1
|
Popović ME, Stevanović M, Pantović Pavlović M. Biothermodynamics of Hemoglobin and Red Blood Cells: Analysis of Structure and Evolution of Hemoglobin and Red Blood Cells, Based on Molecular and Empirical Formulas, Biosynthesis Reactions, and Thermodynamic Properties of Formation and Biosynthesis. J Mol Evol 2024; 92:776-798. [PMID: 39516253 DOI: 10.1007/s00239-024-10205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024]
Abstract
Hemoglobin and red blood cells (erythrocytes) have been studied extensively from the perspective of life and biomedical sciences. However, no analysis of hemoglobin and red blood cells from the perspective of chemical thermodynamics has been reported in the literature. Such an analysis would provide an insight into their structure and turnover from the aspect of biothermodynamics and bioenergetics. In this paper, a biothermodynamic analysis was made of hemoglobin and red blood cells. Molecular formulas, empirical formulas, biosynthesis reactions, and thermodynamic properties of formation and biosynthesis were determined for the alpha chain, beta chain, heme B, hemoglobin and red blood cells. Empirical formulas and thermodynamic properties of hemoglobin were compared to those of other biological macromolecules, which include proteins and nucleic acids. Moreover, the energetic requirements of biosynthesis of hemoglobin and red blood cells were analyzed. Based on this, a discussion was made of the specific structure of red blood cells (i.e. no nuclei nor organelles) and its role as an evolutionary adaptation for more energetically efficient biosynthesis needed for the turnover of red blood cells.
Collapse
Affiliation(s)
- Marko E Popović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Maja Stevanović
- Inovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120, Belgrade, Serbia
| | - Marijana Pantović Pavlović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
- Centre of Excellence in Chemistry and Environmental Engineering - ICTM, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Dong W, Zhang J, Zou M, Chen L, Zhu L, Zhang L, Zhang G, Tang J, Yang Q, Hu Y, Chen S. High-Throughput Sequencing Analysis of Microbiota and Enzyme Activities in Xiaoqu from Seven Provinces in Southern China. J Microbiol Biotechnol 2024; 34:2290-2300. [PMID: 39317683 PMCID: PMC11637830 DOI: 10.4014/jmb.2405.05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Xiaoqu, a pivotal starter in baijiu fermentation, provides the most microflora and enzymes to initiate and maintain baijiu brewing. This study aims to explore the differences in microbiota and enzyme activities among Xiaoqu samples from seven provinces in southern China using high-throughput sequencing, plate isolation, and activity detection. The analyses revealed significant differences in bacterial and fungal communities across the samples. A total of 22 bacterial species and 17 target fungal species were isolated and identified. Predominant bacteria included Bacillus (Bacillus subtilis) and lactic acid bacteria (LABs), while the fungal communities were primarily composed of yeasts (Saccharomyces cerevisiae) and various molds. The activities of α-amylase and glucoamylase varied significantly among the samples, and samples from HN1 and GZ2 exhibited the highest activities. Correlation analyses highlighted the pivotal role of LABs in maintaining acidity and the importance of molds and yeasts in the saccharification and fermentation processes. These findings shed light on the microbial composition and diversity of Xiaoqu and the critical role of microbes in baijiu production. Moreover, they suggested potential microbial resources for developing artificial Xiaoqu via synthetic microbial community in the future, enhancing baijiu fermentation efficiency and overall product quality.
Collapse
Affiliation(s)
- Weiwei Dong
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, P.R. China
| | - Jingjing Zhang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Menglin Zou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, P.R. China
| | - Liang Chen
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Liping Zhu
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Long Zhang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Gang Zhang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Jie Tang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Qiang Yang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Yuanliang Hu
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, P.R. China
| | - Shenxi Chen
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, P.R. China
| |
Collapse
|
3
|
Dong W, Zeng Y, Ma J, Cai K, Guo T, Tan G, Yu X, Hu Y, Peng N, Zhao S. Characteristics and Functions of Dominant Yeasts Together with Their Applications during Strong-Flavor Baijiu Brewing. Foods 2024; 13:2409. [PMID: 39123600 PMCID: PMC11311647 DOI: 10.3390/foods13152409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Yeasts are pivotal brewing microbes that are associated with the flavor and quality of Chinese baijiu, yet research on dominant yeasts in strong-flavor baijiu brewing remains limited. In this study, Saccharomyces cerevisiae, Pichia kudriavzevii, and Kazachstania bulderi were identified as predominated yeasts in strong-flavor baijiu. Each strain showed distinct characteristics in ethanol resistance, thermal tolerance, and lactic acid tolerance, severally. S. cerevisiae FJ1-2 excelled in ethanol and ethyl ester production, P. kudriavzevii FJ1-1 in ethyl acetate, and K. bulderi FJ1-3 in lactic acid generation. Subsequently, the reinforced Fuqu of each yeast were severally prepared for application in baijiu brewing to verify their functions. Results revealed that the relative abundance of fortified yeast in each group rose. Pichia, Kazachstania, and Saccharomyces emerged as the core microbe for each group, respectively, by co-occurrence network analysis, influencing the microbiota to regulate flavor substances. In short, P. kudriavzevii FJ1-1 enhanced ethyl acetate. K. bulderi FJ1-3 improved ethyl caproate production and decreased levels of ethyl acetate and higher alcohols by modulating yeast community between Pichia and Saccharomyces. This is a systematic endeavor to study the functions of yeasts of strong-flavor baijiu, providing a solid basis for improving baijiu quality.
Collapse
Affiliation(s)
- Weiwei Dong
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (W.D.); (J.M.); (Y.H.)
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulun Zeng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiyuan Ma
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (W.D.); (J.M.); (Y.H.)
| | - Kaiyun Cai
- Hubei Daohuaxiang Liquor Co., Ltd., Yichang 443112, China
| | - Tingting Guo
- Hubei Daohuaxiang Liquor Co., Ltd., Yichang 443112, China
| | - Guangxun Tan
- Hubei Daohuaxiang Liquor Co., Ltd., Yichang 443112, China
| | - Xiang Yu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (W.D.); (J.M.); (Y.H.)
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (W.D.); (J.M.); (Y.H.)
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Jose-Salazar JA, Ballinas-Cesatti CB, Hernández-Martínez DM, Cristiani-Urbina E, Melgar-Lalanne G, Morales-Barrera L. Kinetic Evaluation of the Production of Mead from a Non- Saccharomyces Strain. Foods 2024; 13:1948. [PMID: 38928890 PMCID: PMC11203307 DOI: 10.3390/foods13121948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
There is a growing market for craft beverages with unique flavors. This study aimed to obtain a palate-pleasing mead derived from Pichia kudriavzevii 4A as a monoculture. Different culture media were evaluated to compare the fermentation kinetics and final products. The crucial factors in the medium were ~200 mg L-1 of yeast assimilable nitrogen and a pH of 3.5-5.0. A panel of judges favored the mead derived from Pichia kudriavzevii 4A (fermented in a medium with honey initially at 23 °Bx) over a commercial sample produced from Saccharomyces cerevisiae, considering its appearance, fruity and floral flavors (provided by esters, aldehydes, and higher alcohols), and balance between sweetness (given by the 82.91 g L-1 of residual sugars) and alcohol. The present mead had an 8.57% v/v ethanol concentration, was elaborated in 28 days, and reached a maximum biomass growth (2.40 g L-1) on the same fermentation day (6) that the minimum level of pH was reached. The biomass growth yield peaked at 24 and 48 h (~0.049 g g-1), while the ethanol yield peaked at 24 h (1.525 ± 0.332 g g-1), in both cases declining thereafter. The Gompertz model adequately describes the kinetics of sugar consumption and the generation of yeast biomass and ethanol. Pathogenic microorganisms, methanol, lead, and arsenic were absent in the mead. Thus, Pichia kudriavzevii 4A produced a safe and quality mead with probable consumer acceptance.
Collapse
Affiliation(s)
- Jorge Alberto Jose-Salazar
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (J.A.J.-S.); (C.B.B.-C.); (E.C.-U.)
| | - Christian Bryan Ballinas-Cesatti
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (J.A.J.-S.); (C.B.B.-C.); (E.C.-U.)
| | - Diana Maylet Hernández-Martínez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de México 11340, Mexico;
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (J.A.J.-S.); (C.B.B.-C.); (E.C.-U.)
| | - Guiomar Melgar-Lalanne
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Castelazo Anaya s/n, Industrial Ánimas, Xalapa 91190, Veracruz, Mexico;
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (J.A.J.-S.); (C.B.B.-C.); (E.C.-U.)
| |
Collapse
|
5
|
Ying BB, Cai J, Gao X, Zhang LF, Xu QF, Xu QH, Liu WL, Huang XM, Wang YC, Zhu L. Isolation, identification, and tolerance analysis of yeast during the natural fermentation process of Sidamo coffee beans. Arch Microbiol 2024; 206:279. [PMID: 38805051 DOI: 10.1007/s00203-024-04017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Yeast, which plays a pivotal role in the brewing, food, and medical industries, exhibits a close relationship with human beings. In this study, we isolated and purified 60 yeast strains from the natural fermentation broth of Sidamo coffee beans to screen for indigenous beneficial yeasts. Among them, 25 strains were obtained through morphological characterization on nutritional agar medium from Wallerstein Laboratory (WL), with molecular biology identifying Saccharomyces cerevisiae strain YBB-47 and the remaining 24 yeast strains identified as Pichia kudriavzevii. We investigated the fermentation performance, alcohol tolerance, SO2 tolerance, pH tolerance, sugar tolerance, temperature tolerance, ester production capacity, ethanol production capacity, H2S production capacity, and other brewing characteristics of YBB-33 and YBB-47. The results demonstrated that both strains could tolerate up to 3% alcohol by volume at a high sucrose mass concentration (400 g/L) under elevated temperature conditions (40 ℃), while also exhibiting a remarkable ability to withstand an SO2 mass concentration of 300 g/L at pH 3.2. Moreover, S. cerevisiae YBB-47 displayed a rapid gas production rate and strong ethanol productivity. whereas P. kudriavzevii YBB-33 exhibited excellent alcohol tolerance. Furthermore, this systematic classification and characterization of coffee bean yeast strains from the Sidamo region can potentially uncover additional yeasts that offer high-quality resources for industrial-scale coffee bean production.
Collapse
Affiliation(s)
- Bei-Bei Ying
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Xiu Gao
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Li-Fang Zhang
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Qing-Fang Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Qi-He Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Wei-Liang Liu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Xian-Min Huang
- School of Agronomy and Life Sciences, Zhaotong University, Zhaotong, Yunnan, 657000, People's Republic of China
| | - Yu-Chen Wang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, People's Republic of China.
- School of Chemcal Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, People's Republic of China.
| | - Ling Zhu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China.
| |
Collapse
|
6
|
Zhu L, Zhang X, Wang Y, Gao X, Xu Q, Liu W, Xu Q, Zhao D, Cai J. Recovery and characterization of β-glucosidase-producing non-Saccharomyces yeasts from the fermentation broth of Vitis labruscana Baily × Vitis vinifera L. for investigation of their fermentation characteristics. Arch Microbiol 2024; 206:174. [PMID: 38493436 DOI: 10.1007/s00203-024-03878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
The present study focuses on investigating 60 strains of yeast isolated from the natural fermentation broth of Vitis labruscana Baily × Vitis vinifera L. These strains underwent screening using lysine culture medium and esculin culture medium, resulting in the identification of 27 local non-Saccharomyces yeast strains exhibiting high β-glucosidase production. Subsequent analysis of their fermentation characteristics led to the selection of four superior strains (Z-6, Z-11, Z-25, and Z-58) with excellent β-glucosidase production and fermentation performance. Notably, these selected strains displayed a dark coloration on esculin medium and exhibited robust gas production during Duchenne tubules' fermentation test. Furthermore, all four non-Saccharomyces yeast strains demonstrated normal growth under specific conditions including SO2 mass concentration ranging from 0.1 to 0.3 g/L, temperature between 25 and 30 °C, glucose mass concentration ranging from 200 to 400 g/L, and ethanol concentration at approximately 4%. Molecular biology identification confirmed that all selected strains belonged to Pichia kudriavzevii species which holds great potential for wine production.
Collapse
Affiliation(s)
- Ling Zhu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | - Xuemei Zhang
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | - Yuchen Wang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, 653100, People's Republic of China
| | - Xiu Gao
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | - Qingfang Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | - Weiliang Liu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | - Qihe Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | - Dongmei Zhao
- Yunnan Agricultural University, Kunming, 650500, People's Republic of China
- Zhongbo Food Technology Group Co., Ltd, Qujing, 655000, People's Republic of China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China.
| |
Collapse
|
7
|
Long J, Cai J, Gao X, Wang YC, Huang XM, Zhu L. Investigation on screening, identification, and fermentation characteristics of Yunnan olive in the fermented liquid utilizing five strains of Saccharomyces cerevisiae. Arch Microbiol 2024; 206:164. [PMID: 38483645 DOI: 10.1007/s00203-024-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Refined indigenous Saccharomyces cerevisiae can enhance refinement, sophistication, and subtlety of fruit wines by showcasing exceptional regional characteristics. In order to identify exceptional indigenous S. cerevisiae strains from Yunnan olive, this study isolated 60 yeast strains from wild Yunnan olive fermentation mash. The five S. cerevisiae strains were subjected to morphological and molecular biological identification, followed by evaluation of their fermentation performance, ethanol production capacity, ester production capacity, H2S production capacity, killing capacity, and tolerance. Strains LJM-4, LJM-10, and LJM-26 exhibited robust tolerance to 6% ethanol volume fraction, pH 2.8, sucrose concentration of 400 g/L, SO2 concentration of 0.3 g/L, glucose concentration of 400 g/L at both 40 °C and 15 °C. Additionally, strain LJM-10 demonstrated a faster fermentation rate compared to the other strains. Among the tested S. cerevisiae strains evaluated in this study for olive wine fermentation process in Yunnan region; strain LJM-10 displayed superior abilities in terms of ester and ethanol production while exhibiting the lowest H2S production levels. These findings suggest that strain LJM-10 holds great potential as an excellent candidate for optimizing fruit wine S. cerevisiae fermentation processes in Yunnan olive fruit wine.
Collapse
Affiliation(s)
- Junming Long
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Xiu Gao
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Yu-Chen Wang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, 653100, People's Republic of China
| | - Xian-Min Huang
- School of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, People's Republic of China
| | - Ling Zhu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China.
| |
Collapse
|
8
|
El-Moslamy SH, Abd-Elhamid AI, Fawal GE. Large-scale production of myco-fabricated ZnO/MnO nanocomposite using endophytic Colonstachys rosea with its antimicrobial efficacy against human pathogens. Sci Rep 2024; 14:935. [PMID: 38195769 PMCID: PMC10776836 DOI: 10.1038/s41598-024-51398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
In this study, a ZnO/MnO nanocomposite was myco-fabricated using the isolated endophytic Clonostachys rosea strain EG99 as the nano-factory. The extract of strain EG99, a reducing/capping agent, was successfully titrated with equal quantities of Zn(NO3)2·6H2O and Mn(NO3)2·6H2O (precursors) in a single step to fabricate the rod-shaped ZnO/MnO nanocomposite of size 6.22 nm. The ZnO/MnO nanocomposite was myco-fabricated in 20 min, and the results were validated at 350 and 400 nm using UV-Vis spectroscopy. In a 7-L bioreactor, an industrial biotechnological approach was used to scale up the biomass of this strain, EG99, and the yield of the myco-fabricated ZnO/MnO nanocomposite. A controlled fed-batch fermentation system with a specific nitrogen/carbon ratio and an identical feeding schedule was used in this production process. Higher yields were obtained by adopting a controlled fed-batch fermentation approach in a 7-L bioreactor with a regular feeding schedule using a nitrogen/carbon ratio of 1:200. Overall, the fed-batch produced 89.2 g/l of biomass at its maximum, 2.44 times more than the batch's 36.51 g/l output. Furthermore, the fed-batch's maximum ZnO/MnO nanocomposite yield was 79.81 g/l, a noteworthy 14.5-fold increase over the batch's yield of 5.52 g/l. Finally, we designed an innovative approach to manage the growth of the endophytic strain EG99 using a controlled fed-batch fermentation mode, supporting the rapid, cheap and eco-friendly myco-fabrication of ZnO/MnO nanocomposite. At a dose of 210 µg/ml, the tested myco-fabricated ZnO/MnO nanocomposite exhibited the maximum antibacterial activity against Staphylococcus aureus (98.31 ± 0.8%), Escherichia coli (96.70 ± 3.29%), and Candida albicans (95.72 ± 0.95%). At the same dose, Staphylococcus aureus biofilm was eradicated in 48 h; however, Escherichia coli and Candida albicans biofilms needed 72 and 96 h, respectively. Our myco-fabricated ZnO/MnO nanocomposite showed strong and highly selective antagonistic effects against a variety of multidrug-resistant human pathogens. Therefore, in upcoming generations of antibiotics, it might be employed as a nano-antibiotic.
Collapse
Affiliation(s)
- Shahira H El-Moslamy
- Department of Bioprocess Development (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City, Alexandria, 21934, Egypt.
| | - Ahmed Ibrahim Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, 21934, Egypt
| | - Gomaa El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, 21934, Egypt
| |
Collapse
|
9
|
García-Béjar B, Fernández-Pacheco P, Carreño-Domínguez J, Briones A, Arévalo-Villena M. Identification and biotechnological characterisation of yeast microbiota involved in spontaneous fermented wholegrain sourdoughs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7683-7693. [PMID: 37452647 DOI: 10.1002/jsfa.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/05/2023] [Accepted: 07/15/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND New strategies in the cereal-based industry has brought about the elaboration of new sourdoughs with better microbial stability and safety as well as nutritional value such as those based on wholegrain flours. This has led to an increasing interest in the selection of adapted yeasts for using them as new starters. Therefore, this study aimed to isolate, identify, and characterise diverse yeast strains from wholegrain spontaneous sourdoughs. RESULTS Three wholegrain sourdoughs (wheat, rye, and oat) were fermented and monitored for 96 h. Minimum pH values ranged from 3.1 to 3.5 while maximum yeast counts were reached at 72 h. A total of 76 yeast isolates were identified by polymerase chain reaction random amplification of polymorphic DNA (PCR-RAPD) and catalogued in six different species by sequencing the internal transcribed spacer (ITS) region. The major species were Candida glabrata, Saccharomyces cerevisiae, Kazachstania unispora, and Wickerhamomyces anomalus. The studied kinetic parameters of the growth curves (λ, G, ODmax , and μmax ) and the fermentation capacity allowed to ascertain that 12 and 5 strains, respectively, were better than baker's yeast control. The fibre assimilation ability (cellulose, xylose, and β-glucan) was observed in the 27% of the strains and only four strains showed phytase activity. CONCLUSIONS The yeast population in the three wholegrain sourdoughs were variable along the fermentation time. Genetic identification showed that strains and species presented a different trend for each sourdough although common species were determined (e.g., W. anomalus). Candida glabrata (4T1) and Saccharomyces cerevisiae (3A6) showed, respectively, better kinetics and impedance results than the positive control, while W. anomalus (C4) was notorious in fibre assimilation and phytase degradation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Pilar Fernández-Pacheco
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Toledo, Spain
| | | | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
10
|
Gerard LM, Corrado MB, Davies CV, Soldá CA, Dalzotto MG, Esteche S. Isolation and identification of native yeasts from the spontaneous fermentation of grape musts. Arch Microbiol 2023; 205:302. [PMID: 37550458 DOI: 10.1007/s00203-023-03646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Recently, there has been growing interest in the characterization of native yeasts for their use in production of wines with regional characteristics. This study aimed to investigate Saccharomyces and non-Saccharomyces yeasts present in the spontaneous fermentation of Tannat and Marselan grape musts collected from Concordia (Entre Ríos, Argentina) over 2019, 2020, and 2021 vintages. The evolution of these fermentative processes was carried out by measuring total soluble solids, total acidity, volatile acidity, pH, ethanol concentration, and total carbon content. Isolated Saccharomyces and non-Saccharomyces yeasts were identified based on colony morphology in WL medium, 5.8S-ITS-RFLP analysis, and 26S rDNA D1/D2 gene sequencing. Two hundred and ten yeast colonies were isolated and identified as Pichia kudriavzevii, Saccharomyces cerevisiae, Hanseniaspora uvarum, Metschnikowia pulcherrima, Candida albicans, Candida parapsilosis, Pichia occidentalis, Pichia bruneiensis, Hanseniaspora opuntiae, Issatchenkia terricola, and Hanseniaspora vineae. P. kudriavzevii isolated from all vintages was associated with the spontaneous fermentation of grape musts from the Concordia region.
Collapse
Affiliation(s)
- Liliana Mabel Gerard
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina.
| | - María Belén Corrado
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - Cristina Verónica Davies
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - Carina Alejandra Soldá
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - María Gabriela Dalzotto
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Concordia, Argentina
| | - Sofía Esteche
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| |
Collapse
|
11
|
Nieto-Sarabia VL, Melgar-Lalanne G, Ballinas-Cesatti CB, García-García FA, Jose-Salazar JA, Flores-Ortiz CM, Cristiani-Urbina E, Morales-Barrera L. Brewing a Craft Belgian-Style Pale Ale Using Pichia kudriavzevii 4A as a Starter Culture. Microorganisms 2023; 11:microorganisms11040977. [PMID: 37110400 PMCID: PMC10146434 DOI: 10.3390/microorganisms11040977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
There is an expanding market for beer of different flavors. This study aimed to prepare a craft Belgian-style pale ale with a non-Saccharomyces yeast. Pichia kudriavzevii 4A was used as a sole starter culture, and malted barley as the only substrate. The ingredients and brewing process were carefully monitored to ensure the quality and innocuousness of the beverage. During fermentation, the yeast consumed 89.7% of total sugars and produced 13.8% v/v of ethanol. The product was fermented and then aged for 8 days, adjusted to 5% v/v alcohol, and analyzed. There were no traces of mycotoxins, lead, arsenic, methanol, or microbiological contamination that would compromise consumer health. According to the physicochemical analysis, the final ethanol concentration (5.2% v/v) and other characteristics complied with national and international guidelines. The ethyl acetate and isoamyl alcohol present are known to confer sweet and fruity flavors. The sensory test defined the beverage as refreshing and as having an apple and pear flavor, a banana aroma, and a good level of bitterness. The judges preferred it over a commercial reference sample of Belgian-style pale ale made from S. cerevisiae. Hence, P. kudriavzevii 4A has the potential for use in the beer industry.
Collapse
Affiliation(s)
- Vogar Leonel Nieto-Sarabia
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| | - Guiomar Melgar-Lalanne
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Castelazo Anaya s/n, Industrial Ánimas, Xalapa 91190, Veracruz, Mexico
| | - Christian Bryan Ballinas-Cesatti
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| | - Fernando Abiram García-García
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Jorge Alberto Jose-Salazar
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| | - César Mateo Flores-Ortiz
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Estado de México, Mexico
| |
Collapse
|
12
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
13
|
Advances in the Application of the Non-Conventional Yeast Pichia kudriavzevii in Food and Biotechnology Industries. J Fungi (Basel) 2023; 9:jof9020170. [PMID: 36836285 PMCID: PMC9961021 DOI: 10.3390/jof9020170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Pichia kudriavzevii is an emerging non-conventional yeast which has attracted increased attention for its application in food and biotechnology areas. It is widespread in various habitats and often occurs in the spontaneous fermentation process of traditional fermented foods and beverages. The contributions of P. kudriavzevii in degrading organic acid, releasing various hydrolase and flavor compounds, and displaying probiotic properties make it a promising starter culture in the food and feed industry. Moreover, its inherent characteristics, including high tolerance to extreme pH, high temperature, hyperosmotic stress and fermentation inhibitors, allow it the potential to address technical challenges in industrial applications. With the development of advanced genetic engineering tools and system biology techniques, P. kudriavzevii is becoming one of the most promising non-conventional yeasts. This paper systematically reviews the recent progress in the application of P. kudriavzevii to food fermentation, the feed industry, chemical biosynthesis, biocontrol and environmental engineering. In addition, safety issues and current challenges to its use are discussed.
Collapse
|