1
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
2
|
Korf EA, Novozhilov AV, Mindukshev IV, Glotov AS, Kudryavtsev IV, Baidyuk EV, Dobrylko IA, Voitenko NG, Voronina PA, Habeeb S, Ghanem A, Osinovskaya NS, Serebryakova MK, Krivorotov DV, Jenkins RO, Goncharov NV. Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model. Int J Mol Sci 2024; 25:10438. [PMID: 39408765 PMCID: PMC11477139 DOI: 10.3390/ijms251910438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The study of drugs of natural origin that increase endurance and/or accelerate recovery is an integral part of sports medicine and physiology. In this paper, decaffeinated green tea extract (GTE) and two ammonium salts-chloride (ACL) and carbonate (ACR)-were tested individually and in combination with GTE as stimulants of physical performance in a forced swimming rat experimental model. The determined parameters can be divided into seven blocks: functional (swimming duration); biochemistry of blood plasma; biochemistry of erythrocytes; hematology; immunology; gene expression of slow- and fast-twitch muscles (m. soleus, SOL, and m. extensor digitorum longus, EDL, respectively); and morphometric indicators of slow- and fast-twitch muscles. Regarding the negative control (intact animals), the maximum number of changes in all blocks of indicators was recorded in the GTE + ACR group, whose animals showed the maximum functional result and minimum lactate values on the last day of the experiment. Next, in terms of the number of changes, were the groups ACR, ACL, GTE + ACL, GTE and NaCl (positive control). In general, the number of identified adaptive changes was proportional to the functional state of the animals of the corresponding groups, in terms of the duration of the swimming load in the last four days of the experiment. However, not only the total number but also the qualitative composition of the identified changes is of interest. The results of a comparative analysis suggest that, in the model of forced swimming we developed, GTE promotes restoration of the body and moderate mobilization of the immune system, while small doses of ammonium salts, especially ammonium carbonate, contribute to an increase in physical performance, which is associated with satisfactory restoration of skeletal muscles and the entire body. The combined use of GTE with ammonium salts does not give a clearly positive effect.
Collapse
Affiliation(s)
- Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Artem V. Novozhilov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Igor V. Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Andrey S. Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg 199034, Russia
| | | | - Ekaterina V. Baidyuk
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Irina A. Dobrylko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Samarmar Habeeb
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Afrah Ghanem
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| | - Natalia S. Osinovskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg 199034, Russia
| | | | - Denis V. Krivorotov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical Biological Agency, p.o. Kuz’molovsky bld.93, St. Petersburg 188663, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia
| |
Collapse
|
3
|
Li Y, Cheng L, Li M. Effects of Green Tea Extract Epigallocatechin-3-Gallate on Oral Diseases: A Narrative Review. Pathogens 2024; 13:634. [PMID: 39204235 PMCID: PMC11357325 DOI: 10.3390/pathogens13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Oral diseases are among the most prevalent diseases globally. Accumulating new evidence suggests considerable benefits of epigallocatechin-3-gallate (EGCG) for oral health. This review aims to explore the role and application of EGCG in main oral diseases. METHODS This narrative review thoroughly examines and summarizes the most recent literature available in scientific databases (PubMed, Web of Science, Scopus, and Google Scholar) reporting advances in the role and application of EGCG within the dental field. The major keywords used included "EGCG", "green tea extract", "oral health", "caries", "pulpitis", "periapical disease", "periodontal disease", "oral mucosa", "salivary gland", and "oral cancer". CONCLUSIONS EGCG prevents and manages various oral diseases through its antibacterial, anti-inflammatory, antioxidant, and antitumor properties. Compared to traditional treatments, EGCG generally exhibits lower tissue irritation and positive synergistic effects when combined with other therapies. Novel delivery systems or chemical modifications can significantly enhance EGCG's bioavailability, prolong its action, and reduce toxicity, which are current hotspots in developing new materials. CLINICAL SIGNIFICANCE this review provides an exhaustive overview of the biological activities of EGCG to major oral diseases, alongside an exploration of applications and limitations, which serves as a reference for preventing and managing oral ailments.
Collapse
Affiliation(s)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
4
|
Ballesteros-Ramírez R, Lasso P, Urueña C, Saturno J, Fiorentino S. Assessment of Acute and Chronic Toxicity in Wistar Rats ( Rattus norvegicus) and New Zealand Rabbits (Oryctolagus cuniculus) of an Enriched Polyphenol Extract Obtained from Caesalpinia spinosa. J Toxicol 2024; 2024:3769933. [PMID: 38633362 PMCID: PMC11023715 DOI: 10.1155/2024/3769933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Although herbal drugs are often considered safe for consumption, there is increasing evidence that some can generate undesirable health effects. However, polyphenols found in certain plants have been shown to provide a range of benefits for human health. In previous work, a standardized and quantified extract (P2Et) obtained from Caesalpinia spinosa (Dividivi) plant showed promising antioxidant, immunomodulatory, and anti-inflammatory properties in animal models of cancer and COVID-19 patients. The extract has also been subjected to genotoxicity, mutagenicity, and 28-day oral chronic toxicity evaluations, demonstrating a good safety profile. To advance preclinical and clinical development, further acute and chronic toxicity evaluations of the P2Et extract were performed. Acute toxicity tests were performed orally in Wistar rats at a dose of 2000 mg/kg, indicating that the lethal dose 50% (LD50) value exceeded 2000 mg/kg and classifying the P2Et extract as category 5 according to the Globally Harmonized System of Classification (GHS). In this work, chronic toxicity tests were conducted for 180 days on Wistar rats and New Zealand rabbits at a dose of 1000 mg/kg under Good Laboratory Practice (GLP) conditions. No weight loss or alterations in biochemical and hematological parameters associated with treatment were observed in the animals, suggesting the absence of toxicity in the assessed parameters. These results indicate that the P2Et extract is safe for oral administration at doses up to 1000 mg/kg body weight over a six-month period.
Collapse
Affiliation(s)
- Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jenny Saturno
- Grupo de Investigación de Fitoquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
5
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
6
|
Jeong DI, Kim HJ, Lee SY, Kim S, Huh JW, Ahn JH, Karmakar M, Kim HJ, Lee K, Lee J, Ko HJ, Cho HJ. Hydrogel design to overcome thermal resistance and ROS detoxification in photothermal and photodynamic therapy of cancer. J Control Release 2024; 366:142-159. [PMID: 38145660 DOI: 10.1016/j.jconrel.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.
Collapse
Affiliation(s)
- Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Jin Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song Yi Lee
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Won Huh
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mrinmoy Karmakar
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han-Jun Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
7
|
Andreeva TV, Maluchenko NV, Efremenko AV, Lyubitelev AV, Korovina AN, Afonin DA, Kirpichnikov MP, Studitsky VM, Feofanov AV. Epigallocatechin Gallate Affects the Structure of Chromatosomes, Nucleosomes and Their Complexes with PARP1. Int J Mol Sci 2023; 24:14187. [PMID: 37762491 PMCID: PMC10532227 DOI: 10.3390/ijms241814187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The natural flavonoid epigallocatechin gallate has a wide range of biological activities, including being capable of binding to nucleic acids; however, the mechanisms of the interactions of epigallocatechin gallate with DNA organized in chromatin have not been systematically studied. In this work, the interactions of epigallocatechin gallate with chromatin in cells and with nucleosomes and chromatosomes in vitro were studied using fluorescent microscopy and single-particle Förster resonance energy transfer approaches, respectively. Epigallocatechin gallate effectively penetrates into the nuclei of living cells and binds to DNA there. The interaction of epigallocatechin gallate with nucleosomes in vitro induces a large-scale, reversible uncoiling of nucleosomal DNA that occurs without the dissociation of DNA or core histones at sub- and low-micromolar concentrations of epigallocatechin gallate. Epigallocatechin gallate does not reduce the catalytic activity of poly(ADP-ribose) polymerase 1, but causes the modulation of the structure of the enzyme-nucleosome complex. Epigallocatechin gallate significantly changes the structure of chromatosomes, but does not cause the dissociation of the linker histone. The reorganization of nucleosomes and chromatosomes through the use of epigallocatechin gallate could facilitate access to protein factors involved in DNA repair, replication and transcription to DNA and, thus, might contribute to the modulation of gene expression through the use of epigallocatechin gallate, which was reported earlier.
Collapse
Affiliation(s)
- Tatiana V. Andreeva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Natalya V. Maluchenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Anastasiya V. Efremenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Alexander V. Lyubitelev
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Anna N. Korovina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Dmitry A. Afonin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Vasily M. Studitsky
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Alexey V. Feofanov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (T.V.A.); (N.V.M.); (A.V.L.); (A.N.K.); (D.A.A.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| |
Collapse
|
8
|
Hasan S, Khatri N, Rahman ZN, Menezes AA, Martini J, Shehjar F, Mujeeb N, Shah ZA. Neuroprotective Potential of Flavonoids in Brain Disorders. Brain Sci 2023; 13:1258. [PMID: 37759859 PMCID: PMC10526484 DOI: 10.3390/brainsci13091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Flavonoids are a large subgroup of polyphenols known to be sourced from over 6000 natural products, including fruits, vegetables, bark, and herbs. Due to their antioxidant properties, flavonoids have been implicated as a therapy source for many diseases and conditions, including inflammation, vasculitis, venous insufficiency, and hemorrhoids. Currently, some flavonoids are being researched for their antioxidant ability concerning neuroprotection. These flavonoids can penetrate the blood-brain barrier and, depending on the specific flavonoid, retain adequate bioavailability in certain brain regions. Further data suggest that flavonoids could have a strong anti-inflammatory effect in the brain, which not only could be a robust therapeutic source for known neuroinflammatory diseases such as Alzheimer's Disease or Parkinson's Disease but also could be a therapeutic source for ischemic or hemorrhagic conditions such as a stroke. While flavonoid toxicity exists, they are relatively safe and non-invasive drugs from natural origins. As such, exploring the known mechanisms and therapies may highlight and establish flavonoid therapy as a viable source of therapy for stroke patients. As stated, many flavonoids are already being isolated, purified, and implemented in both in vitro and in vivo experiments. As these flavonoids proceed to clinical trials, it will be important to understand how they function as a therapy, primarily as antioxidants, and by other secondary mechanisms. This review aims to elucidate those mechanisms and explore the neuroprotective role of flavonoids.
Collapse
Affiliation(s)
- Syed Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Nabeel Khatri
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Zainab N. Rahman
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Amanda A. Menezes
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Joud Martini
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Faheem Shehjar
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Numa Mujeeb
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| |
Collapse
|
9
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
10
|
James A, Wang K, Wang Y. Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates. Nutrients 2023; 15:3022. [PMID: 37447347 DOI: 10.3390/nu15133022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Green tea polyphenols have numerous functions including antioxidation and modulation of various cellular proteins and are thus beneficial against metabolic diseases including obesity, type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases, and their comorbidities. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and is attributed to antioxidant and free radical scavenging activities, and the likelihood of targeting multiple metabolic pathways. It has been shown to exhibit anti-obesity, anti-inflammatory, anti-diabetic, anti-arteriosclerotic, and weight-reducing effects in humans. Worldwide, the incidences of metabolic diseases have been escalating across all age groups in modern society. Therefore, EGCG is being increasingly investigated to address the problems. This review presents the current updates on the effects of EGCG on metabolic diseases, and highlights evidence related to its safety. Collectively, this review brings more evidence for therapeutic application and further studies on EGCG and its derivatives to alleviate metabolic diseases and non-alcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Armachius James
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Tanzania Agricultural Research Institute (TARI), Makutupora Center, Dodoma P.O. Box 1676, Tanzania
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Settakorn K, Kongkarnka S, Chompupoung A, Svasti S, Fucharoen S, Porter JB, Srichairatanakool S, Koonyosying P. Effects of green tea extract treatment on erythropoiesis and iron parameters in iron-overloaded β-thalassemic mice. Front Physiol 2022; 13:1053060. [PMID: 36620219 PMCID: PMC9816339 DOI: 10.3389/fphys.2022.1053060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
β-Thalassemia is characterized by ineffective erythropoiesis leading to chronic anemia. Thus, increased iron absorption from the duodenum and via blood transfusions is required to maintain normal blood hemoglobin (Hb) levels and iron chelators in the removal of excessive iron. Certain agents are also needed for the improvement of stress erythropoiesis and iron dysregulation. Green tea extract (GTE), which is rich in epigallocatechin-3-gallate (EGCG), is known to possess radical scavenging and iron-chelating activities. We aimed to assess the effects of green tea extract on erythroid regulators, iron mobilization and anti-lipid peroxidation in the liver, spleen, and kidneys of iron-loaded β-globin gene knockout thalassemic (BKO) mice. Our results indicate that treatments of green tea extract and/or deferiprone (DFP) diminished levels of plasma erythropoietin (EPO) and erythroferrone (ERFE), and consistently suppressed kidney Epo and spleen Erfe mRNA expressions (p < .05) in iron- loaded BKO mice when compared with untreated mice. Coincidently, the treatments decreased plasma ferritin (Ft) levels, iron content levels in the liver (p < .05), spleen (p < .05), and kidney tissues of iron-loaded BKO mice. Furthermore, lipid-peroxidation products in the tissues and plasma were also decreased when compared with untreated mice. This is the first evidence of the orchestral role of green tea extract abundant with epigallocatechin-3-gallate in improving ineffective erythropoiesis, iron dysregulation and oxidative stress in iron-overloaded β-thalassemic mice.
Collapse
Affiliation(s)
- Kornvipa Settakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University Salaya Campus, Nakorn Pathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University Salaya Campus, Nakorn Pathom, Thailand
| | - John B. Porter
- Red Cell Disorder Unit, Department of Haematology, University College London, London, United Kingdom
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,*Correspondence: Somdet Srichairatanakool, ; Pimpisid Koonyosying,
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,*Correspondence: Somdet Srichairatanakool, ; Pimpisid Koonyosying,
| |
Collapse
|
12
|
Crowe-White KM, Evans LW, Kuhnle GGC, Milenkovic D, Stote K, Wallace T, Handu D, Senkus KE. Flavan-3-ols and Cardiometabolic Health: First Ever Dietary Bioactive Guideline. Adv Nutr 2022; 13:2070-2083. [PMID: 36190328 PMCID: PMC9776652 DOI: 10.1093/advances/nmac105] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023] Open
Abstract
Guideline recommendation for a plant bioactive such as flavan-3-ols is a departure from previous recommendations because it is not based on deficiencies but rather improvement in health outcomes. Nevertheless, there is a rapidly growing body of clinical data reflecting benefits of flavan-3-ol intake that outweigh potential harms. Thus, the objective of the Expert Panel was to develop an intake recommendation for flavan-3-ols and cardiometabolic outcomes to inform multiple stakeholders including clinicians, policymakers, public health entities, and consumers. Guideline development followed the process set forth by the Academy of Nutrition and Dietetics, which includes use of the Evidence to Decision Framework. Studies informing this guideline (157 randomized controlled trials and 15 cohort studies) were previously reviewed in a recently published systematic review and meta-analysis. Quality and strength-of-evidence along with risk-of-bias in reporting was reviewed. In drafting the guideline, data assessments and opinions by authoritative scientific bodies providing guidance on the safety of flavan-3-ols were considered. Moderate evidence supporting cardiometabolic protection resulting from flavan-3-ol intake in the range of 400-600 mg/d was supported in the literature. Further, increasing consumption of dietary flavan-3-ols can help improve blood pressure, cholesterol concentrations, and blood sugar. Strength of evidence was strongest for some biomarkers (i.e., systolic blood pressure, total cholesterol, HDL cholesterol, and insulin/glucose dynamics). It should be noted that this is a food-based guideline and not a recommendation for flavan-3-ol supplements. This guideline was based on beneficial effects observed across a range of disease biomarkers and endpoints. Although a comprehensive assessment of available data has been reviewed, evidence gaps identified herein can inform scientists in guiding future randomized clinical trials.
Collapse
Affiliation(s)
| | - Levi W Evans
- USDA-ARS, Western Human Nutrition Research Center, Davis, CA, USA
| | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Kim Stote
- State University of New York, Empire State College, Saratoga Springs, NY, USA
| | - Taylor Wallace
- Department of Nutrition and Food Studies, George Mason University, Washington, DC, USA,Produce for Better Health Foundation, Washington, DC, USA
| | - Deepa Handu
- Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - Katelyn E Senkus
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
13
|
Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, Zhan J, Ho CT. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021; 26:molecules26123755. [PMID: 34203004 PMCID: PMC8234133 DOI: 10.3390/molecules26123755] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Green tea and its bioactive components, especially polyphenols, possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. However, the effect of tea polyphenols on immune function has not been well studied. Moreover, the underlying cellular and molecular mechanisms mediating immunoregulation are not well understood. This review summarizes the recent studies on the immune-potentiating effects and corresponding mechanisms of tea polyphenols, especially the main components of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). In addition, the benefits towards immune-related diseases, such as autoimmune diseases, cutaneous-related immune diseases, and obesity-related immune diseases, have been discussed.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Zhiliang Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yuting Ma
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yan Liu
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Chen Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| | - Jianfeng Zhan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| |
Collapse
|
14
|
Jiang Y, Jiang Z, Ma L, Huang Q. Advances in Nanodelivery of Green Tea Catechins to Enhance the Anticancer Activity. Molecules 2021; 26:3301. [PMID: 34072700 PMCID: PMC8198522 DOI: 10.3390/molecules26113301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death globally. A variety of phenolic compounds display preventative and therapeutic effects against cancers. Green teas are rich in phenolics. Catechins are the most dominant phenolic component in green teas. Studies have shown that catechins have anticancer activity in various cancer models. The anticancer activity of catechins, however, may be compromised due to their low oral bioavailability. Nanodelivery emerges as a promising way to improve the oral bioavailability and anticancer activity of catechins. Research in this area has been actively conducted in recent decades. This review provides the molecular mechanisms of the anticancer effects of catechins, the factors that limit the oral bioavailability of catechins, and the latest advances of delivering catechins using nanodelivery systems through different routes to enhance their anticancer activity.
Collapse
Affiliation(s)
- Yike Jiang
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518132, China;
| | - Ziyi Jiang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lan Ma
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518132, China;
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Palit P, Chattopadhyay D, Thomas S, Kundu A, Kim HS, Rezaei N. Phytopharmaceuticals mediated Furin and TMPRSS2 receptor blocking: can it be a potential therapeutic option for Covid-19? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153396. [PMID: 33380375 PMCID: PMC7591300 DOI: 10.1016/j.phymed.2020.153396] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Currently, novel coronavirus disease (Covid-19) outbreak creates global panic across the continents, as people from almost all countries and territories have been affected by this highly contagious viral disease. The scenario is deteriorating due to lack of proper & specific target-oriented pharmacologically safe prophylactic agents or drugs, and or any effective vaccine. drug development is urgently required to back in the normalcy in the community and to combat this pandemic. PURPOSE Thus, we have proposed two novel drug targets, Furin and TMPRSS2, as Covid-19 treatment strategy. We have highlighted this target-oriented novel drug delivery strategy, based on their pathophysiological implication on SARS-CoV-2 infection, as evident from earlier SARS-CoV-1, MERS, and influenza virus infection via host cell entry, priming, fusion, and endocytosis. STUDY DESIGN & METHODS: An earlier study suggested that Furin and TMPRSS2 knockout mice had reduced level of viral load and a lower degree of organ damage such as the lung. The present study thus highlights the promise of some selected novel and potential anti-viral Phytopharmaceutical that bind to Furin and TMPRSS2 as target. RESULT Few of them had shown promising anti-viral response in both preclinical and clinical study with acceptable therapeutic safety-index. CONCLUSION Hence, this strategy may limit life-threatening Covid-19 infection and its mortality rate through nano-suspension based intra-nasal or oral nebulizer spray, to treat mild to moderate SARS-COV-2 infection when Furin and TMPRSS2 receptor may initiate to express and activate for processing the virus to cause cellular infection by replication within the host cell and blocking of host-viral interaction.
Collapse
Affiliation(s)
- Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, Assam-788011 India.
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, India; ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India.
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kerala 686 560, India.
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14194, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
16
|
Ponist S, Gardi C, Paskova L, Svik K, Slovak L, Bilka F, Tedesco I, Bauerova K, Russo GL. Modulation of methotrexate efficacy by green tea polyphenols in rat adjuvant arthritis. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9723686. [PMID: 32850004 PMCID: PMC7441425 DOI: 10.1155/2020/9723686] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is the major polyphenolic compound present in green tea and is generally regarded as an effective antioxidant. However, its chemical reactivity makes it susceptible to generate reactive oxygen species (ROS) via autooxidation and exhibit prooxidant effects. The prooxidant actions of EGCG could play a dual role, being both beneficial and harmful. This review summarized recent research progress on (1) the anticancer, antiobesity, and antibacterial effects of EGCG and (2) the possible toxicity of EGCG. The major focus is on the involvement of prooxidant effects of EGCG and their effective doses used. Considering dosage is a crucial factor in the prooxidant effects of EGCG; further studies are required to find the appropriate dose at which EGCG could bring more health benefits with lower toxicity.
Collapse
|
18
|
Chen M, Liu W, Li Z, Xiao W. Effect of epigallocatechin-3-gallate (EGCG) on embryos inseminated with oxidative stress-induced DNA damage sperm. Syst Biol Reprod Med 2020; 66:244-254. [PMID: 32427532 DOI: 10.1080/19396368.2020.1756525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
UNLABELLED Cryopreservation can induce damage in human spermatozoa through reactive oxygen species (ROS) generation. To reduce the potential risk of oxidative stress-induced sperm DNA damage, addition of different epigallocatechin-3-gallate (EGCG) concentrations were performed to determine the optimum concentration which was beneficial for IVF outcome for both fresh and frozen-thawed sperm. Next, the mouse sperm model exhibiting oxidative stress-induced DNA damage by exogenously treating with H2O2 but overcoming the low fertilization rate of frozen-thawed sperm was used to investigate the effect of EGCG on the embryonic development and the potential EGCG-mediated effects on ataxia telangiectasia mutated (ATM) pSer-1981 in zygotes, the latter was known for leading to the activation of major kinases involved in the DNA repair pathway and the cell cycle checkpoint pathway. We found the fertilization and embryonic development of embryos inseminated with frozen-thawed sperm was impaired compared to fresh sperm. EGCG promoted the development of embryos inseminated with both types of sperm at optimum concentration. In embryos inseminated with the H2O2 sperm, fertilization, embryonic development, and the time at which the cleavage rate of one-cell embryos reached ≥95% were not affected by EGCG treatment. However, the EGCG-treated group required less time to achieve 50% cleavage rate of one-cell embryos, and the EGCG-treated zygotes showed enhanced expression of ATM (pSer-1981) than the untreated group. EGCG at optimum concentrations may exert beneficial effects by modulating the ATM activation and moving up the time to enter into mitotic (M) phase. ABBREVIATIONS ROS: reactive oxygen species; EGCG: epigallocatechin-3-gallate; ATM: ataxia telangiectasia mutated; M: mitotic.
Collapse
Affiliation(s)
- Man Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Wanmin Liu
- Department of Gynecology, The Jiangmen Central Hospital , Jiangmen, China
| | - Zhiling Li
- Reproductive Medicine Center, The First Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Wanfen Xiao
- Reproductive Medicine Center, The First Affiliated Hospital of Shantou University Medical College , Shantou, China
| |
Collapse
|
19
|
Kobayashi H, Murata M, Kawanishi S, Oikawa S. Polyphenols with Anti-Amyloid β Aggregation Show Potential Risk of Toxicity Via Pro-Oxidant Properties. Int J Mol Sci 2020; 21:E3561. [PMID: 32443552 PMCID: PMC7279003 DOI: 10.3390/ijms21103561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Amyloid β (Aβ) aggregation has been the focus for a therapeutic target for the treatment of AD. Naturally occurring polyphenols have an inhibitory effect on Aβ aggregation and have attracted a lot of attention for the development of treatment strategies which could mitigate the symptoms of AD. However, considerable evidence has shown that the pro-oxidant mechanisms of polyphenols could have a deleterious effect. Our group has established an assay system to evaluate the pro-oxidant characteristics of chemical compounds, based on their reactivity with DNA. In this review, we have summarized the anti-Aβ aggregation and pro-oxidant properties of polyphenols. These findings could contribute to understanding the mechanism underlying the potential risk of polyphenols. We would like to emphasize the importance of assessing the pro-oxidant properties of polyphenols from a safety point of view.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| |
Collapse
|
20
|
Oketch-Rabah HA, Roe AL, Rider CV, Bonkovsky HL, Giancaspro GI, Navarro V, Paine MF, Betz JM, Marles RJ, Casper S, Gurley B, Jordan SA, He K, Kapoor MP, Rao TP, Sherker AH, Fontana RJ, Rossi S, Vuppalanchi R, Seeff LB, Stolz A, Ahmad J, Koh C, Serrano J, Low Dog T, Ko R. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep 2020; 7:386-402. [PMID: 32140423 PMCID: PMC7044683 DOI: 10.1016/j.toxrep.2020.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
As part of the United States Pharmacopeia's ongoing review of dietary supplement safety data, a new comprehensive systematic review on green tea extracts (GTE) has been completed. GTEs may contain hepatotoxic solvent residues, pesticide residues, pyrrolizidine alkaloids and elemental impurities, but no evidence of their involvement in GTE-induced liver injury was found during this review. GTE catechin profiles vary significantly with manufacturing processes. Animal and human data indicate that repeated oral administration of bolus doses of GTE during fasting significantly increases bioavailability of catechins, specifically EGCG, possibly involving saturation of first-pass elimination mechanisms. Toxicological studies show a hepatocellular pattern of liver injury. Published adverse event case reports associate hepatotoxicity with EGCG intake amounts from 140 mg to ∼1000 mg/day and substantial inter-individual variability in susceptibility, possibly due to genetic factors. Based on these findings, USP included a cautionary labeling requirement in its Powdered Decaffeinated Green Tea Extract monograph that reads as follows: "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)."
Collapse
Key Words
- ADME, Absorption, distribution, metabolism, and excretion
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, area under the curve
- Bw, body weight
- C, Catechin
- CAM, causality assessment method
- CG, (+)‐catechin‐3‐gallate
- CIH, Concanavalin A-induced hepatitis
- CMC, chemistry, manufacturing, and controls
- COMT, catechol‐O‐methyltransferase
- Camellia sinensis
- ConA, Concanavalin A
- DILI, drug‐induced liver injury
- DILIN, Drug‐Induced Liver Injury Network
- DO, Diversity Outbred
- DS, Dietary Supplement
- DSAE, JS3 USP Dietary Supplements Admission Evaluations Joint Standard-Setting Subcommittee
- Dietary supplements
- EC, (–)‐epicatechin
- ECG, (‐)‐epicatechin‐3‐gallate
- EFSA, European Food Safety Authority
- EGC, (–)‐epigallocatechin
- EGCG, (–)‐epigallocatechin‐3‐gallate
- FDA, United States Food and Drug Administration
- GC, (+)‐gallocatechin
- GCG, (–)‐gallocatechin‐3‐gallate
- GT(E), green tea or green tea extract
- GT, green tea
- GTE, green tea extract
- GTEH, EP Green Tea Extract Hepatotoxicity Expert Panel
- Green tea
- Green tea extract
- HDS, herbal dietary supplement
- HPMC, Hydroxypropyl methylcellulose
- Hepatotoxicity
- LD50, lethal dose, median
- LFT(s), liver function test(s)
- LT(s), Liver test(s)
- Liver injury
- MGTT, Minnesota Green Tea Trial
- MIDS, multi-ingredient dietary supplement
- MRL, maximum residue limit
- NAA, N-acetyl aspartate
- NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases
- NIH, National Institutes of Health
- NOAEL, no observed adverse effect level
- NTP, National Toxicology Program
- OSM, online supplementary material
- PAs, Pyrrolizidine Alkaloids
- PD-1, Programmed death domain-1
- PDGTE, powdered decaffeinated green tea extract
- PK/PD, pharmacokinetics and pharmacodynamics
- RUCAM, Roussel Uclaf Causality Assessment Method
- SIDS, single-ingredient dietary supplement
- TGF-beta, Transforming growth factor beta
- USP, United States Pharmacopeia
- γ-GT, Gamma-glutamyl transferase
Collapse
Affiliation(s)
- Hellen A. Oketch-Rabah
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Amy L. Roe
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Vice Chair, (USP GTEH EP, 2015-2020 cycle)
| | - Cynthia V. Rider
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Herbert L. Bonkovsky
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
- Section on Gastroenterology & Hepatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Gabriel I. Giancaspro
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Victor Navarro
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Mary F. Paine
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Joseph M. Betz
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Robin J. Marles
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Steven Casper
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
| | - Bill Gurley
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Scott A. Jordan
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Kan He
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Mahendra P. Kapoor
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Theertham P. Rao
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Averell H. Sherker
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Robert J. Fontana
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Simona Rossi
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | | | - Leonard B. Seeff
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Andrew Stolz
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Jawad Ahmad
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Christopher Koh
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Drive, Building 10, Rm 9B-16, Bethesda, MD, 20892,USA
| | - Jose Serrano
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Tieraona Low Dog
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Richard Ko
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Chair (USP GTEH EP, 2015-2020 cycle)
| |
Collapse
|
21
|
Raitanen JE, Järvenpää E, Korpinen R, Mäkinen S, Hellström J, Kilpeläinen P, Liimatainen J, Ora A, Tupasela T, Jyske T. Tannins of Conifer Bark as Nordic Piquancy-Sustainable Preservative and Aroma? Molecules 2020; 25:E567. [PMID: 32012956 PMCID: PMC7036811 DOI: 10.3390/molecules25030567] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Bark of Norway spruce and Scots pine trees contain large amounts of condensed tannins. Tannins extracted with hot water could be used in different applications as they possess antioxidative and antimicrobial activities. The use of bark tannins as e.g., food preservatives calls for increases in our knowledge of their antioxidative activities when applied in foodstuffs. To assess the ability of bark tannins to prevent lipid oxidation, hot water extracts were evaluated in a liposome model. Isolated tannins were also applied in dry-cured, salty meat snacks either as liquid extracts or in dry-powder form. Consumer acceptance of the snacks was tested by a sensory evaluation panel where outlook, odor, taste, and structure of the snacks were evaluated and compared to a commercial product without tannin ingredients. Our results show that conifer bark tannin-rich extracts have high capacity to prevent lipid oxidation in the liposome model. The efficacies of pine and spruce bark extracts were ten to hundred folds higher, respectively, than those of phenolic berry extracts. The bark extracts did not significantly influence the odor or taste of the meat snacks. The findings indicate that bark extracts may be used as sustainable food ingredients. However, more research is needed to verify their safety.
Collapse
Affiliation(s)
- Jan-Erik Raitanen
- Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (J.-E.R.); (R.K.); (P.K.); (J.L.); (A.O.)
- Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland; (E.J.); (S.M.); (J.H.); (T.T.)
| | - Risto Korpinen
- Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (J.-E.R.); (R.K.); (P.K.); (J.L.); (A.O.)
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland; (E.J.); (S.M.); (J.H.); (T.T.)
| | - Jarkko Hellström
- Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland; (E.J.); (S.M.); (J.H.); (T.T.)
| | - Petri Kilpeläinen
- Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (J.-E.R.); (R.K.); (P.K.); (J.L.); (A.O.)
| | - Jaana Liimatainen
- Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (J.-E.R.); (R.K.); (P.K.); (J.L.); (A.O.)
| | - Ari Ora
- Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (J.-E.R.); (R.K.); (P.K.); (J.L.); (A.O.)
| | - Tuomo Tupasela
- Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland; (E.J.); (S.M.); (J.H.); (T.T.)
| | - Tuula Jyske
- Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (J.-E.R.); (R.K.); (P.K.); (J.L.); (A.O.)
| |
Collapse
|
22
|
Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Gill LJ, Heldreth B. Safety Assessment of Camellia sinensis-Derived Ingredients As Used in Cosmetics. Int J Toxicol 2019; 38:48S-70S. [PMID: 31840549 DOI: 10.1177/1091581819889914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cosmetic ingredients derived from Camellia sinensis (tea) plant parts function as antioxidants and skin conditioning agents-humectant and miscellaneous. The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed relevant animal and human data related to these ingredients. The use of the leaf ingredients in beverages results in much larger systemic exposures than those possible from cosmetic use. Accordingly, concern over the systemic toxicity potential of leaf-derived ingredients is mitigated. Because product formulations may contain multiple botanical ingredients, each containing the same constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may lead to sensitization or other toxic effects. The Panel concluded that the C sinensis leaf-derived ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonsensitizing. However, the available data are insufficient to determine whether the non-leaf-derived ingredients are safe for use in cosmetics.
Collapse
Affiliation(s)
- Lillian C Becker
- Cosmetic Ingredient Review Former Scientific Analyst/Writer, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F Bergfeld
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V Belsito
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A Hill
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D Klaassen
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C Liebler
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G Marks
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C Shank
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J Slaga
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W Snyder
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Lillian J Gill
- Cosmetic Ingredient Review Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- Cosmetic Ingredient Review Executive Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
23
|
|
24
|
Epigallocatechin-3-Gallate (EGCG), An Active Constituent of Green Tea: Implications in the Prevention of Liver Injury Induced by Diethylnitrosamine (DEN) in Rats. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver diseases are one of the most detrimental conditions that may cause inflammation, leading to tissue damage and perturbations in functions. Several drugs are conventionally available for the treatment of such diseases, but the emergence of resistance and drug-induced liver injury remains pervasive. Hence, alternative therapeutic strategies have to be looked upon. Epigallocatechin-3-gallate (EGCG) is a naturally occurring polyphenol in green tea that has been known for its disease-curing properties. In this study, we aimed to evaluate its anti-oxidative potential and protective role against diethylnitrosamine (DEN)-induced liver injury. Four different groups of rats were used for this study. The first group received normal saline and served as the control group. The second group received DEN (50 mg/kg body wt) alone and third group received DEN plus EGCG (40 mg/kg body wt) only. The fourth group were treated with EGCG only. The liver protective effect of EGCG against DEN toxicity through monitoring the alterations in aspartate transaminase (AST), and alanine transaminase (ALT) and alkaline phosphatase (ALP) activities, serum level of pro-inflammatory mediators and anti-oxidant enzymes, histopathological alterations, measurement of cellular apoptosis, and cell cycle analysis was examined. The rats that were given DEN only had a highly significantly elevated levels of liver enzymes and pro-inflammatory cytokines, highly decreased anti-oxidative enzymes, and histological changes. In addition, a significant elevation in the percentage of apoptotic nuclei and cell cycle arrest in the sub- G1 phase was detected. EGCG acts as a hepatoprotectant on DENs by reducing the serum levels of liver functional enzymes, increasing total anti-oxidative capacity, reducing pathological changes and apoptosis, as well as causing the movement of cells from the sub G1 to S or G2/M phase of the cell cycle. In conclusion, EGCG displayed a powerful hepatoprotective additive as it considerably mitigates the liver toxicity and apoptosis induced by DEN.
Collapse
|
25
|
Acute and Subchronic Oral Toxicity of Fermented Green Tea with Aquilariae Lignum in Rodents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8721858. [PMID: 31662782 PMCID: PMC6754909 DOI: 10.1155/2019/8721858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/28/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Green tea is generally considered safe, but there have been concerns regarding side effects relating to the main component, catechins, especially hepatotoxicities. We have previously shown beneficial effects of fermented green tea with Aquilariae Lignum (fGT) via an oral route in diabetic and obese models. Thus, the toxicological safety of fGT was assessed at limited oral doses for a rodent. Mice or rats of both genders were orally administered distilled water as a control and fGT at 2.0, 1.0, and 0.5 g/kg. There were no mortalities or gross abnormalities in the fGT groups for 2 weeks following the single oral dose in mice. No fGT-relevant abnormalities were found in postmortem and histopathological examinations, suggesting LD50 of fGT at more than 2.0 g/kg with no specific target organs. There were also no fGT-relevant mortalities or abnormal signs in the repeated oral dose for 13 weeks in rats. In the fGT groups, no body weight changes or daily metabolic changes were found, and hematological and serum biochemical ranges were normal. The postmortem and histopathological examinations revealed few fGT-related abnormalities in most of the organs including the liver, although slight lymphoid cell hyperplasia in the lymph node was observed in a few rats with fGT at 2.0 g/kg. This may be secondary to increased immune response to the highest dose because there were no histopathological lesions or organ weight changes. It suggests nontoxic safety of fGT at up to 2.0 g/kg, which provides useful information for clinical use.
Collapse
|
26
|
Yang QQ, Wei XL, Fang YP, Gan RY, Wang M, Ge YY, Zhang D, Cheng LZ, Corke H. Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery. Crit Rev Food Sci Nutr 2019; 60:1243-1264. [PMID: 30799648 DOI: 10.1080/10408398.2019.1565490] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epigallocatechin gallate (EGCG) is a natural phenolic compound found in many plants, especially in green tea, which is a popular and restorative beverage with many claimed health benefits such as antioxidant, anti-cancer, anti-microbial, anti-diabetic, and anti-obesity activities. Despite its great curative potential, the poor bioavailability of EGCG restricts its clinical applcation. However, nanoformulations of EGCG are emerging as new alternatives to traditional formulations. This review focuses on the nanochemopreventive applications of various EGCG nanoparticles such as lipid-based, polymer-based, carbohydrate-based, protein-based, and metal-based nanoparticles. EGCG hybridized with these nanocarriers is capable of achieving advanced functions such as targeted release, active targeting, and enhanced penetration, ultimately increasing the bioavailability of EGCG. In addition, this review also summarizes the challenges for the use of EGCG in therapeutic applications, and suggests future directions for progress.
Collapse
Affiliation(s)
- Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Peng Fang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Ying Ge
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Zeng Cheng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Prakash M, Basavaraj B, Chidambara Murthy K. Biological functions of epicatechin: Plant cell to human cell health. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
28
|
Guldiken B, Ozkan G, Catalkaya G, Ceylan FD, Ekin Yalcinkaya I, Capanoglu E. Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem Toxicol 2018; 119:37-49. [DOI: 10.1016/j.fct.2018.05.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 02/08/2023]
|
29
|
Nikoo M, Regenstein JM, Ahmadi Gavlighi H. Antioxidant and Antimicrobial Activities of (-)-Epigallocatechin-3-gallate (EGCG) and its Potential to Preserve the Quality and Safety of Foods. Compr Rev Food Sci Food Saf 2018; 17:732-753. [PMID: 33350134 DOI: 10.1111/1541-4337.12346] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
Quality deterioration of fresh or processed foods is a major challenge for the food industry not only due to economic losses but also due to the risks associated with spoiled foods resulting, for example, from toxic compounds. On the other hand, there are increasing limitations on the application of synthetic preservatives such as antioxidants in foods because of their potential links to human health risks. With the new concept of functional ingredients and the development of the functional foods market, and the desire for a "clean" label, recent research has focused on finding safe additives with multifunctional effects to ensure food safety and quality. (-)-Epigallocatechin-3-gallate (EGCG), a biologically active compound in green tea, has received considerable attention in recent years and is considered a potential alternative to synthetic food additives. EGCG has been shown to prevent the growth of different Gram-positive and Gram-negative bacteria responsible for food spoilage while showing antioxidant activity in food systems. This review focuses on recent findings related to EGCG separation techniques, modification of its structure, mechanisms of antioxidant and antimicrobial activities, and applications in preserving the quality and safety of foods.
Collapse
Affiliation(s)
- Mehdi Nikoo
- the Dept. of Pathobiology and Quality Control, Artemia and Aquaculture Research Inst., Urmia Univ., Urmia, West Azerbaijan, 57561-51818, Iran
| | - Joe M Regenstein
- Dept. of Food Science, Cornell Univ., Ithaca, N.Y., 14853-7201, U.S.A
| | - Hassan Ahmadi Gavlighi
- Dept. of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares Univ., Tehran, 14115-336, Iran
| |
Collapse
|
30
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Andrade RJ, Fortes C, Mosesso P, Restani P, Arcella D, Pizzo F, Smeraldi C, Wright M. Scientific opinion on the safety of green tea catechins. EFSA J 2018; 16:e05239. [PMID: 32625874 PMCID: PMC7009618 DOI: 10.2903/j.efsa.2018.5239] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The EFSA ANS Panel was asked to provide a scientific opinion on the safety of green tea catechins from dietary sources including preparations such as food supplements and infusions. Green tea is produced from the leaves of Camellia sinensis (L.) Kuntze, without fermentation, which prevents the oxidation of polyphenolic components. Most of the polyphenols in green tea are catechins. The Panel considered the possible association between the consumption of (-)-epigallocatechin-3-gallate (EGCG), the most relevant catechin in green tea, and hepatotoxicity. This scientific opinion is based on published scientific literature, including interventional studies, monographs and reports by national and international authorities and data received following a public 'Call for data'. The mean daily intake of EGCG resulting from the consumption of green tea infusions ranges from 90 to 300 mg/day while exposure by high-level consumers is estimated to be up to 866 mg EGCG/day, in the adult population in the EU. Food supplements containing green tea catechins provide a daily dose of EGCG in the range of 5-1,000 mg/day, for adult population. The Panel concluded that catechins from green tea infusion, prepared in a traditional way, and reconstituted drinks with an equivalent composition to traditional green tea infusions, are in general considered to be safe according to the presumption of safety approach provided the intake corresponds to reported intakes in European Member States. However, rare cases of liver injury have been reported after consumption of green tea infusions, most probably due to an idiosyncratic reaction. Based on the available data on the potential adverse effects of green tea catechins on the liver, the Panel concluded that there is evidence from interventional clinical trials that intake of doses equal or above 800 mg EGCG/day taken as a food supplement has been shown to induce a statistically significant increase of serum transaminases in treated subjects compared to control.
Collapse
|
31
|
Bedrood Z, Rameshrad M, Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phytother Res 2018; 32:1163-1180. [PMID: 29575316 DOI: 10.1002/ptr.6063] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/14/2018] [Accepted: 01/26/2018] [Indexed: 12/21/2022]
Abstract
Many scientific articles proved that green tea (GT), Camellia sinensis, has a great potential to manage central nervous system, cardiovascular, and metabolic diseases and treat cancer and inflammatory disorders. However, it is important to consider that "natural" is not always "safe." Some relevant articles reported side effects of GT, detrimental effects on health. The aim of this study is to provide a classified report about the toxicity of GT and its main constituents in acute, subacute, subchronic, and chronic states. Furthermore, it discusses on the cytotoxicity, genotoxicity, mutagenicity, carcinogenicity, and developmental toxicity of GT and its main constituents. The most important side effects have been reported hepatotoxicity and gastrointestinal disorders specially while consumed on an empty stomach. GT and its main components are not major teratogen, mutagen, or carcinogen substances. However, there is limited data in using them during pregnancy, and they should be used with caution in pregnancy, breast-feeding, and susceptible people. Because GT and its main components have a wide variety of drug interactions, consideration should be taken in coadministration of them with narrow therapeutic indexed drugs. Furthermore, they evoke selective cytotoxicity on cancerous cells that could engage them as an adjuvant substance in cancer therapy.
Collapse
Affiliation(s)
- Zeinab Bedrood
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol 2018; 95:412-433. [PMID: 29580974 DOI: 10.1016/j.yrtph.2018.03.019] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
Abstract
A systematic review of published toxicology and human intervention studies was performed to characterize potential hazards associated with consumption of green tea and its preparations. A review of toxicological evidence from laboratory studies revealed the liver as the target organ and hepatotoxicity as the critical effect, which was strongly associated with certain dosing conditions (e.g. bolus dose via gavage, fasting), and positively correlated with total catechin and epigallocatechingallate (EGCG) content. A review of adverse event (AE) data from 159 human intervention studies yielded findings consistent with toxicological evidence in that a limited range of concentrated, catechin-rich green tea preparations resulted in hepatic AEs in a dose-dependent manner when ingested in large bolus doses, but not when consumed as brewed tea or extracts in beverages or as part of food. Toxico- and pharmacokinetic evidence further suggests internal dose of catechins is a key determinant in the occurrence and severity of hepatotoxicity. A safe intake level of 338 mg EGCG/day for adults was derived from toxicological and human safety data for tea preparations ingested as a solid bolus dose. An Observed Safe Level (OSL) of 704 mg EGCG/day might be considered for tea preparations in beverage form based on human AE data.
Collapse
Affiliation(s)
- Jiang Hu
- Worldwide Scientific Affairs, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Donna Webster
- Product Science, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Joyce Cao
- Global Post Market Safety Surveillance, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Andrew Shao
- Independent Consultant, Rancho Palos Verdes, CA 90505, USA.
| |
Collapse
|
33
|
Epigallocatechin-3-Gallate (EGCG) Promotes Autophagy-Dependent Survival via Influencing the Balance of mTOR-AMPK Pathways upon Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6721530. [PMID: 29636854 PMCID: PMC5831959 DOI: 10.1155/2018/6721530] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
The maintenance of cellular homeostasis is largely dependent on the ability of cells to give an adequate response to various internal and external stimuli. We have recently proposed that the life-and-death decision in endoplasmic reticulum (ER) stress response is defined by a crosstalk between autophagy, apoptosis, and mTOR-AMPK pathways, where the transient switch from autophagy-dependent survival to apoptotic cell death is controlled by GADD34. The aim of the present study was to investigate the role of epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, in promoting autophagy-dependent survival and to verify the key role in connecting GADD34 with mTOR-AMPK pathways upon prolonged ER stress. Our findings, obtained by using HEK293T cells, revealed that EGCG treatment is able to extend cell viability by inducing autophagy. We confirmed that EGCG-induced autophagy is mTOR-dependent and PKA-independent; furthermore, it also required ULK1. We show that pretreatment of cells with EGCG diminishes the negative effect of GADD34 inhibition (by guanabenz or siGADD34 treatment) on autophagy. EGCG was able to delay apoptotic cell death by upregulating autophagy-dependent survival even in the absence of GADD34. Our data suggest a novel role for EGCG in promoting cell survival via shifting the balance of mTOR-AMPK pathways in ER stress.
Collapse
|
34
|
Bacanlı M, Aydın S, Başaran AA, Başaran N. Are all phytochemicals useful in the preventing of DNA damage? Food Chem Toxicol 2017; 109:210-217. [DOI: 10.1016/j.fct.2017.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 01/11/2023]
|
35
|
Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci 2017; 2017:4320408. [PMID: 30723498 PMCID: PMC5664381 DOI: 10.1155/2017/4320408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a major global cause of blindness, but the molecular mechanisms responsible for the neurodegenerative damage are not clear. Undoubtedly, the high intraocular pressure (IOP) and the secondary ischemic and mechanical damage of the optic nerve have a crucial role in retinal ganglion cell (RGC) death. Several studies specifically analyzed the events that lead to nerve fiber layer thinning, showing the importance of both intra- and extracellular factors. In parallel, many neuroprotective substances have been tested for their efficacy and safety in hindering the negative effects that lead to RGC death. New formulations of these compounds, also suitable for chronic oral administration, are likely to be used in clinical practice in the future along with conventional therapies, in order to control the progression of the visual impairment due to primary open-angle glaucoma (POAG). This review illustrates some of these old and new promising agents for the adjuvant treatment of POAG, with particular emphasis on forskolin and melatonin.
Collapse
|
36
|
Tang L, Li L, Yang J, Zeng C. Potential benefit of (-)-epigallocatechin-3-gallate for macrovascular complications in diabetes. ACTA ACUST UNITED AC 2017; 50:e6511. [PMID: 28832766 PMCID: PMC5561811 DOI: 10.1590/1414-431x20176511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/14/2017] [Indexed: 11/29/2022]
Abstract
Vascular problems are the most common complications in diabetes. Substantial evidence from epidemiological and pathophysiological studies show that hyperglycemia is a major risk factor for macrovascular complications in patients with diabetes. (-)-Epigallocatechin-3-gallate (EGCG), the major catechin derived from green tea, is known to exert a variety of cardiovascular beneficial effects. The protective effects of EGCG in diabetes are also evident. However, whether EGCG is beneficial against macrovascular complications that occur in diabetes remains unknown. Our previous studies demonstrated that treatment of EGCG inhibits high glucose-induced vascular smooth muscle cell proliferation and suppresses high glucose-mediated vascular inflammation in human umbilical vein endothelial cells. Therefore, we hypothesize that EGCG might be an effective potential candidate to reduce the macrovascular complications in diabetes.
Collapse
Affiliation(s)
- L Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, China
| | - L Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, China
| | - J Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, China
| | - C Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
37
|
Shen CL, Brackee G, Song X, Tomison MD, Finckbone V, Mitchell KT, Tang L, Chyu MC, Dunn DM, Wang JS. Safety Evaluation of Green Tea Polyphenols Consumption in Middle-aged Ovariectomized Rat Model. J Food Sci 2017; 82:2192-2205. [PMID: 28753729 DOI: 10.1111/1750-3841.13745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 03/25/2017] [Accepted: 04/17/2017] [Indexed: 01/12/2023]
Abstract
This work evaluates chronic safety in middle-aged ovariectomized rats supplemented with different dosages of green tea polyphenols (GTP) in drinking water. The experiment used 6-mo-old sham (n = 39) and ovariectomized (OVX, n = 143) female rats. All sham (n = 39) and 39 of the OVX animals received no GTP treatment and their samples were collected for outcome measures at baseline, 3 mo, and 6 mo (n = 13 per group for each). The remaining OVX animals were randomized into 4 groups receiving 0.15%, 0.5%, 1%, and 1.5% (n = 26 for each) of GTP (wt/vol), respectively, in drinking water for 3 and 6 mo. No mortality or abnormal treatment-related findings in clinical observations or ophthalmologic examinations were noted. No treatment-related macroscopic or microscopic findings were noted for animals administered 1.5% GTP supplementation. Throughout the study, there was no difference in the body weight among all OVX groups. In all OVX groups, feed intake and water consumption significantly decreased with GTP dose throughout the study period. At 6 mo, GTP intake did not affect hematology, clinical chemistry, and urinalysis, except for phosphorus and blood urea nitrogen (increased), total cholesterol, lactate dehydrogenase, and urine pH (decreased). This study reveals that the no-observed-adverse-effect level (NOAEL) of GTP is 1.5% (wt/vol) in drinking water, the highest dose used in this study.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Dept. of Pathology, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Gordon Brackee
- Laboratory Animal Resources Center, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Xiao Song
- Dept. of Epidemiology and Biostatistics, Univ. of Georgia, Athens, Ga., U.S.A
| | - Michael D Tomison
- Ophthalmology & Visual Sciences, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - VelvetLee Finckbone
- Laboratory Animal Resources Center, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Kelly T Mitchell
- Ophthalmology & Visual Sciences, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Lili Tang
- Dept. of Environmental Health Science, Univ. of Georgia, Athens, Ga., U.S.A
| | - Ming-Chien Chyu
- Graduate Healthcare Engineering, Whitacre College of Engineering, Texas Tech Univ., Lubbock, Tex., U.S.A
| | - Dale M Dunn
- Dept. of Pathology, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Jia-Sheng Wang
- Dept. of Environmental Health Science, Univ. of Georgia, Athens, Ga., U.S.A
| |
Collapse
|
38
|
Koutelidakis AE, Argyri K, Sevastou Z, Lamprinaki D, Panagopoulou E, Paximada E, Sali A, Papalazarou V, Mallouchos A, Evageliou V, Kostourou V, Mantala I, Kapsokefalou M. Bioactivity of Epigallocatechin Gallate Nanoemulsions Evaluated in Mice Model. J Med Food 2017; 20:923-931. [PMID: 28737454 DOI: 10.1089/jmf.2016.0160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hypothesis that incorporation of epigallocatechin gallate (EGCG) into nanoemulsions may increase its bioactivity compared with EGCG aqueous solutions was examined in mice. After an in vitro study in a model system with stimulated gastrointestinal conditions, the following EGCG nanoemulsions were used in a mice experiment: Emulsion I: emulsion water in oil (W/O), which contained 0.23 mg/mL EGCG in aqueous phase; Emulsion II: emulsion oil in water (O/W), which contained 10% olive oil and 0.23 mg/mL esterified EGCG in fatty phase; and Emulsion III: emulsion O/W in water (W1/O/W2; 8:32:60), which contained 32% olive oil and 0.23 mg/mL EGCG in aqueous phase. After 2 h of mice administration by gavage with 0.1 mL of EGCG nanoemulsions, total antioxidant capacity (TAC) of plasma and some tissues (especially colon, jejunum, heart, spleen) was measured with Ferric-Reducing Antioxidant Power (FRAP) and Oxygen Radical Absorbance Capacity (ORAC) assays. No toxic effects were observed after administration of 0.23 mg/mL esterified EGCG in CD1 mouse strain. The study concluded that administration of mice with the three EGCG nanoemulsions did not increase their TAC in specific tissues, compared with an aqueous EGCG solution at the same concentration. Nevertheless, the esterified EGCG emulsion (Emulsion II) exerted an increase in mice plasma compared with aqueous EGCG and showed higher values of TAC in several tissues, compared with Emulsions I and III. EGCG nanoemulsions could be considered a useful method in plethora functional food applications, but further research is required for safer results.
Collapse
Affiliation(s)
- Antonios E Koutelidakis
- 1 Unit of Human Nutrition, Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece .,2 Department of Food Science and Nutrition, University of the Aegean , Limnos, Greece
| | - Konstantina Argyri
- 3 Laboratory of Food Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece
| | - Zoi Sevastou
- 1 Unit of Human Nutrition, Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece .,2 Department of Food Science and Nutrition, University of the Aegean , Limnos, Greece
| | - Dimitra Lamprinaki
- 1 Unit of Human Nutrition, Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece
| | - Elli Panagopoulou
- 1 Unit of Human Nutrition, Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece
| | - Evi Paximada
- 3 Laboratory of Food Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece
| | | | | | - Athanasios Mallouchos
- 1 Unit of Human Nutrition, Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece
| | - Vasiliki Evageliou
- 1 Unit of Human Nutrition, Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece
| | | | - Ioanna Mantala
- 3 Laboratory of Food Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece
| | - Maria Kapsokefalou
- 1 Unit of Human Nutrition, Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens , Athens, Greece
| |
Collapse
|
39
|
Mechanisms of chromosomal aberrations induced by sesamin metabolites in Chinese hamster lung cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 822:19-26. [PMID: 28844238 DOI: 10.1016/j.mrgentox.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 11/23/2022]
Abstract
Sesamin is a major lignan in sesame seeds and oil. We previously demonstrated that sesamin induces chromosomal aberrations (CA) in Chinese hamster lung (CHL/IU) cells in the presence of a metabolic activation system (S9 mix), although no genotoxicity was detected in vivo. To clarify the mechanism of CA induction by sesamin, we identified its principal active metabolite. A mono-catechol derivative, [2-(3,4-methylenedioxyphenyl)-6-(3,4-dihydroxyphenyl)-3,7-dioxabi-cyclo[3.3.0]octane (SC-1)], was previously identified in culture medium when sesamin was incubated with S9 mix. In the present study, we show that SC-1 induces CA in CHL/IU cells but not in human hepatoblastoma (HepG2) cells. SC-1 was unstable in culture medium. Addition of glutathione (GSH) to the incubation mixture decreased the rate of decomposition and also suppressed induction of CA in CHL/IU cells. These results indicate that SC-1 itself may not contribute to the induction of CA. Two GSH adducts of SC-1 were identified when SC-1 was incubated with GSH, suggesting that SC-1 was converted to the semiquinone/quinone form and then conjugated with GSH in the culture medium. Sodium sulfite (a quinone-responsive compound) also suppressed CA induction by SC-1. These findings strongly suggest that SC-1 is oxidized to semiquinone/quinone derivatives extracellularly in culture medium, that these derivatives are responsible for the induction of CA in CHL/IU cells, and therefore that the positive results obtained with sesamin in in vitro CA tests using CHL/IU cells may not be relevant to the assessment of in vivo activity.
Collapse
|
40
|
Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicol Lett 2017; 277:104-108. [PMID: 28655517 DOI: 10.1016/j.toxlet.2017.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022]
Abstract
The safety of green tea infusions and green tea extract (GTE)-based products is reviewed regarding catechins. Epigallocatechin 3-gallate (EGCG), the major catechin present in green tea, is suspected of being responsible for liver toxicity reported in humans consuming food supplements. Intake of EGCG with green tea infusions and GTE-based beverages is up to about 450mg EGCG/person/day in Europe and higher in Asia. Consumption of green tea is not associated with liver damage in humans, and green tea infusion and GTE-based beverages are considered safe in the range of historical uses. In animal studies, EGCG's potency for liver effects is highly dependent on conditions of administration. Use of NOAELs from bolus administration to derive a tolerable upper intake level applying the margin of safety concept results in acceptable EGCG-doses lower than those from one cup of green tea. NOAELs from toxicity studies applying EGCG with diet/split of the daily dose are a better point of departure for risk characterization. In clinical intervention studies, liver effects were not observed after intakes below 600mg EGCG/person/day. Thus, a tolerable upper intake level of 300mg EGCG/person/day is proposed for food supplements; this gives a twofold safety margin to clinical studies that did not report liver effects and a margin of safety of 100 to the NOAELs in animal studies with dietary administration of green tea catechins.
Collapse
|
41
|
Liu Z, Liu D, Cheng J, Mei S, Fu Y, Lai W, Wang Y, Xu Y, Vo TD, Lynch BS. Lipid-soluble green tea extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharmacol 2017; 86:366-373. [DOI: 10.1016/j.yrtph.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/24/2022]
|
42
|
Clemente MJ, Devesa V, Vélez D. In Vitro Reduction of Arsenic Bioavailability Using Dietary Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3956-3964. [PMID: 28316232 DOI: 10.1021/acs.jafc.6b05234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The main route of human exposure to inorganic arsenic (As) is through the consumption of food and water. Continued exposure to inorganic As [As(III) and As(V)] may cause a variety of diseases, including various types of cancer. The removal of As from these sources is complex, especially for food. One way to decrease As exposure could be by reducing intestinal absorption of it. The aim of this study is to seek dietary strategies (pure compounds, extracts, or supplements) that are capable of reducing the amount of As that is absorbed and reaches systemic circulation. Standard solutions of As(III) and As(V) and bioaccessible fractions of food samples with or without the dietary strategies to be tested were added to colon-derived human cells (NCM460 and HT-29MTX) to determine the apparent permeability (Papp) of As. Results show that transport across the intestinal monolayers is substantial, and the passage of As(III) (Papp = 4.2 × 10-5 cm/s) is greater than that of As(V) (Papp = 2.4 × 10-5 cm/s). Some of the treatments used (iron species, cysteine, grape extract) significantly reduce the transport of both inorganic As standards across the intestinal monolayer, thus decreasing absorption of them. In food samples, the effect of the dietary compounds on inorganic As bioavailability was also observed, especially in the cases of curcumin and cysteine. Compounds that proved effective in these in vitro assays could be the basis for intervention strategies aimed at reducing As toxicity in chronically exposed populations or regular consumers of food products with high As contents.
Collapse
Affiliation(s)
- M J Clemente
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Av. Agustín Escardino 7, 46980 Paterna (Valencia), Spain
| | - V Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Av. Agustín Escardino 7, 46980 Paterna (Valencia), Spain
| | - D Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Av. Agustín Escardino 7, 46980 Paterna (Valencia), Spain
| |
Collapse
|
43
|
Xiong LG, Chen YJ, Tong JW, Huang JA, Li J, Gong YS, Liu ZH. Tea polyphenol epigallocatechin gallate inhibits Escherichia coli by increasing endogenous oxidative stress. Food Chem 2016; 217:196-204. [PMID: 27664626 DOI: 10.1016/j.foodchem.2016.08.098] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/12/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022]
Abstract
The antibacterial effects of tea polyphenol epigallocatechin gallate (EGCG), a common phytochemical with a number of potential health benefits, are well known. However, the mechanism of its bactericidal action remains unclear. Using E. coli as a model organism, it is argued here that H2O2 synthesis by EGCG is not attributed to its inhibitory effects. In contrast, the bactericidal action of EGCG was a result of increased intracellular reactive oxygen species and blunted adaptive oxidative stress response in E. coli due to the co-administration of antioxidant N-acetylcysteine, and not on account of exogenous catalase. Furthermore, we noted a synergistic bactericidal effect for EGCG when combined with paraquat. However, under anaerobic conditions, the inhibitory effect of EGCG was prevented. In conclusion, EGCG caused an increase in endogenous oxidative stress in E. coli, thereby inhibiting its growth, and hence the use of EGCG as a prooxidant is supported by this study.
Collapse
Affiliation(s)
- Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China; Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yi-Jun Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie-Wen Tong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yu-Shun Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China; Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
44
|
Evaluation of chemopreventive effects in colitis-associated colon tumourigenesis and oral toxicity of the lipophilic epigallocatechin gallate-docosahexaenoic acid. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
45
|
Ramachandran B, Jayavelu S, Murhekar K, Rajkumar T. Repeated dose studies with pure Epigallocatechin-3-gallate demonstrated dose and route dependant hepatotoxicity with associated dyslipidemia. Toxicol Rep 2016; 3:336-345. [PMID: 28959554 PMCID: PMC5615837 DOI: 10.1016/j.toxrep.2016.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022] Open
Abstract
EGCG (Epigallocatechin-3-gallate) is the major active principle catechin found in green tea. Skepticism regarding the safety of consuming EGCG is gaining attention, despite the fact that it is widely being touted for its potential health benefits, including anti-cancer properties. The lack of scientific data on safe dose levels of pure EGCG is of concern, while EGCG has been commonly studied as a component of GTE (Green tea extract) and not as a single active constituent. This study has been carried out to estimate the maximum tolerated non-toxic dose of pure EGCG and to identify the treatment related risk factors. In a fourteen day consecutive treatment, two different administration modalities were compared, offering an improved [i.p (intraperitoneal)] and limited [p.o (oral)] bioavailability. A trend of dose and route dependant hepatotoxicity was observed particularly with i.p treatment and EGCG increased serum lipid profile in parallel to hepatotoxicity. Fourteen day tolerable dose of EGCG was established as 21.1 mg/kg for i.p and 67.8 mg/kg for p.o. We also observed that, EGCG induced effects by both treatment routes are reversible, subsequent to an observation period for further fourteen days after cessation of treatment. It was demonstrated that the severity of EGCG induced toxicity appears to be a function of dose, route of administration and period of treatment.
Collapse
Affiliation(s)
- Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (W.I.A), No. 38, Sardar Patel Road, Adyar, 600 036 Chennai, India
| | - Subramani Jayavelu
- Department of Molecular Oncology, Cancer Institute (W.I.A), No. 38, Sardar Patel Road, Adyar, 600 036 Chennai, India
| | - Kanchan Murhekar
- Department of Oncopathology, Cancer Institute (W.I.A), No. 38, Sardar Patel Road, Adyar, 600 036 Chennai, India
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (W.I.A), No. 38, Sardar Patel Road, Adyar, 600 036 Chennai, India
| |
Collapse
|
46
|
Siddique YH, Ali F. Protective effect of epigallocatechin gallate against N-nitrosodiethylamine (NDEA) induced toxicity in rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2016.1141451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yasir Hasan Siddique
- Section of Genetics, Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Fahad Ali
- Section of Genetics, Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
47
|
García-Rodríguez MDC, Montaño-Rodríguez AR, Altamirano-Lozano MA. Modulation of hexavalent chromium-induced genotoxic damage in peripheral blood of mice by epigallocatechin-3-gallate (EGCG) and its relationship to the apoptotic activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 79:28-38. [PMID: 26713419 DOI: 10.1080/15287394.2015.1104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study was conducted to investigate the relationship between modulation of genotoxic damage and apoptotic activity in Hsd:ICR male mice treated with (-)-epigallocatechin-3-gallate (EGCG) and hexavalent chromium [Cr(VI)]. Four groups of 5 mice each were treated with (i) control vehicle only, (ii) EGCG (10 mg/kg) by gavage, (iii) Cr(VI) (20 mg/kg of CrO3) intraperitoneally (ip), and (iv) EGCG in addition to CrO3 (EGCG-CrO3). Genotoxic damage was evaluated by examining presence of micronucleated polychromatic erythrocytes (MN-PCE) obtained from peripheral blood of the caudal vein at 0, 24, 48, and 72 h after treatment. Induction of apoptosis and cell viability were assessed by differential acridine orange/ethidium bromide (AO/EB) staining. EGCG treatment produced no significant changes in frequency of MN-PCE. However, CrO3 treatment significantly increased number of MN-PCE at 24 and 48 h post injection. Treatment with EGCG prior to CrO3 injection decreased number of MN-PCE compared to CrO3 alone. The MN-PCE reduction was greater than when EGCG was administered ip. The frequency of early apoptotic cells was elevated at 48 h following EGCG, CrO3, or EGCG-CrO3 exposure, with highest levels observed in the combined treatment group, while the frequencies of late apoptotic cells and necrotic cells were increased only in EGCG-CrO3 exposure. Our findings support the view that EGCG is protective against genotoxic damage induced by Cr(VI) and that apoptosis may contribute to elimination of DNA-damaged cells (MN-PCE) when EGCG was administered prior to CrO3. Further, it was found that the route of administration of EGCG plays an important role in protection against CrO3-induced genotoxic damage.
Collapse
Affiliation(s)
- María Del Carmen García-Rodríguez
- a Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Facultad de Estudios Superiores "Zaragoza," Universidad Nacional Autónoma de México (UNAM), México D.F ., México
| | - Ana Rosa Montaño-Rodríguez
- a Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Facultad de Estudios Superiores "Zaragoza," Universidad Nacional Autónoma de México (UNAM), México D.F ., México
| | - Mario Agustín Altamirano-Lozano
- a Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Facultad de Estudios Superiores "Zaragoza," Universidad Nacional Autónoma de México (UNAM), México D.F ., México
| |
Collapse
|
48
|
Li K, Zhou X, Yang X, Shi X, Song X, Ye C, Ko CH. Subacute oral toxicity of cocoa tea ( Camellia ptilophylla) water extract in SD rats. Int J Food Sci Technol 2015; 50:2391-2401. [DOI: 10.1111/ijfs.12905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 12/29/2022]
Abstract
SummaryCamellia ptilophylla, known as cocoa tea, is a natural decaffeinated tea plant which has been proved with potential bioactivities. This study was carried out to evaluate the safety of green cocoa tea water extract (CWE) by determining its potential toxicity after subacute administration in SD rats. In the subacute toxicity study, oral administration of CWE up to 800 mg kg−1 body weight day−1 for twenty‐eight consecutive days did not cause either mortality or toxicity in SD rats, regardless of gender. There were no adverse effects in body weight, food consumption, relative organ weight, haematological parameters, clinical chemistry, gross pathology and histopathology between treatment and control groups. Several parameters (e.g. neutrophils%, Ca2+, total Ca) in CWE‐treated rats with high dosage were significantly different from the control groups, but still in a safety level. A dose of 800 mg kg−1 day−1 was identified as the no observed adverse effect level (NOAEL) in this study.
Collapse
Affiliation(s)
- Kaikai Li
- School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
- Institute of Chinese Medicine The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR 999077 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR 999077 China
| | - Xuelin Zhou
- Institute of Chinese Medicine The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR 999077 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR 999077 China
| | - Xiaorong Yang
- School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
- School of Biological Science Yili Normal University Yining Xinjiang 835000 China
| | - Xianggang Shi
- School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaohong Song
- School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Chuangxing Ye
- School of Life Sciences Sun Yat‐sen University Guangzhou 510275 China
| | - Chun Hay Ko
- Institute of Chinese Medicine The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR 999077 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR 999077 China
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen 518000 China
| |
Collapse
|
49
|
Chen ZM, Lin Z. Tea and human health: biomedical functions of tea active components and current issues. J Zhejiang Univ Sci B 2015; 16:87-102. [PMID: 25644464 DOI: 10.1631/jzus.b1500001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea's medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols.
Collapse
Affiliation(s)
- Zong-mao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | | |
Collapse
|
50
|
Lee P, Tan KS. Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch Oral Biol 2014; 60:393-9. [PMID: 25526623 DOI: 10.1016/j.archoralbio.2014.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/17/2014] [Accepted: 11/23/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea (Camellia sinesis) has been shown to exert antimicrobial effects on numerous bacterial pathogens. However its efficacy against Enterococcus faecalis biofilm, which is associated with persistent root canal infection is unknown. The aims of this study were to investigate the effects of EGCG against E. faecalis biofilm and virulence. DESIGN Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EGCG on E. faecalis were determined. The efficacy of EGCG on E. faecalis biofilms was tested by exposing 7-day old E. faecalis biofilm to EGCG. Flow cytometry analysis of hydroxyphenyl fluorescein (HPF) labelled E. faecalis was used to determine if EGCG induced intracellular hydroxyl radical formation. Co-treatment of EGCG with the iron chelator 2,2-dipyridyl (DIP) was carried out to determine if hydroxyl radical generated through Fenton reaction played a role in EGCG-mediated killing of E. faecalis. Furthermore, the effects of EGCG on the expression of virulence genes in E. faecalis were evaluated by quantitative polymerase chain reaction. RESULTS EGCG exhibited a MIC and MBC of 5 μg/mL and 20 μg/mL respectively and effectively eradicated E. faecalis biofilms. EGCG induced the formation of hydroxyl radicals in E. faecalis. The addition of DIP protected E. faecalis against EGCG-mediated antibacterial effects. At sub-MIC, EGCG induced significant down-regulation of E. faecalis virulence genes. CONCLUSIONS EGCG is an effective antimicrobial agent against both the planktonic and biofilm forms of E. faecalis, inhibiting bacterial growth and suppressing the expression of specific genes related to virulence and biofilm formation. The antimicrobial action of EGCG on E. faecalis occurred through the generation of hydroxyl radical.
Collapse
Affiliation(s)
- Pei Lee
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|