1
|
Baratzhanova G, El Sheikh Saad H, Fournier A, Huguet M, Joubert O, Paul A, Djansugurova L, Cakir-Kiefer C. Comparison of the impact of chlordecone and its metabolite chlordecol on genes involved in pesticide metabolism in HepG2 cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104701. [PMID: 40252817 DOI: 10.1016/j.etap.2025.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Chlordecone (CLD) is an organochlorine pesticide that is highly resistant in the environment. This compound and its metabolite chlordecol (CLD-OH) still can be found in the French West Indies, after being banned 30 years ago. The novelty of this work lies in evaluating the toxicity of CLD-OH compared to CLD and examining the effects of these compounds on nuclear receptor (PXR, PPARα, and CAR) and metabolism-related genes (CYP2B6, CYP3A4) in vitro using HepG2 cell line as a model. Our study demonstrates that both compounds displayed an almost similar pattern of decrease in cell viability. Moreover, it was shown that CLD-OH can increase the expression of PXR, CYP3A4, and PPARα genes in comparison to CLD. The AKR1C4 gene showed a slight decrease in expression after CLD treatment. Collectively, this study provided a new finding into the impact of CLD-OH and compares the mode of action of CLD and its metabolite.
Collapse
Affiliation(s)
- Gulminyam Baratzhanova
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France; al Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty 050040, Kazakhstan; Institute of General Genetics and Physiology, Almaty 050060, Kazakhstan.
| | | | - Agnès Fournier
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Marion Huguet
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Olivier Joubert
- Université de Lorraine, Institut Jean Lamour, UMR CNRS 7198, Nancy F-54000, France
| | - Arnaud Paul
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Leyla Djansugurova
- al Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty 050040, Kazakhstan; Institute of General Genetics and Physiology, Almaty 050060, Kazakhstan
| | | |
Collapse
|
2
|
Alehashem M, Alcaraz AJ, Hogan N, Weber L, Siciliano SD, Hecker M. Linking pesticide exposure to neurodegenerative diseases: An in vitro investigation with human neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173041. [PMID: 38723972 DOI: 10.1016/j.scitotenv.2024.173041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Although many organochlorine pesticides (OCPs) have been banned or restricted because of their persistence and linkage to neurodegenerative diseases, there is evidence of continued human exposure. In contrast, registered herbicides are reported to have a moderate to low level of toxicity; however, there is little information regarding their toxicity to humans or their combined effects with OCPs. This study aimed to characterize the mechanism of toxicity of banned OCP insecticides (aldrin, dieldrin, heptachlor, and lindane) and registered herbicides (trifluralin, triallate, and clopyralid) detected at a legacy contaminated pesticide manufacturing and packing site using SH-SY5Y cells. Cell viability, LDH release, production of reactive oxygen species (ROS), and caspase 3/7 activity were evaluated following 24 h of exposure to the biocides. In addition, RNASeq was conducted at sublethal concentrations to investigate potential mechanisms involved in cellular toxicity. Our findings suggested that aldrin and heptachlor were the most toxic, while dieldrin, lindane, trifluralin, and triallate exhibited moderate toxicity, and clopyralid was not toxic to SH-SY5Y cells. While aldrin and heptachlor induced their toxicity through damage to the cell membrane, the toxicity of dieldrin was partially attributed to necrosis and apoptosis. Moreover, toxic effects of lindane, trifluralin, and triallate, at least partially, were associated with ROS generation. Gene expression profiles suggested that decreased cell viability induced by most of the tested biocides was related to inhibited cell proliferation. The dysregulation of genes encoding for proteins with anti-apoptotic properties also supported the absence of caspase activation. Identified enriched terms showed that OCP toxicity in SH-SY5Y cells was mediated through pathways associated with the pathogenesis of neurodegenerative diseases. In conclusion, this study provides a basis for elucidating the molecular mechanisms of pesticide-induced neurotoxicity. Moreover, it introduced SH-SY5Y cells as a relevant in vitro model for investigating the neurotoxicity of pesticides in humans.
Collapse
Affiliation(s)
- M Alehashem
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - A J Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - N Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Animal Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - L Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - S D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - M Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
3
|
Wang Q, Fu R, Cheng H, Li Y, Sui S. Analysis of the resistance of small peptides from Periplaneta americana to hydrogen peroxide-induced apoptosis in human ovarian granular cells based on RNA-seq. Gene 2021; 813:146120. [PMID: 34915048 DOI: 10.1016/j.gene.2021.146120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Apoptosis of ovarian granular cells is closely related with weakening fertility of women. Hence, resisting apoptosis of human ovarian granular cells is of important significance. According to previous studies, DAPI fluorescence staining experiment and Western Blot test of Caspase-3 demonstrate that small peptides from Periplaneta americana (SPPA) can improve hydrogen peroxide (H2O2) -induced apoptosis of human ovarian granular cells (KGN cells). However, the molecular mechanism of SPPA resistance against apoptosis of granular cells still remains unknown. In this study, key genes and signaling pathways for SPPA to resist H2O2-induced apoptosis of KGN cells were determined through transcriptome sequencing (RNA-seq). Experiments were divided into three groups, namely, the control group, H2O2 group and H2O2 + SPPA group. A total of 1196 differentially expressed genes (DEGs) were screened by comparing the control group and the H2O2 group, and 2805 DEGs were screened by comparing the H2O2 group and H2O2 + SPPA group. It is important to note that 87 overlapping genes were identified upregulating in H2O2 exposure, but downregulating in SPPA repair. Another 151 overlapping genes were identified downregulating in H2O2 exposure, but upregulating in SPPA repair. These 238 overlapping genes have significant enrichment in multiple KEGG pathways. Among them, 13 genes play significant roles in SPPA resistance process of cell apoptosis: EIF3D, RAN, UPF1 and EIF2B4 participate in RNA transport; ACTG1, SIPA1 and CTNND1 participate in Leukocyte transendothelial migration; S100A7, S100A9, RELA and IL17RE participate in IL-17 signaling pathway; BCL2L13, EIF2AK3 and RELA participate in Mitophapy-animal. Ten genes were selected for florescence quantitative PCR (qPCR) verification and the expression level was consistent with sequencing results. Finally, a control network of SPPA resistance against the H2O2-induced KGN cell apoptosis was built based on the target genes screened by the RNA-seq technology. This study provides a direction and some references to further understand the molecular mechanism of SPPA resistance against the H2O2-induced KGN cell apoptosis.
Collapse
Affiliation(s)
- Qin Wang
- School of Public Health, Dali University, Dali, Yunnan Province 671000, China
| | - Rong Fu
- School of Public Health, Dali University, Dali, Yunnan Province 671000, China
| | - Honghan Cheng
- College of Mathematics and Computer Science, Dali University, Dali, Yunnan Province 671003, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali, Yunnan Province 671003, China
| | - Shiyan Sui
- School of Public Health, Dali University, Dali, Yunnan Province 671000, China.
| |
Collapse
|
4
|
Artacho-Cordón F, León J, Sáenz JM, Fernández MF, Martin-Olmedo P, Olea N, Arrebola JP. Contribution of Persistent Organic Pollutant Exposure to the Adipose Tissue Oxidative Microenvironment in an Adult Cohort: A Multipollutant Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13529-13538. [PMID: 27993081 DOI: 10.1021/acs.est.6b03783] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite growing in vitro and in vivo evidence of the putative role of persistent organic pollutants (POPs) in the induction of oxidative damage in cell structures, this issue has been poorly addressed from an epidemiologic perspective. The aim of this study was to explore associations between adipose tissue POP concentrations and the in situ oxidative microenvironment. A cross-sectional study was conducted in a subsample (n = 271) of a previously established cohort, quantifying levels of eight POPs and four groups of oxidative stress biomarkers in adipose tissue. Associations were explored using multivariate linear regression analyses adjusted for potential confounders. We assessed the combined effect of POPs on oxidative stress/glutathione system biomarkers using weighted quantile sum regression (WQS). Increased concentrations of p,p'-DDE, HCB, β-HCH, dicofol, and PCBs (congeners -138, -153, and -180) were predominantly associated with higher lipid peroxidation (TBARS) [exp(β) = 1.09-1.78, p < 0.01-0.04)] and SOD activity [exp(β) = 1.13-1.48, p < 0.01-0.05)] levels. However, only a few associations were observed with glutathione system biomarkers, e.g., PCB-180 with total glutathione [exp(β) = 1.98, p = 0.03]. The WQS index was found to be positively associated with SOD activity, and PCB-138, PCB-180, and β-HCH were the main contributors to the index. Likewise, the WQS index was positively associated with TBARS levels, with the three PCBs acting as the main contributors. This is the first epidemiological evidence of the putative disruption by POPs of the adipose tissue oxidative microenvironment. Our results indicate that POP exposure may enhance alternative pathways to the glutathione detoxification route, which might result in tissue damage. Further research is warranted to fully elucidate the potential health implications.
Collapse
Affiliation(s)
- Francisco Artacho-Cordón
- Radiology and Physical Medicine Department, University of Granada , Granada, 18012, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada , Granada, 18012, Spain
| | - Josefa León
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada , Granada, 18012, Spain
- CIBER en Enfermedades Hepáticas y Digestivas (CIBEREHD) , 28029 Madrid, Spain
| | - José M Sáenz
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada , Granada, 18012, Spain
| | - Mariana F Fernández
- Radiology and Physical Medicine Department, University of Granada , Granada, 18012, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada , Granada, 18012, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP) , 28029 Madrid, Spain
| | | | - Nicolás Olea
- Radiology and Physical Medicine Department, University of Granada , Granada, 18012, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada , Granada, 18012, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP) , 28029 Madrid, Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Hospitales Universitarios de Granada , Granada, 18012, Spain
- Escuela Andaluza de Salud Pública , Granada, 18011, Spain
- Oncology Unit, Virgen de las Nieves University Hospital , Granada, 18012 Spain
| |
Collapse
|
5
|
Narayanan KB, Ali M, Barclay BJ, Cheng Q(S, D’Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci AM, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi A, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 2015; 36 Suppl 1:S89-S110. [PMID: 26106145 PMCID: PMC4565614 DOI: 10.1093/carcin/bgv032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea
- Sultan Zainal Abidin University, Malaysia
- Plant Biotechnologies Inc, St. Albert AB, Canada
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
- Department of Pharmacology and Toxicology, University of Vienna, Austria
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
- Advenced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh, 226003, India
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Manaf Ali
- Sultan Zainal Abidin University, Malaysia
| | | | - Qiang (Shawn) Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - Leandro D’Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | | | - Paramita M. Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Michael J. Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Lin Li
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Suidjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Edward Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ranjeet K. Sinha
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
| | - Hosni K. Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - A.Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Neetu Singh
- Advenced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Seo Yun Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Hyun Ho Park
- *To whom correspondence should be addressed. Tel: +82 53 810 3015; Fax: +82 53 810 4619;
| |
Collapse
|
6
|
Blondel C, Melesan M, San Miguel A, Veyrenc S, Meresse P, Pezet M, Reynaud S, Raveton M. Cell cycle disruption and apoptosis as mechanisms of toxicity of organochlorines in Zea mays roots. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:312-322. [PMID: 24892778 DOI: 10.1016/j.jhazmat.2014.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Organochlorine pesticides (OCPs) are widespread environmental pollutants; two of them are highly persistent: lindane (γHCH) and chlordecone (CLD). Maize plants cope with high levels of OCP-environmental pollution, however little is known about cellular mechanisms involved in plant response to such OCP-exposures. This research was aimed at understanding the physiological pathways involved in the plant response to OCPs in function of a gradient of exposure. Here we provide the evidences that OCPs might disrupt root cell cycle leading to a rise in the level of polyploidy possibly through mechanisms of endoreduplication. In addition, low-to-high doses of γHCH were able to induce an accumulation of H2O2 without modifying NO contents, while CLD modulated neither H2O2 nor NO production. [Ca(2+)]cytosolic, the caspase-3-like activity as well as TUNEL-positive nuclei and IP-positive cells increased after exposure to low-to-high doses of OCPs. These data strongly suggest a cascade mechanism of the OCP-induced toxic effect, notably with an increase in [Ca(2+)]cytosolic and caspase-3-like activity, suggesting the activation of programmed cell death pathway.
Collapse
Affiliation(s)
- Claire Blondel
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Marc Melesan
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Angélique San Miguel
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Sylvie Veyrenc
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Patrick Meresse
- Université de Grenoble - Alpes, France; Centre Universitaire de Biologie Expérimentale, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France
| | - Mylène Pezet
- Centre de Recherche Inserm/UJF U823, Institut Albert Bonniot, BP 170, 38042 Grenoble Cedex 09, France
| | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Muriel Raveton
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France.
| |
Collapse
|
7
|
Zhang X, Li C, Gong Z. Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression. PLoS One 2014; 9:e91874. [PMID: 24626481 PMCID: PMC3953600 DOI: 10.1371/journal.pone.0091874] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/16/2014] [Indexed: 01/28/2023] Open
Abstract
Previously we have developed a transgenic zebrafish line (LiPan) with liver-specific red fluorescent protein (DsRed) expression under the fabp10a promoter. Since red fluorescence in the liver greatly facilitates the observation of liver in live LiPan fry, we envision that the LiPan zebrafish may provide a useful tool in analyses of hepatotoxicity based on changes of liver red fluorescence intensity and size. In this study, we first tested four well-established hepatotoxins (acetaminophen, aspirin, isoniazid and phenylbutazone) in LiPan fry and demonstrated that these hepatotoxins could significantly reduce both liver red fluorescence and liver size in a dosage-dependent manner, thus the two measurable parameters could be used as indicators of hepatotoxicity. We then tested the LiPan fry with nine other chemicals including environmental toxicants and human drugs. Three (mefenamic acid, lindane, and arsenate) behave like hepatotoxins in reduction of liver red fluorescence, while three others (17β-estradiol, TCDD [2,3,7,8-tetrachlorodibenzo-p-dioxin] and NDMA [N-nitrosodimethylamine]) caused increase of liver red fluorescence and the liver size. Ethanol and two other chemicals, amoxicillin (antibiotics) and chlorphenamine (pain killer) did not resulted in significant changes of liver red fluorescence and liver size. By quantitative RT-PCR analysis, we found that the changes of red fluorescence intensity caused by different chemicals correlated to the changes of endogenous fabp10a RNA expression, indicating that the measured hepatotoxicity was related to fatty acid transportation and metabolism. Finally we tested a mixture of four hepatotoxins and observed a significant reduction of red fluorescence in the liver at concentrations below the lowest effective concentrations of individual hepatotoxins, suggesting that the transgenic zebrafish assay is capable of reporting compound hepatotoxicity effect from chemical mixtures. Thus, the LiPan transgenic fry provide a rapid and convenient in vivo hepatotoxicity assay that should be applicable to high-throughput hepatotoxicity test in drug screening as well as in biomonitoring environmental toxicants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Caixia Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Michałowicz J, Mokra K, Rosiak K, Sicińska P, Bukowska B. Chlorobenzenes, lindane and dieldrin induce apoptotic alterations in human peripheral blood lymphocytes (in vitro study). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:979-988. [PMID: 24077485 DOI: 10.1016/j.etap.2013.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
In this study, we have assessed apoptotic effect of 1,2,4-trichlorobenzene, hexachlorobenzene, lindane and dieldrin on human peripheral blood lymphocytes. We observed an increase in ROS formation and a decrease in mitochondrial transmembrane potential in the cells incubated with low concentrations of all compounds studied, in particular lindane and dieldrin. ROS formation and changes in mitochondrial transmembrane potential may have influenced caspase-3 activation, a crucial enzyme in the apoptotic process. Moreover, chlorobenzenes, and in particular lindane and dieldrin changed cells' membrane permeability and induced phosphatidylserine translocation, which confirmed that they are capable of inducing apoptosis in human lymphocytes. Apoptotic changes in human lymphocytes provoked by biologically relevant concentrations of these substances suggest that they may disturb function of immunological system especially among people occupationally exposed to their action.
Collapse
Affiliation(s)
- Jaromir Michałowicz
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-236 Łódź, Poland.
| | | | | | | | | |
Collapse
|
9
|
Plasmatic concentration of organochlorine lindane acts as metabolic disruptors in HepG2 liver cell line by inducing mitochondrial disorder. Toxicol Appl Pharmacol 2013; 272:325-34. [DOI: 10.1016/j.taap.2013.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/18/2022]
|
10
|
Primary hepatocytes and their cultures in liver apoptosis research. Arch Toxicol 2013; 88:199-212. [PMID: 24013573 DOI: 10.1007/s00204-013-1123-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed.
Collapse
|
11
|
Magnarelli G, Fonovich T. Protein phosphorylation pathways disruption by pesticides. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.35050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|