1
|
d’Adamo A, Salerno E, Corda G, Ongaro C, Zardin B, Ruffini A, Orlandi G, Bertacchini J, Angeli D. Experimental measurements and CFD modelling of hydroxyapatite scaffolds in perfusion bioreactors for bone regeneration. Regen Biomater 2023; 10:rbad002. [PMID: 36751469 PMCID: PMC9893872 DOI: 10.1093/rb/rbad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
In the field of bone tissue engineering, particular interest is devoted to the development of 3D cultures to study bone cell proliferation under conditions similar to in vivo ones, e.g. by artificially producing mechanical stresses promoting a biological response (mechanotransduction). Of particular relevance in this context are the effects generated by the flow shear stress, which governs the nutrients delivery rate to the growing cells and which can be controlled in perfusion reactors. However, the introduction of 3D scaffolds complicates the direct measurement of the generated shear stress on the adhered cells inside the matrix, thus jeopardizing the potential of using multi-dimensional matrices. In this study, an anisotropic hydroxyapatite-based set of scaffolds is considered as a 3D biomimetic support for bone cells deposition and growth. Measurements of sample-specific flow resistance are carried out using a perfusion system, accompanied by a visual characterization of the material structure. From the obtained results, a subset of three samples is reproduced using 3D-Computational Fluid Dynamics (CFD) techniques and the models are validated by virtually replicating the flow resistance measurement. Once a good agreement is found, the analysis of flow-induced shear stress on the inner B-HA structure is carried out based on simulation results. Finally, a statistical analysis leads to a simplified expression to correlate the flow resistance with the entity and extensions of wall shear stress inside the scaffold. The study applies CFD to overcome the limitations of experiments, allowing for an advancement in multi-dimensional cell cultures by elucidating the flow conditions in 3D reactors.
Collapse
Affiliation(s)
| | - Elisabetta Salerno
- Centro Interdipartimentale per la Ricerca Applicata e i Servizi nella Meccanica Avanzata e nella Motoristica InterMech-MO.RE, Piazzale Europa, 1, Reggio Emilia RE 42124, Italy,Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia 42122, Italy
| | - Giuseppe Corda
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Modena 41125, Italy
| | - Claudio Ongaro
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Modena 41125, Italy
| | - Barbara Zardin
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Modena 41125, Italy
| | - Andrea Ruffini
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza 48018, Italy
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena 41125, Italy,Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale della Ricerca (IGM-CNR), Bologna 40136, Italy
| | - Diego Angeli
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia 42122, Italy
| |
Collapse
|
2
|
Rosmahadi NA, Leong WH, Rawindran H, Ho YC, Mohamad M, Ghani NA, Bashir MJK, Usman A, Lam MK, Lim JW. Assuaging Microalgal Harvesting Woes via Attached Growth: A Critical Review to Produce Sustainable Microalgal Feedstock. SUSTAINABILITY 2021; 13:11159. [DOI: 10.3390/su132011159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Third-generation biofuels that are derived from microalgal biomass have gained momentum as a way forward in the sustainable production of biodiesel. Such efforts are propelled by the intention to reduce our dependence on fossil fuels as the primary source of energy. Accordingly, growing microalgal biomass in the form of suspended cultivation has been a conventional technique for the past few decades. To overcome the inevitable harvesting shortcomings arising from the excessive energy and time needed to separate the planktonic microalgal cells from water medium, researchers have started to explore attached microalgal cultivation systems. This cultivation mode permits the ease of harvesting mature microalgal biomass, circumventing the need to employ complex harvesting techniques to single out the cells, and is economically attractive. However, the main bottleneck associated with attached microalgal growth is low biomass production due to the difficulties the microalgal cells have in forming attachment and populating thereafter. In this regard, the current review encompasses the novel techniques adopted to promote attached microalgal growth. The physicochemical effects such as the pH of the culture medium, hydrophobicity, as well as the substratum surface properties and abiotic factors that can determine the fate of exponential growth of attached microalgal cells, are critically reviewed. This review aims to unveil the benefits of an attached microalgal cultivation system as a promising harvesting technique to produce sustainable biodiesel for lasting applications.
Collapse
Affiliation(s)
- Nurulfarah Adilah Rosmahadi
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Wai-Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Yeek-Chia Ho
- Centre for Urban Resource Sustainability, Civil and Environmental Engineering Department, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Kelantan, Malaysia
| | - Noraini A. Ghani
- Centre of Research in Ionic Liquids, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Mohammed J. K. Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Perak Darul Ridzuan, Malaysia
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Man-Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Department of Chemical Engineering, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
3
|
Ma Z, Zhao H, Shi L, Yu D, Guo X. Automatic medium exchange for micro-volume cell samples based on dielectrophoresis. Electrophoresis 2021; 42:1507-1515. [PMID: 33990980 DOI: 10.1002/elps.202000195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/06/2022]
Abstract
Cell medium exchange is a crucial step for life science and medicine. However, conventional cell medium exchange methods, including centrifuging and filtering, show limited ability for micro-volume cell samples such as circulating tumor cell (CTC) and circulating fetal cell (CFC). In this paper, we proposed an automatic medium exchange method for micro-volume cell samples based on dielectrophoresis (DEP) in microfluidic chip. Fresh medium and cell suspension were introduced into the microfluidic channel as the laminar flow. Plane stair-shaped interdigital electrodes were employed to drive the cells from the cell suspension to fresh media directly by DEP force. Additionally, we characterized and optimized the cell medium exchange according to both the theory and experiments. In the end, we achieved a 96.9% harvest rate of medium exchange for 0.3 μL samples containing micro-volume cells. For implementing an automatic continuous cell medium exchange, the proposed method can be integrated into the automatic cell processing system conveniently. Furthermore, the proposed method is a great candidate in micro-volume cell analysis and processing, cell electroporation, single cell sequencing, and other scenarios.
Collapse
Affiliation(s)
- Zhouyang Ma
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Hongwang Zhao
- School of Automobile and Traffic Engineering, Guilin University of Aerospace Technology, Guilin, Guangxi, P. R. China
| | - Liujia Shi
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, P. R. China
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China.,Beijing Advance Innovation Center for Soft Matter Science and Engineering, Beijing, P. R. China
| | - Xiaoliang Guo
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
4
|
Angoy A, Ginies C, Goupy P, Bornard I, Ginisty P, Sommier A, Valat M, Chemat F. Development of a green innovative semi-industrial scale pilot combined microwave heating and centrifugal force to extract essential oils and phenolic compounds from orange peels. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Molina-Miras A, López-Rosales L, Cerón-García M, Sánchez-Mirón A, García-Camacho F, Contreras-Gómez A, Molina-Grima E. A new approach to finding optimal centrifugation conditions for shear-sensitive microalgae. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|