1
|
Munialo CD, Baeghbali V, Acharya P. Plant-Based Alternatives to Meat Products. Foods 2025; 14:1396. [PMID: 40282797 PMCID: PMC12026562 DOI: 10.3390/foods14081396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Animal proteins have been used in the formulation and production of food products for many centuries, which has mainly been attributed to their excellent functional properties. However, the rearing of animals has been associated with an increased emission of greenhouse gases that contributes to global warming and climate change. Consequently, there has been a drive toward using alternative proteins, such as those from plant origins, which have been found to be more sustainable. A climate-smart strategy to contribute toward a reduction in meat consumption has been the formulation of plant-based meat analogues. The lower acceptance of these meat substitutes is mainly attributed to their sensorial, nutritional, and textural properties, which fail to resemble conventional meat. As such, there is a knowledge gap in understanding key aspects that come into play while formulating meat alternatives from plant sources by deciphering the link between the techno-functional attributes of protein and the various quality attributes of these food products. Therefore, this review aims to discuss the technical advances that have been made when it comes to plant-based meat substitutes that could drive consumer acceptance. There is also a huge impetus to diversify plant protein usage in meat analogues beyond soy and pea, which requires the applications of underutilised plant proteins to overcome their functional and organoleptic shortcomings, as well as the techno-economic challenges that have also been addressed in this work. Additionally, the nutritional equivalency of plant-based meat alternatives is reviewed, and the ways in which these products have been fabricated are discussed to assess the opportunities and challenges that exist in current product formulations. Other key determinants, such as environmental sustainability factors, prospective supply chain issues, and the market adoptability of plant-based meat alternatives, are also discussed. This review emphasises the fact that interlinking technical challenges with consumer insights and socioeconomic perspectives for protein transition is critical to ensure that innovations successfully land in the market.
Collapse
Affiliation(s)
| | - Vahid Baeghbali
- Natural Resources Institute, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
- Bezos Centre for Sustainable Protein, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Parag Acharya
- Natural Resources Institute, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
- Bezos Centre for Sustainable Protein, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
2
|
Miyashita NMR, Hudson EA, Rezende JDP, Vidigal MCTR, Pires ACDS. Baru Proteins: Extraction Methods and Techno-Functional Properties for Sustainable Nutrition and Food Innovation. Foods 2025; 14:1286. [PMID: 40282688 PMCID: PMC12026944 DOI: 10.3390/foods14081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Global population growth raises concerns about the availability of safe and nutritious food, along with its environmental and social impacts. In this context, plant-based foods have emerged as a promising solution, offering sustainable and affordable alternatives. Baru almonds (Dipteryx alata Vogel), a native Brazilian species, represent a viable and eco-friendly protein source with significant potential for food applications. This review discusses the nutritional composition, protein extraction methods and techno-functional properties of baru almonds, highlighting both advantages and limitations for food application. Baru proteins exhibit a high protein content (23-30%, w/w), a balanced essential amino acid profile, and valuable functional properties, including emulsifying capacity, foam stability, and moderate water- and oil-holding capacities. However, despite their potential, the lack of research on the gelation properties of baru proteins restricts their application in structured plant-based food formulations, where protein gelation is crucial for texture, water retention, and overall product stability. Further research is needed to evaluate their gel-forming ability and allergenic potential. Additionally, this review explores emerging protein extraction techniques that could improve protein quality and functionality, expanding their applicability in the food industry. By promoting biodiversity conservation and regional development, baru almonds contribute to the growing demand for sustainable protein sources.
Collapse
Affiliation(s)
- Nayara Matiko Reis Miyashita
- Food Technology Department, Federal University of Viçosa, Av. P. H. Rolfs s/n, Viçosa 36570-900, MG, Brazil; (N.M.R.M.); (E.A.H.); (M.C.T.R.V.)
| | - Eliara Acipreste Hudson
- Food Technology Department, Federal University of Viçosa, Av. P. H. Rolfs s/n, Viçosa 36570-900, MG, Brazil; (N.M.R.M.); (E.A.H.); (M.C.T.R.V.)
| | - Jaqueline de Paula Rezende
- Food Science Department, Federal University of Lavras, Trevo Rotatório Professor Edmir Sá Santos, s/n, Campus UFLA, Lavras 37203-202, MG, Brazil;
| | | | - Ana Clarissa dos Santos Pires
- Food Technology Department, Federal University of Viçosa, Av. P. H. Rolfs s/n, Viçosa 36570-900, MG, Brazil; (N.M.R.M.); (E.A.H.); (M.C.T.R.V.)
| |
Collapse
|
3
|
Mercês ZDCD, Salvadori NM, Evangelista SM, Cochlar TB, Strasburg VJ, da Silva VL, de Oliveira VR. Effectiveness, Challenges, and Environmental Impacts of New Food Strategies with Plant and Animal Protein Products. Foods 2024; 13:3217. [PMID: 39456279 PMCID: PMC11507108 DOI: 10.3390/foods13203217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Sustainable food practices are intrinsically linked to human nutrition in the preservation of the ecosystem. This study, therefore, evaluates the effectiveness, challenges, environmental impacts, and new food strategies related to plant and animal products, with a view to promoting more sustainable and healthy eating practices. The search stages were conducted using the following databases: PubMed, Science Direct, and SciElo. The studies selected included those published from 2018 to 2024 and government documents, available in English, Portuguese, and Spanish. The 34 articles analyzed in this study showed the environmental impacts related to the production of plant and animal proteins, highlighting the urgency of implementing changes in this sector. However, factors such as land use, carbon footprint, and water footprint show remarkable differences depending on the type of crop cultivated, agricultural practices adopted, and stages involved in the supply chain. As final considerations, the analysis suggests that achieving sustainability in food systems requires an integrate approach that combines the optimization of plant protein production with a reduction in environmental impacts and the development of technologies that that support the efficiency and resilience of the industry. Meeting the nutritional needs of the population in a sustainable way will only be possible through regional actions and a deep understanding of the challenges and opportunities.
Collapse
Affiliation(s)
- Ziane da Conceição das Mercês
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Natalia Maldaner Salvadori
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Sabrina Melo Evangelista
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Tatiana Barbieri Cochlar
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Virgílio José Strasburg
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| | - Vanuska Lima da Silva
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| | - Viviani Ruffo de Oliveira
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| |
Collapse
|
4
|
Zhu H, Wang L, Li X, Shi J, Scanlon M, Xue S, Nosworthy M, Vafaei N. Canola Seed Protein: Pretreatment, Extraction, Structure, Physicochemical and Functional Characteristics. Foods 2024; 13:1357. [PMID: 38731728 PMCID: PMC11083811 DOI: 10.3390/foods13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The rapid growth of the global population has led to an unprecedented demand for dietary protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost attention is directed towards summarizing the characteristics of canola seed and canola seed protein. Afterwards, points of discussion related to pretreatment include an introduction to pulsed electric field treatment (PEF), microwave treatment (MC), and ultrasound treatment (UL). Then, the extraction method is illustrated, including alkaline extraction, isoelectric precipitation, acid precipitation, micellization (salt extraction), and dry fractionation and tribo-electrostatic separation. Finally, the structural complexity, physicochemical properties, and functional capabilities of rapeseed seeds, as well as the profound impact of various applications of rapeseed proteins, are elaborated. Through a narrative review of recent research findings, this paper aims to enhance a comprehensive understanding of the potential of canola seed protein as a valuable nutritional supplement, highlighting the pivotal role played by various extraction methods. Additionally, it sheds light on the broad spectrum of applications where canola protein demonstrates its versatility and indispensability as a resource.
Collapse
Affiliation(s)
- Huipeng Zhu
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Lu Wang
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Xiaoyu Li
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Martin Scanlon
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Matthew Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Nazanin Vafaei
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
5
|
Feigin SV, Wiebers DO, Lueddeke G, Morand S, Lee K, Knight A, Brainin M, Feigin VL, Whitfort A, Marcum J, Shackelford TK, Skerratt LF, Winkler AS. Proposed solutions to anthropogenic climate change: A systematic literature review and a new way forward. Heliyon 2023; 9:e20544. [PMID: 37867892 PMCID: PMC10585315 DOI: 10.1016/j.heliyon.2023.e20544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
Humanity is now facing what may be the biggest challenge to its existence: irreversible climate change brought about by human activity. Our planet is in a state of emergency, and we only have a short window of time (7-8 years) to enact meaningful change. The goal of this systematic literature review is to summarize the peer-reviewed literature on proposed solutions to climate change in the last 20 years (2002-2022), and to propose a framework for a unified approach to solving this climate change crisis. Solutions reviewed include a transition toward use of renewable energy resources, reduced energy consumption, rethinking the global transport sector, and nature-based solutions. This review highlights one of the most important but overlooked pieces in the puzzle of solving the climate change problem - the gradual shift to a plant-based diet and global phaseout of factory (industrialized animal) farming, the most damaging and prolific form of animal agriculture. The gradual global phaseout of industrialized animal farming can be achieved by increasingly replacing animal meat and other animal products with plant-based products, ending government subsidies for animal-based meat, dairy, and eggs, and initiating taxes on such products. Failure to act will ultimately result in a scenario of irreversible climate change with widespread famine and disease, global devastation, climate refugees, and warfare. We therefore suggest an "All Life" approach, invoking the interconnectedness of all life forms on our planet. The logistics for achieving this include a global standardization of Environmental, Social, and Governance (ESG) or similar measures and the introduction of a regulatory body for verification of such measures. These approaches will help deliver environmental and sustainability benefits for our planet far beyond an immediate reduction in global warming.
Collapse
Affiliation(s)
| | | | - George Lueddeke
- Centre for the Study of Resilience and Future Africa, University of Pretoria, Pretoria, South Africa
- Ministry of Environment, Forest and Climate Change (MoEFCC), India
| | - Serge Morand
- Faculty of Veterinary Technology (CNRS), Kasetsart University, Bangkok, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kelley Lee
- Pacific Institute on Pathogens, Pandemics and Society, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Global Health Governance, Canada
| | - Andrew Knight
- School of Environment and Science, Nathan Campus, Griffith University, Nathan, QLD, Australia
- Faculty of Health and Wellbeing, University of Winchester, Winchester, UK
| | - Michael Brainin
- Clinical Neurosciences and Preventive Medicine, Danube University Krems, Austria
| | - Valery L. Feigin
- National Institute for Stroke and Applied Neurosciences, School of Clinical Sciences, Auckland University of Technology, New Zealand
| | - Amanda Whitfort
- Department of Professional Legal Education, Faculty of Law, The University of Hong Kong, Hong Kong
| | - James Marcum
- Department of Philosophy, Baylor University, Waco, TX, USA
| | - Todd K. Shackelford
- Department of Psychology and Center for Evolutionary Psychological Science, Oakland University, Rochester, MI, USA
| | - Lee F. Skerratt
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea S. Winkler
- Center for Global Health, Department of Neurology, Faculty of Medicine, Technical University of Munich, Munich, Germany
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
6
|
Liu S, Xie Y, Li B, Li S, Yu W, Ye A, Guo Q. Structural Properties of Quinoa Protein Isolate: Impact of Neutral to High Alkaline Extraction pH. Foods 2023; 12:2589. [PMID: 37444327 DOI: 10.3390/foods12132589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
In this work, we extracted proteins from white quinoa cultivated in the northeast of Qinghai-Tibet plateau using the method of alkaline solubilization and acid precipitation, aiming to decipher how extraction pH (7-11) influenced extractability, purity and recovery rate, composition, multi-length scale structure, and gelling properties of quinoa protein isolate (QPI). The results showed that protein extractability increased from 39 to 58% with the increment of pH from 7 to 11 whereas protein purity decreased from 89 to 82%. At pH 7-11, extraction suspensions and QPI showed the similar major bands in SDS-PAGE with more minor ones (e.g., protein fractions at > 55 or 25-37 kDa) in suspensions. Extraction pH had limited effect on the secondary structure of QPI. In contrast, the higher-order structures of QPI were significantly affected, e.g., (1) emission maximum wavelength of intrinsic fluorescence increased with extraction pH; (2) surface hydrophobicity and the absolute value of zeta-potential increased with increasing extraction pH from 7 to 9, and then markedly decreased; (3) the particle size decreased to the lowest value at pH 9 and then increased to the highest value at pH 11; and (4) denaturation temperature of QPI had a large decrease with increasing extraction pH from 7/8 to 9/10. Besides, heat-set QPI gels were formed by loosely-connected protein aggregates, which were strengthened with increasing extraction pH. This study would provide fundamental data for industrial production of quinoa protein with desired quality.
Collapse
Affiliation(s)
- Shengnan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
- Dongying Industrial Product Inspection & Metrology Verification Center, Dongying Administration for Market Regulation, Dongying 257091, China
| | - Yun Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Bingyi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Wenhua Yu
- Shandong Wonderful Biotech Co., Ltd., Dongying 257500, China
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Qing Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| |
Collapse
|
7
|
Morris E, Perumalla S, Stiers C, Gross K. Rice protein concentrate is a well-accepted, highly digestible protein source for adult cats. Front Vet Sci 2023; 10:1168659. [PMID: 37187925 PMCID: PMC10175793 DOI: 10.3389/fvets.2023.1168659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction The use of rice protein concentrate (RPC) as a protein source in cat food is uncommon. Therefore, this study aimed to determine the acceptability and digestibility of foods formulated to contain increasing levels of RPC to support its inclusion in foods for adult (non-gravid, non-lactating) cats. Methods Increasing levels of RPC (0, 7, 14, and 28%) were formulated into test foods fed to 24 cats in a Latin square design with 15-day periods and no washout between periods. Food intake and fecal scores were measured to determine the acceptability of test foods. Fecal output was measured on days 11-15. Food and fecal samples from day 15 of each period were analyzed for nutrient composition to calculate the macronutrient digestibility of the test foods. Analysis of variance and orthogonal contrasts were used to assess the effects of RPC inclusion on food intake, fecal output, fecal scores, and macronutrient digestibility. Results The results showed that as-fed (AF), dry matter (DM), and gross energy (GE) intake increased with increasing RPC levels (p > 0.05). Fecal output, both as-is and DM, was unaffected by RPC inclusion (p > 0.05); however, fecal scores increased linearly with increasing RPC inclusion (p < 0.001). Furthermore, true protein and apparent DM, GE, and carbohydrate (NFE) digestibility increased linearly with RPC inclusion (p < 0.05). Apparent fat digestibility was high for all test foods but was unaffected by RPC inclusion (p = 0.690). Discussion Overall, the inclusion of RPC was well-accepted, improved fecal characteristics, and increased the apparent and true macronutrient digestibility compared to the control. Therefore, this study demonstrated that RPC can serve as a high-quality and acceptable protein source for adult cats.
Collapse
Affiliation(s)
- Elizabeth Morris
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
- *Correspondence: Elizabeth Morris,
| | | | - Cheryl Stiers
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Kathy Gross
- Department of Animal Science & Industry Adjunct Faculty, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Ultrasound-Assisted Extraction of Artocarpus heterophyllus L. Leaf Protein Concentrate: Solubility, Foaming, Emulsifying, and Antioxidant Properties of Protein Hydrolysates. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of ultrasound-assisted extraction (UAE) was evaluated on the functionality of jackfruit leaf protein hydrolysates. Leaf protein concentrate was obtained by ultrasound (LPCU) and conventional extractions by maceration (LPCM). LPCM and LPCU were hydrolyzed with pancreatin (180 min), and hydrolysates by maceration (HM) and ultrasound (HU) were obtained. The composition of amino acids, techno-functional (solubility, foaming, and emulsifying properties), and antioxidant properties of the hydrolysates were evaluated. A higher amount of essential amino acids was found in HU, while HM showed a higher content of hydrophobic amino acids. LPCs exhibited low solubility (0.97–2.89%). However, HM (67.8 ± 0.98) and HU (77.39 ± 0.43) reached maximum solubility at pH 6.0. The foaming and emulsifying properties of the hydrolysates were improved when LPC was obtained by UAE. The IC50 of LPCs could not be quantified. However, HU (0.29 ± 0.01 mg/mL) showed lower IC50 than HM (0.32 ± 0.01 mg/mL). The results reflect that the extraction method had a significant (p < 0.05) effect on the functionality of protein hydrolysates. The UAE is a suitable method for enhancing of quality, techno-functionality, and antioxidant properties of LPC.
Collapse
|
9
|
A Comparative Photographic Review on Higher Plants and Macro-Fungi: A Soil Restoration for Sustainable Production of Food and Energy. SUSTAINABILITY 2022. [DOI: 10.3390/su14127104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Kingdom of Plantae is considered the main source of human food, and includes several edible and medicinal plants, whereas mushrooms belong to the Kingdom of fungi. There are a lot of similar characteristics between mushrooms and higher plants, but there are also many differences among them, especially from the human health point of view. The absences of both chlorophyll content and the ability to form their own food are the main differences between mushrooms and higher plants. The main similar attributes found in both mushrooms and higher plants are represented in their nutritional and medicinal activities. The findings of this review have a number of practical implications. A lot of applications in different fields could be found also for both mushrooms and higher plants, especially in the bioenergy, biorefinery, soil restoration, and pharmaceutical fields, but this study is the first report on a comparative photographic review between them. An implication of the most important findings in this review is that both mushrooms and plants should be taken into account when integrated food and energy are needed. These findings will be of broad use to the scientific and biomedical communities. Further investigation and experimentation into the integration and production of food crops and mushrooms are strongly recommended under different environmental conditions, particularly climate change.
Collapse
|