1
|
Cardoso FC, Carvalho FEAD, Freitas TFD, Rezende B, Coelho MGP, Montes GC, Martins RCC. Antinociceptive in vivo activity and chemical profiling by UHPLC-MS/MS of stem bark and leaves extracts of Ficus maxima Mill. (Moraceae). JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118793. [PMID: 39251148 DOI: 10.1016/j.jep.2024.118793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus maxima is a medicinal plant extensively used in traditional medicine by Indigenous peoples across Central and South America. It is a member of the family Moraceae, subgenus Pharmacosycea, employed in treating various conditions, including intestinal parasites, gingivitis, internal inflammations, and snake bites. Despite its significant pharmacological potential, the species remains underrepresented in scientific literature. AIM OF THE STUDY This study aimed to evaluate the in vivo antinociceptive properties of leaf (ELFM) and stem bark (EBFM) extracts from Ficus maxima. Additionally, the chemical composition of these extracts was determined using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). MATERIALS AND METHODS Plant material was collected in Abaetetuba, Pará, Brazil, in October 2013 and subjected to static maceration to obtain crude ELFM and EBFM. Bio-guided fractionation was performed by sequential liquid-liquid partitioning with hexane (Hex), dichloromethane (DCM), and ethyl acetate (EtOAc), yielding the following fractions: ELFM-Hex and EBFM-Hex, ELFM-DCM and EBFM-DCM, and ELFM-EtOAc and EBFM-EtOAc. The biological activity of EBFM, ELFM, and their respective fractions were evaluated using the formalin-induced pain test and the hot plate test, followed by an assessment of their mechanisms of action. The UHPLC-MS/MS analysis was conducted using electrospray ionization (ESI) in both positive and negative modes. Metabolite annotation was facilitated by MS/MS libraries and molecular networks constructed on the GNPS platform. RESULTS The reactivity time to formalin in the neurogenic phase was reduced from 84.7 ± 7.6 s (100%) to 37.3 ± 4.7 s (44%), 33.1 ± 6.3 s (39%), 40.7 ± 7.4 s (48%), 57.2 ± 2.6 s (77%), 49.7 ± 4.1 s (58%), 46.8 ± 8.1 s (55%), and 52.4 ± 5.3 s (61%) after treatment with ASA, morphine, EBFM, ELFM, ELFM-Hex, ELFM-DCM, and ELFM-EtOAc at doses of 30 mg/kg, respectively. In the inflammatory phase, the reactivity time to formalin was reduced from 124.3 ± 25.9 s (100%) to 49.7 ± 4.7 s (40%), 9.8 ± 4.3 s (8%), 32.5 ± 8.5 s (26%), 59.8 ± 16.8 s (48%), and 54.4 ± 7.3 s (44%) after treatment with ASA, morphine, EBFM, ELFM, and ELFM-Hex at doses of 30 mg/kg, respectively. A reversal of the antinociceptive action of EBFM and ELFM was observed in the inflammatory phase after treatment with atropine, a muscarinic antagonist, and naloxone, an opioid antagonist, respectively. In the hot plate test, EBFM showed Antinociceptive Activity (AA) of 62.6 ± 9.2% after 90 min; however, there was a reversal of AA to 8.6 ± 2.8% when naloxone was used. The UHPLC-MS/MS metabolite analysis revealed the presence of loliolide (3), luteolin (13), lupeol (14), gallic acid (15), chlorogenic acid (16), pygenic acid A (17), and other metabolites from the alkaloids and fatty acids classes.
Collapse
Affiliation(s)
- Felipe Costa Cardoso
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Filipe Eloi Alves de Carvalho
- Universidade Do Grande Rio "Professor José de Souza Herdy", Nova Iguaçu, Rio de Janeiro, Brazil; Departamento de Farmacologia e Psicobiologia, Universidade Do Estado Do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, Brazil.
| | - Thamires Ferreira de Freitas
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Bismarck Rezende
- Departamento de Farmacologia e Psicobiologia, Universidade Do Estado Do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, Brazil.
| | - Marsen Garcia Pinto Coelho
- Departamento de Bioquímica, Universidade Do Estado Do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, Brazil.
| | - Guilherme Carneiro Montes
- Departamento de Farmacologia e Psicobiologia, Universidade Do Estado Do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, Brazil.
| | - Roberto Carlos Campos Martins
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Zhao XL, Cao ZJ, Li KD, Tang F, Xu LY, Zhang JN, Liu D, Peng C, Ao H. Gallic acid: a dietary metabolite's therapeutic potential in the management of atherosclerotic cardiovascular disease. Front Pharmacol 2025; 15:1515172. [PMID: 39840111 PMCID: PMC11747375 DOI: 10.3389/fphar.2024.1515172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) causes significant morbidity and mortality globally. Most of the chemicals specifically target certain pathways and minimally impact other diseases associated with ASCVD. Moreover, interactions of these drugs can cause toxic reactions. Consequently, the exploration of multi-targeted and safe medications for treating and preventing ASCVD has become an increasingly popular trend. Gallic acid (GA), a natural secondary metabolite found in various fruits, plants, and nuts, has demonstrated potentials in preventing and treating ASCVD, in addition to its known antioxidant and anti-inflammatory effects. It alleviates the entire process of atherosclerosis (AS) by reducing oxidative stress, improving endothelial dysfunction, and inhibiting platelet activation and aggregation. Additionally, GA can treat ASCVD-related diseases, such as coronary heart disease (CHD) and cerebral ischemia. However, the pharmacological actions of GA in the prevention and treatment of ASCVD have not been comprehensively reviewed, which limits its clinical development. This review primarily summarizes the in vitro and in vivo pharmacological actions of GA on the related risk factors of ASCVD, AS, and ASCVD. Additionally, it provides a comprehensive overview of the toxicity, extraction, synthesis, pharmacokinetics, and pharmaceutics of GA,aimed to enhance understanding of its clinical applications and further research and development.
Collapse
Affiliation(s)
- Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang-Jing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke-Di Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
4
|
Wu D, Yang Z, Li J, Huang H, Xia Q, Ye X, Liu D. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn ( Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024; 13:482. [PMID: 38338617 PMCID: PMC10855374 DOI: 10.3390/foods13030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Sea buckthorn pomace (SBP) is a by-product of sea buckthorn processing that is rich in bioactive compounds. In this study, different active ingredients were extracted by using different solvents (water, methanol, ethanol, glycerol, ethyl acetate, and petroleum ether) combined with an ultrasonic assisted method. The correlation between the active ingredients and antioxidant properties of the extract was studied, which provided a research basis for the comprehensive utilization of SBP. This study revealed that the 75% ethanol extract had the highest total phenolic content (TPC) of 42.86 ± 0.73 mg GAE/g, while the 75% glycerol extract had the highest total flavonoid content (TFC) of 25.52 ± 1.35 mg RTE/g. The ethanol extract exhibited the strongest antioxidant activity at the same concentration compared with other solvents. The antioxidant activity of the ethanol, methanol, and glycerol extracts increased in a concentration-dependent manner. Thirteen phenolic compounds were detected in the SBP extracts using UPLC-MS/MS analysis. Notably, the 75% glycerol extract contained the highest concentration of all identified phenolic compounds, with rutin (192.21 ± 8.19 μg/g), epigallocatechin (105.49 ± 0.69 μg/g), and protocatechuic acid (27.9 ± 2.38 μg/g) being the most abundant. Flavonols were found to be the main phenolic substances in SBP. A strong correlation was observed between TPC and the antioxidant activities of SBP extracts. In conclusion, the choice of solvent significantly influences the active compounds and antioxidant activities of SBP extracts. SBP extracts are a valuable source of natural phenolics and antioxidants.
Collapse
Affiliation(s)
- Dan Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Zhihao Yang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Jiong Li
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Huilin Huang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Qile Xia
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (Z.Y.); (H.H.); (Q.X.); (X.Y.); (D.L.)
| |
Collapse
|
5
|
Giri S, Kshirod Kumar Dash, Bhagya Raj G, Kovács B, Ayaz Mukarram S. Ultrasound assisted phytochemical extraction of persimmon fruit peel: Integrating ANN modeling and genetic algorithm optimization. ULTRASONICS SONOCHEMISTRY 2024; 102:106759. [PMID: 38211494 PMCID: PMC10825330 DOI: 10.1016/j.ultsonch.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
In the present study, ultrasound assisted extraction (UAE) of phytochemicals from persimmon fruit peel (PFP) was modeled using an artificial neural network (ANN) and optimized by integrating with genetic algorithm (GA). The range of process parameters selected for conducting the experiments was ultrasonication power (XU) 150---350 W, extraction temperatures (XT) 30---70 °C, solid to solvent ratio (XS) 1:15---1:35 g/ml, and ethanol concentration (XC) 40---80 %. The range of responses total phenolic content (YP), antioxidant activity (YA), total beta carotenoid (YB) and total flavonoid content (YF) at various independent variables combinations were found to be 7.72---24.62 mg GAE/g d.w., 51.44---85.58 %DPPH inhibition, 24.78---56.56 µg/g d.w. and 0.29---1.97 mg QE/g d.w. respectively. The modelling utilised an ANN architecture with a configuration of 4-12-4. The training process employed the Levenberg-Marquardt method, whereas the activation function chosen for the layers was the log sigmoid. The optimum condition predicted by the hybrid ANN-GA model for the independent variables, XU, XT, XS and XC was found to be 230.18 W, 50.66 °C, 28.27 g/ml, and 62.75 % respectively. The extraction process was carried out for 25 min, with 5-minute intervals, at various temperatures between 30 and 60 °C, to investigate the kinetic and thermodynamic characteristics of the process, under the optimal conditions of XU, XS and XC. The UAE of phytochemicals from persimmon peel followed pseudo second order kinetic model and the extraction process was endothermic in nature.
Collapse
Affiliation(s)
- Souvik Giri
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Gvs Bhagya Raj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
6
|
Velho P, Rebelo CS, Macedo EA. Extraction of Gallic Acid and Ferulic Acid for Application in Hair Supplements. Molecules 2023; 28:molecules28052369. [PMID: 36903614 PMCID: PMC10005415 DOI: 10.3390/molecules28052369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Food supplements based on antioxidants and vitamins are often prescribed to correct inefficiencies in the human diet and delay diseases such as premature aging and alopecia (temporary or permanent hair loss), given the free radical scavenging activity of these biomolecules. By reducing the concentration of reactive oxygen species (ROS), which promote abnormal hair follicle cycling and morphology, follicle inflammation and oxidative stress are reduced, minimising the effects of these health issues. Gallic acid (GA), which is significantly present in gallnuts and in pomegranate root bark, and ferulic acid (FA), commonly found in brown rice and coffee seeds, are very important antioxidants for the preservation of hair colour, strength and growth. In this work, these two secondary phenolic metabolites were successfully extracted in the Aqueous Two-Phase Systems (ATPS) {ethyl lactate (1) + trisodium citrate (2) + water (3)} and {ethyl lactate (1) + tripotassium citrate (2) + water (3)} at 298.15 K and 0.1 MPa, moving towards the application of these ternary systems in extracting antioxidants from biowaste and their a posteriori processing as food supplements for hair fortification. The studied ATPS provided biocompatible and sustainable media for the extraction of gallic acid and ferulic acid, yielding low mass losses (<3%) and contributing to an eco-friendlier production of therapeutics. The most promising results were obtained for ferulic acid, which attained maximum partition coefficients (K) of 15 ± 5 and (3 ± 2) · 101 and maximum extraction efficiencies (E) of (92.7 ± 0.4)% and (96.7 ± 0.4)% for the longest tie-lines (TLL = 69.68 and 77.66 m%) in {ethyl lactate (1) + trisodium citrate (2) + water (3)} and {ethyl lactate (1) + tripotassium citrate (2) + water (3)}, respectively. Moreover, the effect of pH on the UV-Vis absorbance spectra was studied for all the biomolecules to minimise errors in solute quantification. Both GA and FA were found to be stable at the used extractive conditions.
Collapse
Affiliation(s)
- Pedro Velho
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Catarina S. Rebelo
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eugénia A. Macedo
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-220-411-653
| |
Collapse
|
7
|
Baite TN, Purkait MK, Mandal B. Synthesis of lignin from waste leaves and its potential application for bread packaging: A waste valorization approach. Int J Biol Macromol 2023; 235:123880. [PMID: 36870647 DOI: 10.1016/j.ijbiomac.2023.123880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
In this study, lignin was synthesized from the waste leaves of Ficus auriculata obtained after the extraction of gallic acid. The synthesized lignin was incorporated into PVA films, and the neat and blended films were characterized using different techniques. Lignin addition improved the UV-shielding, thermal, antioxidant, and mechanical properties of PVA films. The water solubility decreased from 31.86 % to 7.14 ± 1.94 %, while the water vapor permeability increased from 3.85 ± 0.21 × 10-7 g.m.h-1 Pa-1 to 7.84 ± 0.64 × 10-7 g.m.h-1 Pa-1 for pure PVA film and the film containing 5 % lignin, respectively. The prepared films showed a much better performance than commercial packaging films in inhibiting mold growth during the storage of preservative-free bread. The bread samples packed with commercial packaging showed signs of mold growth on the 3rd day, while the growth was inhibited entirely till the 15th day for PVA film containing 1 % lignin. The pure PVA film and the ones containing 3 % and 5 % of lignin inhibited growth till the 12th and 9th day, respectively. Findings from the current study show that safe, cheap, and eco-friendly biomaterials can hinder the growth of spoilage microorganisms and potentially be used in food packaging.
Collapse
Affiliation(s)
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bishnupada Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
8
|
Zhang L, Zhu F, Guo Y, Yang H, Wang L, He Y, Li S, Li T. Synthesis of molecularly imprinted polymer based on cooperative imprinting for enrichment of gallic acid in
Puer
tea. J Appl Polym Sci 2023. [DOI: 10.1002/app.53712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Li‐Ping Zhang
- School of Basic Medicine and Forensic Medicine Henan University of Science and Technology Luoyang P. R. China
| | - Fu‐Hua Zhu
- School of Basic Medicine and Forensic Medicine Henan University of Science and Technology Luoyang P. R. China
| | - Yu Guo
- School of Basic Medicine and Forensic Medicine Henan University of Science and Technology Luoyang P. R. China
| | - Hui Yang
- School of Basic Medicine and Forensic Medicine Henan University of Science and Technology Luoyang P. R. China
| | - Lan Wang
- School of Basic Medicine and Forensic Medicine Henan University of Science and Technology Luoyang P. R. China
| | - Yi‐Fan He
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing P. R. China
| | - Shu‐Jing Li
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing P. R. China
| | - Tian Li
- School of Basic Medicine and Forensic Medicine Henan University of Science and Technology Luoyang P. R. China
| |
Collapse
|
9
|
Serna-Jiménez J, Torres-Valenzuela L, Sanín Villarreal A, Roldan C, Martín M, Siles J, Chica A. Advanced extraction of caffeine and polyphenols from coffee pulp: Comparison of conventional and ultrasound-assisted methods. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
A Concise Profile of Gallic Acid-From Its Natural Sources through Biological Properties and Chemical Methods of Determination. Molecules 2023; 28:molecules28031186. [PMID: 36770851 PMCID: PMC9919014 DOI: 10.3390/molecules28031186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Nature is a valuable source of anti-oxidants that have a health-promoting effect by inhibiting various undesirable changes leading to cell degradation and, consequently, potential disease ailments. One of them is gallic acid which has been used as a healing agent since ancient times. Currently, due to various beneficial properties, this compound is considered to be one of the main phenolic acids of great importance in numerous industries. It is commonly used as a substance protecting against the harmful effects of UV radiation, an astringent in cosmetic preparations, and a preservative in food products. Therefore, gallic acid is now deemed essential for both human health and industry. Increasingly better methods of its isolation and analysis are being developed, and new solutions are being sought to increase its production. This review, presenting a concise characterization of gallic acid, updates the knowledge about its various biological activities and methods used for its isolation and determination, including chromatographic and non-chromatographic methods.
Collapse
|
11
|
Fischer TE, Marcondes A, Zardo DM, Nogueira A, Calhelha RC, Vaz JA, Barros L, Zielinski AAF, Alberti A. Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia. Antioxidants (Basel) 2022; 11:antiox11122431. [PMID: 36552640 PMCID: PMC9774675 DOI: 10.3390/antiox11122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sterile bracts can represent 80% of Araucaria angustifolia pinecone and are a rich source of phenolic compounds. This study aimed to optimize the extraction of the phenolic compounds from Araucaria angustifolia bracts using response surface methodology; the bioactivity properties were also investigated. The effects of the ethanol concentration, solute/solvent ratio, and temperature in relation to the phenolic composition and antioxidant activity were evaluated. The quantification and identification of the individual phenolic compounds (using high-performance liquid chromatography) and their bioactivity were evaluated. The optimized extraction conditions, which detected gallic acid, catechin, epicatechin, quercetin, and kaempferol, were obtained using 60% ethanol at a ratio of 1:38 (w/v) and a temperature of 80 °C. The extract showed high levels of phenolic classes and antioxidant activity. The extract also showed an inhibitory activity for pathogenic (approximately 80%, 10,000 µg/mL) and lactic acid (27.9%, 15,000 µg/mL) bacteria strains. The α-glucosidase inhibitory activity was approximately ten times greater than acarbose, demonstrating its high antiglycemic potential. No antioxidant and anti-inflammatory cellular activity were determined; however, a high cytotoxicity for non-tumor cells and the antiproliferative activity against the tumor cells were observed. Overall, the phenolic extract showed promising action in relation to the fight against the diseases related to oxidative stress and, hopefully, the application of the safe concentrations of the extract, based on bioavailability assays, can be verified.
Collapse
Affiliation(s)
- Thaís Estéfane Fischer
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Amanda Marcondes
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Danianni Marinho Zardo
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Alessandro Nogueira
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil
| | - Aline Alberti
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
- Correspondence: ; Tel.: +55-42-32203775
| |
Collapse
|
12
|
Baite T, Mandal B, Purkait MK. Antioxidant-Incorporated Poly(vinyl alcohol) Coating: Preparation, Characterization, and Influence on Ripening of Green Bananas. ACS OMEGA 2022; 7:42320-42330. [PMID: 36440149 PMCID: PMC9686208 DOI: 10.1021/acsomega.2c05271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, the gallic acid (antioxidant)-rich leaf extract of Ficus auriculata was incorporated into poly(vinyl alcohol) (PVA) and utilized as a coating to delay the ripening of green bananas. The films exhibited low opacity of 0.86 ± 0.014 for pure PVA (PP) and 0.92 ± 0.019, 0.99 ± 0.020, and 1.18 ± 0.029 for PVA + 1% extract (PE1), PVA + 5% extract (PE5), and PVA + 10% extract (PE10), respectively, indicating excellent transparency. The weight loss was higher in the uncoated group than in any coated fruits. The reduction in titratable acidity and the increase in total soluble sugars were slower in all of the coated samples as compared to the uncoated ones. The fruits without any treatment attained complete maturity on the ninth day where the ion leakage was 85.61 ± 2.33% while that of PP was 56.36 ± 2.95% and those of PE1, PE5, and PE10 remained below 30%. The coated samples showed better retention and consequently slower degradation of chlorophyll. The fruits coated with pure PVA as well as 10% extract-incorporated PVA remained acceptable till day 15, while the ones with 1 and 5% of extract reached full ripeness on day 18. Results of the present investigation suggest that safe, low-cost, and environmentally friendly coatings can improve the shelf life of perishable produces like bananas.
Collapse
|
13
|
Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM. Extraction and encapsulation of bioactive compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Barroso Peixoto
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | | | | | - Rafael Oliveira Defendi
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | - Rúbia Michele Suzuki
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| |
Collapse
|
14
|
Serna‐Jiménez JA, Torres‐Valenzuela LS, Mejía‐Arango G. Evaluation and comparison in caffeine extraction under green conditions: Solvent selection and ultrasound‐assisted process. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johanna Andrea Serna‐Jiménez
- Department of Inorganic Chemistry and Chemical Engineering University of Cordoba, Campus Universitario Rabanales Cordoba Spain
- Facultad de Ciencias Agrarias y Agroindustria Universidad Tecnológica de Pereira Pereira Colombia
| | | | | |
Collapse
|
15
|
Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium cattleianum Leaves: Optimization Using the Response Surface Methodology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113557. [PMID: 35684493 PMCID: PMC9181949 DOI: 10.3390/molecules27113557] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022]
Abstract
In this study, conditions for the ultrasound-assisted extraction (UAE) of soluble polyphenols from Psidium cattleianum (PC) leaves were optimized using response surface methodology (RSM) by assessing the effect of extraction time (XET = 2, 4, and 6 min), sonication amplitude (XSA = 60, 80, and 100%), and pulse cycle (XPC = 0.4, 0.7, and 1 s). Furthermore, the optimized UAE conditions were compared with a conventional aqueous–organic extraction (AOE) method for extracting total phenolics; moreover, a phenolic profile using HPLC and antioxidant activity (DPPH, ABTS, and FRAP) were also compared. According to the RSM, the best conditions for UAE to extract the highest soluble polyphenol content and yield (158.18 mg/g dry matter [DM] and 15.81%) include a 100% sonication amplitude for 4 min at 0.6 s of pulse cycle. The optimal UAE conditions exhibited an effectiveness of 1.71 times in comparison to the AOE method for extracting total phenolics, in 96.66% less time; moreover, PC leaf extracts by UAE showed higher antioxidant values than AOE. Additionally, gallic, protocateic, chlorogenic, caffeic, coumaric, trans-cinnamic, 4-hydroxybenzoic, and syringic acids, as well as kaempferol were identified in PC leaves under UAE. PC leaf extracts are widely used for therapeutic and other industrial purposes; thus, the UAE proves to be a useful technology with which to improve the yield extraction of PC leaf phytochemicals.
Collapse
|
16
|
Dhiman M, Sharma L, Dadhich A, Dhawan P, Sharma MM. Traditional Knowledge to Contemporary Medication in the Treatment of Infectious Disease Dengue: A Review. Front Pharmacol 2022; 13:750494. [PMID: 35359838 PMCID: PMC8963989 DOI: 10.3389/fphar.2022.750494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dengue has become a worldwide affliction despite incessant efforts to search for a cure for this long-lived disease. Optimistic consequences for dengue vaccine are implausible as the efficiency is tied to previous dengue virus (DENV) exposure and a very high cost is required for large-scale production of vaccine. Medicinal plants are idyllic substitutes to fight DENV infection since they constitute important components of traditional medicine and show antiviral properties, although the mechanism behind the action of bioactive compounds to obstruct viral replication is less explored and yet to be discovered. This review includes the existing traditional knowledge on how DENV infects and multiplies in the host cells, conscripting different medicinal plants that obtained bioactive compounds with anti-dengue properties, and the probable mechanism on how bioactive compounds modulate the host immune system during DENV infection. Moreover, different plant species having such bioactive compounds reported for anti-DENV efficiency should be validated scientifically via different in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mamta Dhiman
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Lakshika Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhishek Dadhich
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | | | - M. M. Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
17
|
Chavan P, Sharma P, Sharma SR, Mittal TC, Jaiswal AK. Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods 2022; 11:122. [PMID: 35010248 PMCID: PMC8750622 DOI: 10.3390/foods11010122] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology's benefits and downsides. The breadth of ultrasound's application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.
Collapse
Affiliation(s)
- Prasad Chavan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144402, India;
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Pallavi Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Sajeev Rattan Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Tarsem Chand Mittal
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin—City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
18
|
WANG C, LI N, WU L, XIA L, HU Z, LI X, QU Z, YANG J. Optimization of ultrasound-homogenization combined extraction of phenolics in peony roots and leaves. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Nana LI
- North University of China, China
| | | | | | | | - Xiaojun LI
- North University of China, China; Nanolattix Biotech Corporation, China
| | - Zhican QU
- Nanolattix Biotech Corporation, China
| | | |
Collapse
|
19
|
Jalali-Jivan M, Fathi-Achachlouei B, Ahmadi-Gavlighi H, Jafari SM. Improving the extraction efficiency and stability of β-carotene from carrot by enzyme-assisted green nanoemulsification. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Flat dual-frequency sweeping ultrasound enhances the inactivation of polyphenol oxidase in strawberry juice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01202-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|