1
|
Yildiz AY, Öztekin S, Anaya K. Effects of plant-derived antioxidants to the oxidative stability of edible oils under thermal and storage conditions: Benefits, challenges and sustainable solutions. Food Chem 2025; 479:143752. [PMID: 40086382 DOI: 10.1016/j.foodchem.2025.143752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
The stability of edible oils significantly influences their quality, safety, and shelf life. While synthetic antioxidants have traditionally been used, the growing consumer interest in food safety and sustainability has shifted focus towards natural alternatives. Plant-derived antioxidants offer a promising solution, enhancing oxidative stability while meeting clean-label demands. This review examines recent advancements in using plant-derived antioxidants, such as extracts, essential oils, and agro-industrial by-products, to inhibit lipid peroxidation and improve edible oils' oxidative and thermal stability. Natural antioxidants from peels, seeds, spices, fruits, and vegetables effectively reduce hydrolysis, polymerization, and secondary oxidation products. Despite their potential, challenges remain, including impacts on sensory attributes, regulatory compliance, and the need for standardized extraction and application protocols. Addressing these limitations can advance sustainable food preservation and encourage the integration of natural antioxidants in the food industry, contributing to a more sustainable economy and shelf life.
Collapse
Affiliation(s)
- Aysun Yurdunuseven Yildiz
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli, 20160, Türkiye.
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Türkiye.
| | - Katya Anaya
- Health Sciences College of Trairi, Federal University of Rio Grande do Norte, Santa Cruz, RN, Brazil.
| |
Collapse
|
2
|
Badea GI, Gatea F, Litescu-Filipescu SC, Alecu A, Chira A, Damian CM, Radu GL. Optimization of Green Ultrasound-Assisted Extraction of Carotenoids and Tocopherol from Tomato Waste Using NADESs. Molecules 2025; 30:591. [PMID: 39942695 PMCID: PMC11820441 DOI: 10.3390/molecules30030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
The purpose of this study was to extract the lipophilic fraction from one of the largest source of waste in the industrial sector, namely, the tomato residue from processing the fruit. In order to make this process more environmentally sustainable, this study used a green extraction protocol employing natural deep eutectic solvents (NADESs) combined with a less energy-consuming technology, the ultrasound-assisted extraction (UAE) method, to simultaneously recover carotenoids and tocopherol from dried powder tomato waste. Two NADESs, one hydrophilic and one hydrophobic, were prepared and compared to support high extraction efficiency and increase the stability of the extracted compounds. The optimal extraction parameters were identified as choline chloride:1,3-butanediol (1:5)-based NADES, a solid-to-liquid ratio of 1:20 (w/v), time of extraction 12 min, temperature 65 °C, radiation frequency 37 Hz, and an ultrasound power level of 70%. The extraction process was intensified and resulted in extracts rich in lycopene (215.13 ± 4.31 μg/g DW), β-carotene (206.95 ± 3.27 μg/g DW), and tocopherol (130.86 ± 8.97 μg/g DW) content, with the highest antioxidant capacity 93.84 ± 0.18 mM Trolox equivalent. Incorporating NADESs for the extraction of bioactive compounds offers numerous benefits, such as improved sustainability, enhanced extraction efficiency, better protection of sensitive compounds, and reduced environmental impact. These advantages make NADESs a promising alternative to traditional organic solvents, especially in industries that require natural, green, and efficient extraction processes for valuable bioactive molecules.
Collapse
Affiliation(s)
- Georgiana Ileana Badea
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Florentina Gatea
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Simona Carmen Litescu-Filipescu
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Andreia Alecu
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Ana Chira
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| | - Celina Maria Damian
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Gabriel Lucian Radu
- National Institute for Research and Development of Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, P.O. Box 17-16, 060031 Bucharest, Romania; (F.G.); (A.A.); (A.C.); (G.L.R.)
| |
Collapse
|
3
|
Oubannin S, Asbbane A, Goh KW, Singh J, Zafar I, Bouyahya A, Gharby S. Green enrichment of argan oil ( Argania spinosa L.) with thyme ( Thymus vulgaris L.) and oregano ( Origanum vulgare L.) leaves: Evaluating quality and stability improvements. Food Chem X 2024; 24:101818. [PMID: 39310893 PMCID: PMC11415880 DOI: 10.1016/j.fochx.2024.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
This study aimed to assess the impact of enriching argan oil (AO) (Argania spinosa L.) using the maceration technique with thyme (Thymus vulgaris L.) and oregano (Origanum vulgare L.) leaves (TL and OL) at two proportions (5 and 10%). The oxidative stability of the control and enriched oils was examined under accelerated conditions at a temperature of 60 °C for 120 days (4 months). Quality indices (Free fatty acids (FFA), peroxide value (PV), p-anisidine value (p-AV), ultraviolet absoptions (K232 and K270), Rancimat test, fatty acids composition, sensory attributes, simple phenolic contents (SPC) and antioxidant activity (DPPH•) were determined. As a simple, inexpensive and green method, enrichment by maceration yielded advantageous results. Compared to the control (68.05 ± 1.10 mg GAE/kg), the SPC significantly increased in enriched oils reaching notably 250.9 ± 9.1 mg GAE/kg when adding 10% of TL. Also, the enriched oil samples showed the lowest PV, p-AV and ultraviolet absorptions compared with the control. However, no noticeable changes were reported in fatty acids composition and iodine value. In terms of sensory attributes, enrichment by maceration masked the rancid odour caused by oxidation. These scientific discoveries inherently yield economic advantages by enabling the diversification of product offerings, simultaneously catering to a broader market seeking high-quality oils infused with herbs, including both AO and aromatic plants.
Collapse
Affiliation(s)
- Samira Oubannin
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, University Ibnou Zohr, Agadir, Morocco
| | - Abderrahim Asbbane
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, University Ibnou Zohr, Agadir, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Engineering, Shinawatra University, Samkhok, Pathum Thani, Thailand
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Iqbal Zafar
- Department of Surgery, College of Medicine, King Saud University, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Said Gharby
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, University Ibnou Zohr, Agadir, Morocco
| |
Collapse
|
4
|
Fernandez‐Pan I, Horvitz S, Ibañez FC, Arroqui C, Beriain MJ, Virseda P. Extra-virgin olive oil enriched with lycopene: From industrial tomato by-products to consumer. Food Sci Nutr 2024; 12:5815-5823. [PMID: 39139944 PMCID: PMC11317748 DOI: 10.1002/fsn3.4224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 08/15/2024] Open
Abstract
Lycopene is usually extracted from the by-product of the tomato industry using organic solvents (OS) in combination with a physical technique. An emerging physical technique is high-pressure processing (HPP). This study aims to find a method by applying a green solvent (edible vegetable oils) in an HPP-assisted solid-liquid extraction. Three dosages of tomato by-product (10%, 20%, and 40%, w/v) were tested using OS, sunflower oil (RSO), and extra-virgin olive oil (EVOO). Lycopene recovery increased with the ratio of by-product to oil, particularly when using EVOO. In another stage of the study, consumers evaluated EVOO that contained two doses of tomato by-product (10% and 20%, w/v). Consumers preferred the EVOO from 10% tomato by-product ratio over that with 20%. Additionally, 83.8% of consumers stated that enriched oil could be deemed beneficial for health. The proposed method considers the fundamental principles of the circular economy and practical industrial scenario to recover lycopene from tomato by-product.
Collapse
Affiliation(s)
| | - Sandra Horvitz
- IS‐Food Research Institute, Public University of NavarrePamplonaSpain
| | | | - Cristina Arroqui
- IS‐Food Research Institute, Public University of NavarrePamplonaSpain
| | | | - Paloma Virseda
- IS‐Food Research Institute, Public University of NavarrePamplonaSpain
| |
Collapse
|
5
|
Zolotova D, Teterovska R, Bandere D, Lauberte L, Niedra S. Antidiabetic Properties of the Root Extracts of Dandelion ( Taraxacum officinale) and Burdock ( Arctium lappa). PLANTS (BASEL, SWITZERLAND) 2024; 13:1021. [PMID: 38611548 PMCID: PMC11013470 DOI: 10.3390/plants13071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Several preclinical studies suggest the potential of edible plants in controlling blood sugar levels and stabilizing diet. The goals of the study were to examine, analyze, and describe whether there are chemical compounds in dandelion and burdock roots that could have antidiabetic properties. The 70% ethyl alcohol and lyophilizate extracts (AE and LE, respectively), were used, and analyses were carried out on their total polysaccharide (TP), total phenolic content (TPC), tannin, and inulin. The antioxidant activity of extracts was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, and hypoglycemic properties were based on α-amylase activity. Liquid chromatography-mass spectrometry was used for the tentative identification of the chemical components. Qualitative techniques confirmed the presence of inulin in both roots. Analysis of TPC, tannin content, DPPH assay, and α-amylase activity revealed higher values for burdock compared to dandelion. However, dandelion exhibited higher TP content. Burdock contained a small amount of tannin, whereas the tannin content in dandelion was insignificant. All LE consistently exhibited higher values in all analyses and assays for all roots compared to AE. Despite burdock root showing overall better results, it is uncertain whether these plants can be recommended as antidiabetic agents without in vivo studies.
Collapse
Affiliation(s)
- Daria Zolotova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
| | - Renāte Teterovska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
- Department of Pharmaceuticals, Red Cross Medical College, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia; (L.L.); (S.N.)
| | - Santa Niedra
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia; (L.L.); (S.N.)
| |
Collapse
|
6
|
Popescu M, Iancu P, Plesu V, Bildea CS, Manolache FA. Mathematical Modeling of Thin-Layer Drying Kinetics of Tomato Peels: Influence of Drying Temperature on the Energy Requirements and Extracts Quality. Foods 2023; 12:3883. [PMID: 37893776 PMCID: PMC10606179 DOI: 10.3390/foods12203883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Tomato drying implies high energy consumption due to the high moisture content, and limiting drying temperatures is necessary to avoid carotenoid degradation. To explain the mechanism of moisture transport through the material and to scale up the drying process, drying experiments are needed and supported by mathematical modeling. For the Rila tomato peel drying process, ten thin-layer mathematical models were formulated based on experimental data for six temperatures (50-75 °C) and validated by statistical analysis. Considering the slab geometry of the peels sample and Fick's second law of diffusion model, the calculated effective moisture diffusivity coefficient values Deff varied between 1.01 × 10-9-1.53 × 10-9 m2/s with R2 higher than 0.9432. From the semi-theoretical models, Two-term presents the best prediction of moisture ratio with the highest R2 and lowest χ2 and RMSE values. Using the experimental data on extract quality (carotenoid content), two degradation models were formulated. Increasing the drying temperature from 50 °C to 110 °C, a degradation of 94% for lycopene and 83% for β-carotene were predicted. From the energy analysis, a specific energy consumption of 56.60 ± 0.51 kWh is necessary for hot-air drying of 1 kg of Rila tomato peel at 50 °C to avoid carotenoid degradation.
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Chemical and Biochemical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 1 Gh. Polizu Street, Building A, Room A056, 011061 Bucharest, Romania; (M.P.); (V.P.); (C.S.B.)
| | - Petrica Iancu
- Department of Chemical and Biochemical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 1 Gh. Polizu Street, Building A, Room A056, 011061 Bucharest, Romania; (M.P.); (V.P.); (C.S.B.)
| | - Valentin Plesu
- Department of Chemical and Biochemical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 1 Gh. Polizu Street, Building A, Room A056, 011061 Bucharest, Romania; (M.P.); (V.P.); (C.S.B.)
| | - Costin Sorin Bildea
- Department of Chemical and Biochemical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 1 Gh. Polizu Street, Building A, Room A056, 011061 Bucharest, Romania; (M.P.); (V.P.); (C.S.B.)
| | - Fulvia Ancuta Manolache
- National Research and Development Institute for Food Bioresources, 014192 Bucharest, Romania;
| |
Collapse
|
7
|
Li Z, Yu F. Recent Advances in Lycopene for Food Preservation and Shelf-Life Extension. Foods 2023; 12:3121. [PMID: 37628120 PMCID: PMC10453541 DOI: 10.3390/foods12163121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, there has been increasing concern about the safety of additives used to extend the shelf-life of food products. As a result, lycopene, a natural phytochemical compound, has attracted attention, as it has been demonstrated to be a potential alternative to traditional artificial antioxidants, with significant health benefits when applied to food preservation. Based on this, this review introduces the specific forms of lycopene currently used as an antioxidant in foods, both in its naturally occurring forms in fruits and vegetables and in artificially added forms involving technologies such as composite coating, active film packaging, emulsion, and microcapsules. In addition, it also provides a comprehensive summary of the effects and progress of lycopene in the preservation of different types of food products, such as meat, seafood, oil, dairy products, fruits, and vegetables, in the last decade. At last, it also points out the limitations of lycopene, including its insolubility in water, dark color, and high sensitivity to heat or light, as well as the potential solutions to load lycopene on suitable carriers, such as combining lycopene with antimicrobial substances or other actives, in order to broaden its applications as an antioxidant in future foods.
Collapse
Affiliation(s)
- Zhixi Li
- Haide College, Ocean University of China, Qingdao 266100, China;
| | - Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China;
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Silva PBVD, Brenelli LB, Mariutti LRB. Waste and by-products as sources of lycopene, phytoene, and phytofluene - Integrative review with bibliometric analysis. Food Res Int 2023; 169:112838. [PMID: 37254412 DOI: 10.1016/j.foodres.2023.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Food loss and waste are severe social, economic, and environmental issues. An example is the incorrect handling of waste or by-products used to obtain bioactive compounds, such as carotenoids. This review aimed to present a comprehensive overview of research on lycopene, phytoene, and phytofluene obtained from waste and by-products. In this study, an integrative literature approach was coupled with bibliometric analysis to provide a broad perspective of the topic. PRISMA guidelines were used to search studies in the Web of Science database systematically. Articles were included if (1) employed waste or by-products to obtain lycopene, phytoene, and phytofluene or (2) performed applications of the carotenoids previously extracted from waste sources. Two hundred and four articles were included in the study, and the prevalent theme was research on the recovery of lycopene from tomato processing. However, the scarcity of studies on colorless carotenoids (phytoene and phytofluene) was evidenced, although these are generally associated with lycopene. Different technologies were used to extract lycopene from plant matrices, with a clear current trend toward choosing environmentally friendly alternatives. Microbial production of carotenoids from various wastes is a highly competitive alternative to conventional processes. The results described here can guide future forays into the subject, especially regarding research on phytoene and phytofluene, potential and untapped sources of carotenoids from waste and by-products, and in choosing more efficient, safe, and environmentally sustainable extraction protocols.
Collapse
Affiliation(s)
- Pedro Brivaldo Viana da Silva
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | | | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Wang YH, Zhang RR, Yin Y, Tan GF, Wang GL, Liu H, Zhuang J, Zhang J, Zhuang FY, Xiong AS. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective. J Adv Res 2023; 46:31-47. [PMID: 35753652 PMCID: PMC10105081 DOI: 10.1016/j.jare.2022.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Zhang
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin 130118, China; Department of Biology, University of British Columbia, Okanagan, Kelowna, Canada
| | - Fei-Yun Zhuang
- Institute of Vegetable and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
10
|
Carotenoids Recovery Enhancement by Supercritical CO2 Extraction from Tomato Using Seed Oils as Modifiers. Processes (Basel) 2022. [DOI: 10.3390/pr10122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The food, cosmetic and pharmaceutical industries have strong demands for lycopene, the carotenoid with the highest antioxidant activity. Usually, this carotenoid is extracted from tomatoes using various extraction methods. This work aims to improve the quantity and quality of extracts from tomato slices by enhancing the recovery of the carotenoids from the solid matrix to the solvent using 20 w/w% seeds as modifiers and supercritical CO2 extraction with optimal parameters as the method. Tomato (TSM), camelina (CSM) and hemp (HSM) seeds were used as modifiers due to their quality (polyunsaturated fatty acids content of 53–72%). A solubility of ~10 mg carotenoids/100 g of oil was obtained for CSM and HSM, while, for TSM, the solubility was 28% higher (due to different compositions of long carbon chains). An increase in the extraction yield from 66.00 to 108.65 g extract/kg dried sample was obtained in the following order: TSM < HSM < CSM. Two products, an oil rich in carotenoids (203.59 mg/100 g extract) and ω3-linolenic acid and a solid oleoresin rich in lycopene (1172.32 mg/100 g extract), were obtained using SFE under optimal conditions (450 bar, 70 °C, 13 kg/h and CSM modifier), as assessed by response surface methodology. A recommendation is proposed for the use of these products in the food industry based on their quality.
Collapse
|
11
|
|
12
|
A Systematic Review on Waste as Sustainable Feedstock for Bioactive Molecules—Extraction as Isolation Technology. Processes (Basel) 2022. [DOI: 10.3390/pr10081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In today’s linear economy, waste streams, environmental pollution, and social–economic differences are increasing with population growth. The need to develop towards a circular economy is obvious, especially since waste streams are composed of valuable compounds. Waste is a heterogeneous and complex matrix, the selective isolation of, for example, polyphenolic compounds, is challenging due to its energy efficiency and at least partially its selectivity. Extraction is handled as an emerging technology in biorefinery approaches. Conventional solid liquid extraction with organic solvents is hazardous and environmentally unfriendly. New extraction methods and green solvents open a wider scope of applications. This research focuses on the question of whether these methods and solvents are suitable to replace their organic counterparts and on the definition of parameters to optimize the processes. This review deals with the process development of agro-food industrial waste streams for biorefineries. It gives a short overview of the classification of waste streams and focuses on the extraction methods and important process parameters for the isolation of secondary metabolites.
Collapse
|
13
|
Popescu M, Iancu P, Plesu V, Todasca MC, Isopencu GO, Bildea CS. Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction. Molecules 2022; 27:4191. [PMID: 35807434 PMCID: PMC9268186 DOI: 10.3390/molecules27134191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
Lycopene, β-carotene and ω-fatty acids are major compounds in tomatoes with known antioxidant activity, capable of preventing health disorders. The identification of potential natural sources of antioxidants, extraction efficiencies and antioxidant activity assessments are essential to promote such products to be used in the food, pharmaceutical or cosmetic industries. This work presents four added-value products recovered from tomatoes: pigmented solid oleoresin, pigmented oil and two raw extracts from supercritical and Soxhlet extraction. Different parameters including the matrices of tomatoes, extraction methods, green solvents and operating parameters were varied to obtain extracts with different qualities. Extract analysis was performed using UV-VIS, FT-IR, GC-MS, Folin-Ciocalteu and DPPH methods. The highest-quality extract was the solid oleoresin obtained from pomace using supercritical CO2 extraction at 450 bar, 70 °C and 11 kg/h: 1016.94 ± 23.95 mg lycopene/100 g extract, 154.87 ± 16.12 mg β-carotene/100 g extract, 35.25 ± 0.14 mg GAE/g extract and 67.02 ± 5.11% inhibition DPPH. The economic feasibility of the three extraction processes (1:10:100 kg dried pomace/batch as scalability criterion) was evaluated. The most profitable was the supercritical extraction process at the highest capacity, which produces pigmented solid oleoresin and oil with high content of lycopene valorized with a high market price, using natural food waste (pomace).
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| | - Petrica Iancu
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| | - Valentin Plesu
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| | - Maria Cristina Todasca
- Department of Organic Chemistry Costin Nenitescu, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building P, Room 014-015, RO-011061 Bucharest, Romania;
| | - Gabriela Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| | - Costin Sorin Bildea
- Department of Chemical and Biochemical Engineering, University POLITEHNICA of Bucharest, 1, Gh. Polizu Street, Building A, Room A056, RO-011061 Bucharest, Romania; (M.P.); (V.P.); (G.O.I.); (C.S.B.)
| |
Collapse
|
14
|
Pettinato M, Casazza AA, Ferrari PF, Perego P. Optimization and Modeling of Solid-liquid multivariable extractor (SoLVE): a new solution for tomato waste valorization. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Taghian Dinani S, van der Goot AJ. Challenges and solutions of extracting value-added ingredients from fruit and vegetable by-products: a review. Crit Rev Food Sci Nutr 2022; 63:7749-7771. [PMID: 35275755 DOI: 10.1080/10408398.2022.2049692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Every year, huge amounts of fruit and vegetable by-products in the food processing factories are produced. These by-products have great potential to be used for different targets especially the extraction of value-added ingredients. The target of this study is to review the challenges of extraction of value-added ingredients from fruit and vegetable by-products on the industrial scale and to describe current trends in solving these problems. In addition, some strategies such as multi-component extraction as well as application of fermentation before or after the extraction process, and production of biofuel, organic fertilizers, animal feeds, etc. on final residues after extraction of value-added ingredients are discussed in this review paper. In fact, simultaneous extraction of different value-added ingredients from fruit and vegetable by-products can increase the extraction efficiency and reduce the cost of value-added ingredients as well as the final volume of these by-products. After extraction of value-added ingredients, the residues can be used to produce biofuels, or they can be used to produce organic fertilizers, animal feeds, etc. Therefore, the application of several appropriate strategies to treat the fruit and vegetable by-products can increase their application, protect the environment, and improve the food economy.
Collapse
Affiliation(s)
| | - Atze Jan van der Goot
- Food Process Engineering, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
16
|
Amorim ADGN, Vasconcelos AG, Souza J, Oliveira A, Gullón B, de Souza de Almeida Leite JR, Pintado M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants (Basel) 2022; 11:antiox11020360. [PMID: 35204241 PMCID: PMC8868408 DOI: 10.3390/antiox11020360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this review was to collect relevant chemical data about lycopene and its isomers, which can be extracted using different non-polar or polar aprotic solvents by SC-CO2 or biosynthesis as a friendly technique. Lycopene and other carotenoids can be identified and quantified by UV–Vis and HPLC using a C18 or C30 column, while their characterization is possible by UV–Vis, Fluorescence, FTIR, MS, NMR, and DSC assays. Among these techniques, the last four can compare lycopene isomers and identify cis or all-trans-lycopene. FTIR, MS, and NMR techniques are more suitable for the verification of the purity of lycopene extracts due to the signal complexity generated for each isomer, which enables identification by subtle differences. Additionally, some biological activities of lycopene isolated from red vegetables have already been confirmed, such as anti-inflammatory, antioxidant, and cytotoxic activity against cancer cells, probably by activating several pathways. The encapsulation of lycopene in nanoparticles demonstrated an improvement in oral delivery, and ex vivo assessments determined that these nanoparticles had better permeation and low cytotoxicity against human cells with enhanced permeation. These data suggest that lycopene has the potential to be applied in the food and pharmaceutical industries, as well as in cosmetic products.
Collapse
Affiliation(s)
- Adriany das Graças Nascimento Amorim
- Rede Nordeste de Biotecnologia, RENORBIO, Campus Ministro Petrônio Portela, Universidade Federal do Piauí, UFPI, Teresina 64049-550, PI, Brazil
- Correspondence: ; Tel.: +55-86-999-652-666
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasilia 70190-900, DF, Brazil; (A.G.V.); (J.R.d.S.d.A.L.)
- Centro Universitário do Distrito Federal, UDF, Brasília 70390-045, DF, Brazil
- People&Science, Brasília 70340-908, DF, Brazil
| | - Jessica Souza
- Laboratório de Cultura de Célula do Delta, LCC Delta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaiba 64202-020, PI, Brazil;
| | - Ana Oliveira
- Laboratório Associado, Centro de Biotecnologia e Química Fina, CBQF-ESB, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.O.); (M.P.)
| | - Beatriz Gullón
- Departamento de Ingeniería Química, Facultad de Ciencias, Campus Ourense, Universidad de Vigo, As Lagoas, 32004 Ourense, Spain;
| | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasilia 70190-900, DF, Brazil; (A.G.V.); (J.R.d.S.d.A.L.)
| | - Manuela Pintado
- Laboratório Associado, Centro de Biotecnologia e Química Fina, CBQF-ESB, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.O.); (M.P.)
| |
Collapse
|
17
|
Process Development for the Instant Quantification of Lycopene from Agricultural Produces Using Supercritical Fluid Chromatography-Diode Array Detector (SFC-DAD). Foods 2022; 11:foods11040522. [PMID: 35205996 PMCID: PMC8871322 DOI: 10.3390/foods11040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
A quick, simple, and reliable isocratic ultra-performance supercritical fluid chromatography-photodiode array detector (UPSFC-DAD) method was developed and validated to determine lycopene in different horticultural products. The effects of stationary phase, co-solvent, pressure, temperature, flow rate, and mobile phase additive on the separation of lycopene were evaluated. The developed method involved BEH-2EP—2.1 × 150 mm, 5 µm as the stationary phase, and CO2/MeOH 85:15 (v/v) with formic acid as the additive at 0.10% as the mobile phase. The column temperature was maintained at 45 °C, ABPR at 1800 psi, and the mobile phase’s flow rate was maintained at 1 mL/min. Under the optimized conditions, lycopene was successfully separated within 0.722 ± 0.001 min. The standard curve assayed over a range of 10 to 100 µg/mL resulted in a correlation coefficient of 0.998. The mean recoveries between 97.38% and 102.67% at different spiking levels with RSD < 2.5% were achieved. The intra and inter-day precision expressed as relative standard deviations (RSD) were found to range from 1.27% to 3.28% and from 1.57% to 4.18%, respectively. Robustness in terms of retention time (tR) and RSD were found to be 0.93 ± 0.23 min and less <2.80%, respectively. The limits of detection and quantification were 0.14 µg/mL and 0.37 µg/mL, respectively. This method was successfully applied to determine lycopene extracted from papaya, grapefruit, and bitter melon.
Collapse
|
18
|
Morsy MK, Sami R, Algarni E, Al-Mushhin AAM, Benajiba N, A. A, Almasoudi AG, Mekawi E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants (Basel) 2022; 11:antiox11020338. [PMID: 35204220 PMCID: PMC8868781 DOI: 10.3390/antiox11020338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023] Open
Abstract
The by-product of sesame seed coats from the tahini industry was used for the extraction of bioactive compounds as novel antioxidants. This study was designed to evaluate the effect of a natural antioxidant on the quality of refined olive oil (ROO) stored at 60 ± 1 °C for up to 48 days. The lyophilized sesame seed coats extract (LSSCE) was placed into fresh ROO at three levels, i.e., 200, 400, and 600 mg kg−1, and compared with 200 mg kg−1 BHT (reference) and without antioxidant (control). LSSCE exhibited high phenolic (105.9 mg GAE g−1) and lignin (6.3 mg g−1) contents as well as antioxidant activity based on HPLC/DAD. In ROO samples, Including LSSCE, the values of peroxide, p-anisidine, K232, and K270 were remarkably lower than control during storage. The kinetic rate constant (k) of oxidation indicators was the lowest in ROO samples containing BHT and LSSCE 600 mg kg−1compared with other treatments. LSSCE improved the organoleptic acceptability of ROO samples up to 48 days of storage. Moreover, the shelf life (assuming a Q10 value of 2.0 for lipid oxidation) of ROO treated with LSSCE was increased. The findings revealed that LSSCE is a promising natural antioxidant in delaying oxidation, enhancing oil stability, and prolonging the shelf life (~475 days at ambient temperature).
Collapse
Affiliation(s)
- Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Benha 13736, Qaluobia, Egypt
- Correspondence: (M.K.M.); (R.S.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (M.K.M.); (R.S.)
| | - Eman Algarni
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Almasoudi A.
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box. 42734, Jeddah 21551, Saudi Arabia;
| | - Abeer G. Almasoudi
- Food Science Department, College of Science, Branch of the College at Turbah, Taif University, Taif 21944, Saudi Arabia;
| | - Enas Mekawi
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Benha 13736, Qaluobia, Egypt;
| |
Collapse
|
19
|
An Edible Oil Enriched with Lycopene from Pink Guava (Psidium guajava L.) Using Different Mechanical Treatments. Molecules 2022; 27:molecules27031038. [PMID: 35164301 PMCID: PMC8837924 DOI: 10.3390/molecules27031038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/03/2022] Open
Abstract
According to the regulations of the United States Food and Drug Administration (FDA), organic solvents should be limited in pharmaceutical and food products due to their inherent toxicity. For this reason, this short paper proposes different mechanical treatments to extract lycopene without organic solvents to produce an edible sunflower oil (SFO) enriched with lycopene from fresh pink guavas (Psidium guajava L.) (FPGs). The methodology involves the use of SFO and a combination of mechanical treatments: a waring blender (WB), WB+ high-shear mixing (HSM) and WB+ ultrafine friction grinding (UFFG). The solid:solvent (FPG:SFO) ratios used in all the techniques were 1:5, 1:10 and 1:20. The results from optical microscopy and UV–vis spectroscopy showed a correlation between the concentration of lycopene in SFO, vegetable tissue diameters and FPG:SFO ratio. The highest lycopene concentration, 18.215 ± 1.834 mg/g FPG, was achieved in WB + UFFG with an FPG:SFO ratio of 1:20. The yield of this treatment was 66% in comparison to the conventional extraction method. The maximal lycopene concentration achieved in this work was significantly higher than the values reported by other authors, using high-pressure homogenization for tomato peel and several solvents such as water, SFO, ethyl lactate and acetone.
Collapse
|
20
|
Guerra AS, Hoyos CG, Molina-Ramírez C, Velásquez-Cock J, Vélez L, Gañán P, Eceiza A, Goff HD, Zuluaga R. Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants (Basel) 2021; 10:antiox10091417. [PMID: 34573049 PMCID: PMC8471374 DOI: 10.3390/antiox10091417] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.
Collapse
|
22
|
Santos PDDF, Rubio FTV, da Silva MP, Pinho LS, Favaro-Trindade CS. Microencapsulation of carotenoid-rich materials: A review. Food Res Int 2021; 147:110571. [PMID: 34399544 DOI: 10.1016/j.foodres.2021.110571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/29/2022]
Abstract
Carotenoids are natural pigments that present several bioactive properties, including antioxidant, anticarcinogenic and provitamin A activities. However, these compounds are susceptible to degradation when exposed to a number of conditions (e.g. light, heat, oxygen), leading to loss of benefits and hampering their application in food products. Their hydrophobicity also makes incorporation into water-based foods more difficult. Microencapsulation techniques have been applied for decades to provide stability to carotenoid-rich extracts under typical conditions of processing and storage of foods, besides offering several other advantages to the use and application of these materials. This work reviews the recent advances in the microencapsulation of carotenoid-rich extracts, oils and oleoresins from varying sources, evidencing the technologies applied to encapsulate these materials, the effects of encapsulation on the obtained particles, and the impact of such processes on the bioaccessibility and release profile of carotenoids from microparticles. Moreover, recent applications of carotenoid-rich microparticles in food products are discussed. Most of the applied processes were effective in improving different aspects of the encapsulated materials, especially the stability of carotenoids during storage, resulting in microparticles with promising properties for future applications in food products. However, the lack of information about the effects of microencapsulation on carotenoids during processing of model foods, the sensory acceptance of enriched food products and the bioaccessibility and bioavailability of microencapsulated carotenoids reveals gaps that should be explored in the future.
Collapse
Affiliation(s)
- Priscila Dayane de Freitas Santos
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Fernanda Thaís Vieira Rubio
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Marluci Palazzolli da Silva
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Lorena Silva Pinho
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
23
|
Sicari V, Leporini M, Romeo R, Poiana M, Tundis R, Loizzo MR. Shelf-Life Evaluation of "San Marzano" Dried Tomato Slices Preserved in Extra Virgin Olive Oil. Foods 2021; 10:foods10081706. [PMID: 34441484 PMCID: PMC8393553 DOI: 10.3390/foods10081706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Since ancient times, vegetables have been preserved in oil, to be consumed throughout the year, and not just during the period in which they were harvested. Dried tomato slices in Extra Virgin Olive Oil (EVOO) are one of the most famous Italian preserves. This is the first study which aimed to investigate the shelf-life parameters of this preserve during the 12 months of storage in both light and dark conditions. For this purpose, quality and CIELab color parameters were analysed in EVOO alone and as preserving liquid; total phenols and carotenoids content as well as β-carotene and lycopene content, a fatty acids profile, and antioxidant activities were examined. Results showed that samples stored in the dark are protected against degradative processes. Moreover, after 6 months of storage, the EVOO used as preserving liquid is enriched by the phytochemicals contained in dried tomato slices. This enrichment of EVOO by tomato bioactive compounds is reflected in the increase in the antioxidant activity of the oil independently by the presence of light during storage.
Collapse
Affiliation(s)
- Vincenzo Sicari
- Department of Agraria, “Mediterranea” University of Reggio Calabria, Cittadella Universitaria, 89124 Località Feo di Vito, RC, Italy; (V.S.); (R.R.); (M.P.)
| | - Mariarosaria Leporini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.L.); (R.T.)
| | - Rosa Romeo
- Department of Agraria, “Mediterranea” University of Reggio Calabria, Cittadella Universitaria, 89124 Località Feo di Vito, RC, Italy; (V.S.); (R.R.); (M.P.)
| | - Marco Poiana
- Department of Agraria, “Mediterranea” University of Reggio Calabria, Cittadella Universitaria, 89124 Località Feo di Vito, RC, Italy; (V.S.); (R.R.); (M.P.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.L.); (R.T.)
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.L.); (R.T.)
- Correspondence: ; Tel.: +39-0984-493071
| |
Collapse
|
24
|
Azabou S, Louati I, Ben Taheur F, Nasri M, Mechichi T. Towards sustainable management of tomato pomace through the recovery of valuable compounds and sequential production of low-cost biosorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39402-39412. [PMID: 32642904 DOI: 10.1007/s11356-020-09835-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The present study focused on the full valorization of the tomato by-product, also known as tomato pomace consisting mainly of tomato peels and tomato seeds, by recovering natural antioxidants and edible oil, and subsequently reutilizing the leftover solid residues for the production of low-cost biosorbent. The tomato peel extract recovered using ethanol as food-grade solvent contained high phenol and flavonoid contents (199.35 ± 0.35-mg gallic acid equivalents (GAE)/g and 102.10 ± 0.03-mg quercetin equivalent (QE)/g, respectively). Even its lower content of lycopene (3.67 ± 0.04 mg/100 g), tomato peel extract showed potent antioxidant activity and can be therefore used as natural antioxidants either for food or cosmetic applications. High nutritional quality edible oil (17.15%) was extracted from tomato seeds and showed richness in unsaturated fatty acids (74.62%), with linoleic acid being the most abundant polyunsaturated fatty acid (49.70%). After recovery of these valuable compounds, the extraction solid leftovers were used to produce low-cost biosorbent tested for dye removal. Results showed that the highest biosorption yields were increasingly attributed to the acidic, direct, anthraquinone, then reactive dyes. Overall, the obtained results strongly support the complete utilization of tomato pomace for the recovery of valuable compounds and the sequential production of low-cost biosorbent.
Collapse
Affiliation(s)
- Samia Azabou
- Laboratoire Analyse Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, Tunisia.
| | - Ibtihel Louati
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Université de Sfax, ENIS, Sfax, Tunisia
| | - Fadia Ben Taheur
- Faculté de Pharmacie, Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Université de Monastir, Monastir, Tunisia
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, ENIS, Sfax, Tunisia
| | - Tahar Mechichi
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Université de Sfax, ENIS, Sfax, Tunisia
| |
Collapse
|
25
|
By-Products from Winemaking and Olive Mill Value Chains for the Enrichment of Refined Olive Oil: Technological Challenges and Nutraceutical Features. Foods 2020; 9:foods9101390. [PMID: 33019655 PMCID: PMC7601883 DOI: 10.3390/foods9101390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
A growing body of literature is available about the valorization of food by-products to produce functional foods that combine the basic nutritional impact with the improvement of the health status of consumers. In this context, this study had two main objectives: (i) An innovative multistep extraction process for the production of a refined olive oil enriched with phenolic compounds (PE-ROO) extracted from olive pomace, olive leaves, or grape marc was presented and discussed. (ii) The most promising PE-ROOs were selected and utilized in in vitro and in vivo trials in order to determine their effectiveness in the management of high fat diet-induced-metabolic syndrome and oxidative stress in rats. The best results were obtained when olive leaves were used as source of phenols, regardless of the chemical composition of the solvent utilized for the extraction. Furthermore, while ethanol/hexane mixture was confirmed as a good solvent for the extraction of phenols compounds soluble in oil, the mix ROO/ethanol also showed a good extracting power from olive leaves. Besides, the ROO enriched with phenols extracted from olive leaves revealed an interesting beneficial effect to counteract high fat diet-induced-metabolic disorder and oxidative stress in rats, closely followed by ROO enriched by utilizing grape marc.
Collapse
|
26
|
Ashraf W, Latif A, Lianfu Z, Jian Z, Chenqiang W, Rehman A, Hussain A, Siddiquy M, Karim A. Technological Advancement in the Processing of Lycopene: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1749653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Anam Latif
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhang Lianfu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhang Jian
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wang Chenqiang
- Technical Center, Guannong Fruit & Antler Co.,Ltd, Korla City, Xinjiang, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arif Hussain
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Mahbuba Siddiquy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|