuation of the key factors to consider, starting from the field to the final extracts, to attain the most suitable and stable characterized product.
Collapse
Affiliation(s)
- Susana Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto de Veterinaria Ambiente y Salud, Universidad Juan A. Maza, Lateral Sur del Acceso Este 2245, 5519 Guaymallén, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| |
Collapse
|
3
|
Resveratrol: Its Path from Isolation to Therapeutic Action in Eye Diseases. Antioxidants (Basel) 2022; 11:antiox11122447. [PMID: 36552655 PMCID: PMC9774148 DOI: 10.3390/antiox11122447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Due to the confirmed therapeutic potential of resveratrol (Rv) for eye diseases, namely its powerful anti-angiogenic and antioxidant effects, this molecule must be studied more deeply. Nowadays, the pharmaceutic and pharmacokinetic available studies offer a troubling picture because of its low stability and bioavailability. To overcome this problem, researchers started to design and create different delivery systems that could improve the delivery amount of Rv. Therefore, this review aims to shed light on the proper and efficient techniques to isolate, purify and quantify the Rv molecule, and how this therapeutic molecule can be a part of a delivery system. The Rv great impact on aspects regarding its stability, bioavailability and absorption are also debated here, based on the existent literature on in vitro and in vivo human and animal studies. Moreover, after its absorption the Rv influence at the molecular level in ocular pathologies is described. In addition, the present review summarizes the available literature about Rv, hoping that Rv will gain more attention to investigate its unexplored side.
Collapse
|
4
|
Jovanović Galović A, Jovanović Lješković N, Vidović S, Vladić J, Jojić N, Ilić M, Srdić Rajić T, Kojić V, Jakimov D. The Effects of Resveratrol-Rich Extracts of Vitis vinifera Pruning Waste on HeLa, MCF-7 and MRC-5 Cells: Apoptosis, Autophagia and Necrosis Interplay. Pharmaceutics 2022; 14:pharmaceutics14102017. [PMID: 36297452 PMCID: PMC9607132 DOI: 10.3390/pharmaceutics14102017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a well-studied plant-derived molecule in cancer biology, with a plethora of documented in vitro effects. However, its low bioavailability and toxicity risk hamper its wider use. In this study, vine shoots after pruning were used as a source of resveratrol (RSV). The activity of subcritical water extract (SWE) and dry extract (DE) is examined on three cell lines: HeLa, MCF-7 and MRC-5. The cytotoxic effect is assessed by the MTT test and EB/AO staining, levels of apoptosis are determined by Annexin V assay, autophagia by ULK-1 expression using Western blot and NF-kB activation by p65 ELISA. Our results show that both resveratrol-rich extracts (DE, SWE) have a preferential cytotoxic effect on malignant cell lines (HeLa, MCF-7), and low cytotoxicity on non-malignant cells in culture (MRC-5). Further experiments indicate that the investigated malignant cells undergo different cell death pathways. MCF-7 cells died preferentially by apoptosis, while the HeLa cells died most likely by necrosis (possibly ferroptosis). Protective autophagia is diminished upon treatment with DE in both HeLa and MCF-7 cells, while SWE does not influence the level of autophagia. The extracts are effective even at low concentrations (below IC50) in the activation of NF-kB (p65 translocation).
Collapse
Affiliation(s)
- Aleksandra Jovanović Galović
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
- Correspondence:
| | | | - Senka Vidović
- Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Vladić
- Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nikola Jojić
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| | - Milan Ilić
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| | - Tatjana Srdić Rajić
- Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Pasterova 14, 11000 Belgrade, Serbia
| | - Vesna Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Dimitar Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
5
|
Dorosh O, Rodrigues F, Delerue-Matos C, Moreira MM. Increasing the added value of vine-canes as a sustainable source of phenolic compounds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154600. [PMID: 35337875 DOI: 10.1016/j.scitotenv.2022.154600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Grapes represent one of the most produced fruit crops around the world leading to the generation of large amounts of vine-canes as a side product, with no current economically profitable application. However, vine-canes have been demonstrated to be natural sources of phenolic compounds with numerous health benefits associated, with several potential applications. Therefore, new ambitious applications focused on their re-use are needed, targeting a sustainable process that simultaneous produces functional products and mitigates the waste generation. This review gives to the readers a complete summary about the state of the art regarding the vine-canes extracts research. Vine-canes phenolic composition is addressed and related to the health benefits exhibited. This review comprises studies from the past two decades reporting the extraction processes to recover vine-cane phenolic compounds, including conventional and environmentally friendly technologies and discussing their advantages and disadvantages. The conditions that favour the extraction process for vine-cane polyphenols for each technique were also deeply explored for the first time, enabling to the reader apply only the best parameters to achieve the highest yields without huge investment in optimizations procedures. Furthermore, a correlation between the bioactive properties of the vine-cane extracts and their applications in multiple fields is also critically presented.
Collapse
Affiliation(s)
- Olena Dorosh
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| |
Collapse
|
6
|
Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers (Basel) 2022; 14:polym14091640. [PMID: 35566809 PMCID: PMC9101343 DOI: 10.3390/polym14091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023] Open
Abstract
Europe is considered the largest producer of wine worldwide, showing a high market potential. Several wastes are generated at the different stages of the wine production process, namely, vine pruning, stalks, and grape marc. Typically, these residues are not used and are commonly discarded. Portugal generates annually approximately 178 thousand metric tons of wine production waste. In this context, the interest in redirecting the use of these residues has increased due to overproduction, great availability, and low costs. The utilization of these lignocellulosic biomasses derived from the wine industry would economically benefit the producers, while mitigating impacts on the environment. These by-products can be submitted to pre-treatments (physical, chemical, and biological) for the separation of different compounds with high industrial interest, reducing the waste of agro-industrial activities and increasing industrial profitability. Particularly, vine-pruning residue, besides being a source of sugar, has high nutritional value and may serve as a source of phenolic compounds. These compounds can be obtained by bioconversion, following a concept of biorefinery. In this framework, the current routes of the valorisation of the pruning residues will be addressed and put into a circular economy context.
Collapse
|
7
|
Piñeiro Z, Aliaño-González MJ, González-de-Peredo AV, Palma M, de Andrés MT. Microwave-assisted extraction of non-coloured phenolic compounds from grape cultivars. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Recovery of Polyphenols from Vineyard Pruning Wastes-Shoots and Cane of Hybrid Grapevine ( Vitis sp.) Cultivars. Antioxidants (Basel) 2021; 10:antiox10071059. [PMID: 34209008 PMCID: PMC8300631 DOI: 10.3390/antiox10071059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Grapevine shoots and canes represent a significant amount of biomass, considered as a waste in viticulture. In cooler climates, grapevines are pruned in the autumn (October) and spring (March) due to harsh winter conditions (e.g., snow, low temperatures), and large amounts of biomass are produced at these different pruning times. This work was undertaken in order to investigate the potential of vineyard pruning waste for recovery of polyphenolic compounds for biomass valorization. Qualitative and quantitative analyses of grapevine shoot and cane polyphenols, including flavonoids and stilbenoids were performed using UHPLC MS/MS method. The results revealed the flavonols (quercetin) to be the most abundant compounds in shoots among all the three cultivars screened (Zilga, Hasansky Sladky, Rondo). Stilbenoids (ε-viniferin) dominated in the canes, while increased level of flavonols with lower contents of stilbenoids was detected in the endo-dormant canes, and higher amounts of flavanols and stilbenoids were recorded in eco-dormant canes. In conclusion, the content of polyphenols in grapevine shoots and canes differed among the cultivars and dormancy phases. The results generated from the present study contribute to the sustainable and environmentally friendly viticulture practice via valorization of vineyard pruning wastes.
Collapse
|
9
|
Coelho M, Pereira R, Rodrigues A, Teixeira J, Pintado M. The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Ferreyra S, Bottini R, Fontana A. Tandem absorbance and fluorescence detection following liquid chromatography for the profiling of multiclass phenolic compounds in different winemaking products. Food Chem 2020; 338:128030. [PMID: 32932090 DOI: 10.1016/j.foodchem.2020.128030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
A liquid chromatography method coupling diode-array and fluorescence detectors (DAD and FLD, respectively) has been developed for the simultaneous quantification of 32 phenolic compounds (PCs) in winemaking products. With the combination of both detectors it was possible to determine phenolic acids, flavanols, flavonols, stilbenes and other PCs in the matrices under study. An excitation wavelength of 290 nm was selected and three different emission wavelengths (315, 360 and 400 nm) were recorded. The method provided detection and quantification limits (LODs and LOQs) within the ranges of 0.01-1.46 mg/L and 0.03-4.9 mg/L, respectively. The LODs and LOQs using FLD for flavanols, stilbenes and phenyl ethanol analogues were improved between 65 and 1000% as compared with DAD. The combination of DAD with FLD increased both, sensitivity and the ability to reduce interfering signals. The developed method was applied for the characterization of PCs of wines, bunch stems and grape canes.
Collapse
Affiliation(s)
- Susana Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto de Veterinaria Ambiente y Salud, Universidad Juan A. Maza, Lateral Sur del Acceso Este 2245, 5519 Guaymallén, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina.
| |
Collapse
|
11
|
Aliaño-González MJ, Richard T, Cantos-Villar E. Grapevine Cane Extracts: Raw Plant Material, Extraction Methods, Quantification, and Applications. Biomolecules 2020; 10:E1195. [PMID: 32824592 PMCID: PMC7464460 DOI: 10.3390/biom10081195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Grapevine canes are viticulture waste that is usually discarded without any further use. However, recent studies have shown that they contain significant concentrations of health-promoting compounds, such as stilbenes, secondary metabolites of plants produced as a response to biotic and abiotic stress from fungal disease or dryness. Stilbenes have been associated with antioxidant, anti-inflammatory, and anti-microbial properties and they have been tested as potential treatments of cardiovascular and neurological diseases, and even cancer, with promising results. Stilbenes have been described in the different genus of the Vitaceae family, the Vitis genera being one of the most widely studied due to its important applications and economic impact around the world. This review presents an in-depth study of the composition and concentration of stilbenes in grapevine canes. The results show that the concentration of stilbenes in grapevine canes is highly influenced by the Vitis genus and cultivar aspects (growing conditions, ultraviolet radiation, fungal attack, etc.). Different methods for extracting stilbenes from grapevine canes have been reviewed, and the extraction conditions have also been studied, underlining the advantages and disadvantages of each technique. After the stilbenes were extracted, they were analyzed to determine the stilbene composition and concentration. Analytical techniques have been employed with this aim, in most cases using liquid chromatography, coupled with others such as mass spectrometry and/or nuclear magnetic resonance to achieve the individual quantification. Finally, stilbene extracts may be applied in multiple fields based on their properties. The five most relevant are preservative, antifungal, insecticide, and biostimulant applications. The current state-of-the-art of the above applications and their prospects are discussed.
Collapse
Affiliation(s)
- María José Aliaño-González
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Rancho de la Merced, Ctra. Cañada de la Loba, CA-3102 km 3.1, 11471 Jerez de la Frontera, Spain;
| | - Tristan Richard
- Université de Bordeaux, ISVV, EA 3675 Groupe d’Etude des Substances Végétales à Activité Biologique, 33882 Villenave d’Ornon, France;
| | - Emma Cantos-Villar
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Rancho de la Merced, Ctra. Cañada de la Loba, CA-3102 km 3.1, 11471 Jerez de la Frontera, Spain;
| |
Collapse
|
12
|
V González de Peredo A, Vázquez-Espinosa M, Piñeiro Z, Espada-Bellido E, Ferreiro-González M, F Barbero G, Palma M. Development of a rapid and accurate UHPLC-PDA-FL method for the quantification of phenolic compounds in grapes. Food Chem 2020; 334:127569. [PMID: 32707360 DOI: 10.1016/j.foodchem.2020.127569] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
Abstract
Grapes are a great source of phenolic compounds, which have excellent antioxidant properties. Efficient analytical methods are necessary to selectively and precisely determine these compounds content in grapes. In this study, a reverse-phase ultra-high performance liquid chromatography (UHPLC) method with fluorescence and photodiode array detection has been developed to determine and quantify 27 of the main phenolic compounds present in grapes. An ACQUITY UPLC® BEH C18 (50 mm × 2.1 mm i.d., 1.7 mm particle size) column was employed. A gradient method was developed and column temperature (25-55 °C), as well as flow rate (0.6-0.75 mL min-1), were optimized. The optimum conditions allowed the separation of all the compounds in less than 9 min. The method was validated and demonstrated excellent detection and quantification limits, precision, and selectivity. Finally, several grape varieties were studied in order to demonstrate the applicability of the method to the analysis of real matrix samples.
Collapse
Affiliation(s)
- Ana V González de Peredo
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain
| | - Zulema Piñeiro
- Centro IFAPA Rancho de la Merced, Carretera de Trebujena, km 3.2, Apdo. 589, 11471 Jerez de la Frontera, Cadiz, Spain
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain.
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, P.O. Box 40, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
13
|
Nieto JA, Santoyo S, Prodanov M, Reglero G, Jaime L. Valorisation of Grape Stems as a Source of Phenolic Antioxidants by Using a Sustainable Extraction Methodology. Foods 2020; 9:foods9050604. [PMID: 32397247 PMCID: PMC7278613 DOI: 10.3390/foods9050604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Pressurized liquid extraction with ethanol:water mixtures was proposed for obtaining phenolic antioxidants from grape stems. The optimal extraction conditions were elucidated by using a central composite rotatable design (solvent (X1, 0–100% ethanol:water v/v), temperature (X2, 40–120 °C) and time (X3, 1–11 min)). Response surface methodology determined 30% ethanol:water, 120 °C and 10 min as the optimal extraction conditions regarding total phenolic content (TPC) (185.3 ± 2.9 mg gallic acid/g of extract) and antioxidant activity (3.55 ± 0.21 mmol Trolox/g, 1.22 ± 0.06 mmol Trolox/g and 1.48 ± 0.17 mmol Trolox/g of extract in ABTS, DPPH and ORAC methodologies, respectively). The antioxidant activity was attributed to total polymer procyanidins and flavan-3-ol monomers and oligomers, although other phenolic compound contributions should not be ruled out. Forty-two phenolic compounds were identified in the optimal extract, mainly polymer procyanidins and, to a lesser extent, monomers and oligomers of flavan-3-ols, quercetin-3-O-glucuronide, ε-viniferin, gallic and caftaric acid. Ethyl gallate, ellagic acid, protocatechuic aldehyde, delphinidin-7-O-glucoside and cyanidin-3-O-glucoside were reported for the first time in grape stem extracts. In conclusion, this study highlights the use of this winery side stream as a source of antioxidants within a sustainable food system.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain; (J.A.N.); (S.S.); (M.P.); (G.R.)
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain; (J.A.N.); (S.S.); (M.P.); (G.R.)
| | - Marin Prodanov
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain; (J.A.N.); (S.S.); (M.P.); (G.R.)
| | - Guillermo Reglero
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain; (J.A.N.); (S.S.); (M.P.); (G.R.)
- IMDEA-Food Institute, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain; (J.A.N.); (S.S.); (M.P.); (G.R.)
- Correspondence: ; Tel.: +34-910017900
| |
Collapse
|
14
|
Dorneles MS, Noreña CPZ. Extraction of bioactive compounds from
Araucaria angustifolia
bracts by microwave‐assisted extraction. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mariane S. Dorneles
- Institute of Food Science and Technology (ICTA/UFRGS) Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Caciano P. Z. Noreña
- Institute of Food Science and Technology (ICTA/UFRGS) Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
15
|
Zwingelstein M, Draye M, Besombes JL, Piot C, Chatel G. Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:782-794. [PMID: 31812093 DOI: 10.1016/j.wasman.2019.11.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 05/28/2023]
Abstract
Viticultural waste has been widely demonstrated to contain high-added value compounds named the stilbenes. Among them, trans-resveratrol (Rsv) and trans-ε-viniferin (Vf) are the most abundant in particular in grape canes. Various emerging methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) or pressurized solvent extraction (PSE) have been studied to recover Rsv and Vf from grape canes in order to enhance their extraction. This paper gives a critical overview of the techniques used to this end, integrating conventional and non-conventional methods investigated in the literature as well as those used in industrial processes. It finally highlights that the unconventional technics are usually less time-consuming than conventional extraction ones but further investigations for the discussed compounds and biomass are needed to optimize and understand the influence of the individual parameters of each extraction process.
Collapse
Affiliation(s)
- Marion Zwingelstein
- Univ. Savoie Mont Blanc, LCME, F-73000 Chambéry, France; Agence de l'Environnement et de Maîtrise de l'Energie (ADEME), F-49004 Angers, France
| | | | | | | | - Gregory Chatel
- Univ. Savoie Mont Blanc, LCME, F-73000 Chambéry, France.
| |
Collapse
|
16
|
Ferreyra SG, Antoniolli A, Bottini R, Fontana A. Bioactive compounds and total antioxidant capacity of cane residues from different grape varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:376-383. [PMID: 31595514 DOI: 10.1002/jsfa.10065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Every year, the viticulture activity generates considerable amounts of underused lignocellulosic residues as grape cane, which are generally composted or burned despite their potential value as a source of bioactive compounds. Determination of their phytochemical composition and total antioxidant capacity (TAC) may be a useful way of exploiting different high-added value applications. RESULTS Twenty-one phenolic compounds (PC) and two carotenoids (Car) were quantified by high performance-liquid chromatography-diode array detection in eight grape varieties from different locations in Mendoza, Argentina. The maximum concentrations corresponded to the stilbene ϵ-viniferin [10 552 μg g-1 dry weight (DW)], followed by the flavanols (+)-catechin (3718 μg g-1 DW) and (-)-epicatechin (2486 μg g-1 DW). In addition, lutein and β-carotene were quantified at levels ranging between 350 and 2400 ng g-1 DW. The TAC of the extracts was assessed by oxygen radical absorbance capacity, 2,20-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid and 1,1-diphenyl-2-picrylhydrazyl assays, with a good correlation between TAC and total PC for each sample (r ≥ 0.82). CONCLUSION Samples of cv. Malbec, the most representative variety of Argentina's winemaking industry, presented high contents of PC, particularly ϵ-viniferin, (+)-catechin and (-)-epicatechin. Quercetin-3-galactoside, OH-tyrosol and Car were reported for the first time in grape canes of the eight varieties. The results add to the existing knowledge related to this inexpensive source of high-value bioactive compounds, which could be used as functional ingredients. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susana G Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET - Universidad Nacional de Cuyo, Chacras de Coria, Argentina
| | - Andrea Antoniolli
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET - Universidad Nacional de Cuyo, Chacras de Coria, Argentina
| | - Rubén Bottini
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET - Universidad Nacional de Cuyo, Chacras de Coria, Argentina
- Área de Ciencia y Técnica, Universidad Juan A. Maza, Guaymallén, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET - Universidad Nacional de Cuyo, Chacras de Coria, Argentina
| |
Collapse
|
17
|
Jiménez-Moreno N, Volpe F, Moler JA, Esparza I, Ancín-Azpilicueta C. Impact of Extraction Conditions on the Phenolic Composition and Antioxidant Capacity of Grape Stem Extracts. Antioxidants (Basel) 2019; 8:antiox8120597. [PMID: 31795232 PMCID: PMC6943662 DOI: 10.3390/antiox8120597] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
The use of grape stems for the extraction of bioactive compounds to be used in the pharmaceutical, food, and cosmetic industries is a promising objective. The aim of this work is to determine the influence of the different extraction conditions (temperature, ethanol concentration, and ratio of sample/solvent) on phenolic composition and antioxidant capacity of Mazuelo stem extracts. In general, the ethanol concentration of the extraction solvent was the factor that had the greatest influence on the extraction of different bioactive compounds. The greatest content of total phenolic compounds and the highest antioxidant activity of the extracts were obtained with 50% ethanol and at 40 °C. The most abundant compound found in the different extracts obtained from Mazuelo grape stem was (+)-catechin, but appreciable concentrations of gallic acid, a quercetin derivative, and stilbenes (trans-resveratrol and trans-ε-viniferin) were also extracted. Quercetin and malvidin-3-glucoside showed the highest correlation with the antioxidant capacity of the extracts, while stilbenes did not present such relation. The maximum concentration of gallic acid was extracted with water but the extraction of most of the compounds was maximum on using 50% ethanol. Consequently, the selection of the extraction method to be used will depend on the particular compound to be extracted in greatest quantity.
Collapse
Affiliation(s)
- Nerea Jiménez-Moreno
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (N.J.-M.); (F.V.)
| | - Francesca Volpe
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (N.J.-M.); (F.V.)
| | - Jose Antonio Moler
- Department of Statistics and Operational Research, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain;
| | - Irene Esparza
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (N.J.-M.); (F.V.)
- Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006 Pamplona, Spain
- Correspondence: (I.E.); (C.A.-A.); Tel.: +34-948-169596 (C.A.-A.)
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (N.J.-M.); (F.V.)
- Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006 Pamplona, Spain
- Correspondence: (I.E.); (C.A.-A.); Tel.: +34-948-169596 (C.A.-A.)
| |
Collapse
|
18
|
González-de-Peredo AV, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Amores-Arrocha A, Palma M, Barbero GF, Jiménez-Cantizano A. Discrimination of Myrtle Ecotypes from Different Geographic Areas According to Their Morphological Characteristics and Anthocyanins Composition. PLANTS 2019; 8:plants8090328. [PMID: 31491917 PMCID: PMC6784115 DOI: 10.3390/plants8090328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
Abstract
Myrtus communis L. is an evergreen shrub that produces berries with a high content in antioxidant compounds. Since these compounds have demonstrated a positive effect on human health, the interest on berries and their usages has increased. However, environmental conditions may affect the productivity of these species and consequently the quality of wild myrtle. Ecotypes from diverse geographical origins may result in significant variations in terms of bioactive compounds content as well as in chemical traits. For this reason, in this work ecotypes from two different localizations have been studied to determine if their differences in morphological and anthocyanins traits can be attributed to their origin and the environmental characteristics of these locations. For this, chemometric analyses such as Hierarchical Cluster Analysis and Principal Component Analysis, were employed. The results showed differences between the ecotypes depending on their location. In particular, myrtle berries from maritime zones present greater fruit size and amount of bioactive compounds, which means an improvement in the quality of the final product based on this raw material. It can be concluded that both morphological and anthocyanins traits are related to the location of the ecotype and allow selecting the best ecotype for the required applications.
Collapse
Affiliation(s)
- Ana V González-de-Peredo
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain.
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain.
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain.
| | - Antonio Amores-Arrocha
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain.
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain.
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain.
| | - Ana Jiménez-Cantizano
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain.
| |
Collapse
|
19
|
Quiles-Carrillo L, Mellinas C, Garrigos MC, Balart R, Torres-Giner S. Optimization of Microwave-Assisted Extraction of Phenolic Compounds with Antioxidant Activity from Carob Pods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01596-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
de Oliveira VS, Ferreira FS, Cople MCR, Labre TDS, Augusta IM, Gamallo OD, Saldanha T. Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review. Compr Rev Food Sci Food Saf 2018; 17:1465-1483. [DOI: 10.1111/1541-4337.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Vanessa Sales de Oliveira
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Maria Clara Ramos Cople
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Ivanilda Maria Augusta
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Ormindo Domingues Gamallo
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| | - Tatiana Saldanha
- Dept. of Food Technology, Inst. of Technology; Univ. Federal Rural of Rio de Janeiro (UFRRJ); Rodovia Br 465, km 7 Seropédica RJ 23890-000 Brazil
| |
Collapse
|