1
|
Zhou J, Yang Y, Tian J, Liu C, Chen J, Yang M, Zhang M, Duan Y, Zhang T, Sun Y, Yu Q, Xia Z, Wan X, Duan W, Xu S. Diquat exposure causes brainstem demyelination by upregulating the mitochondrial calcium uniporter. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138063. [PMID: 40163990 DOI: 10.1016/j.jhazmat.2025.138063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Diquat (DQ) is a widely used new herbicide that poses a great threat to the environment, ecological systems and human health. Although the central nervous system (CNS) is a sensitive target of DQ exposure, the major brain regions, pathological changes and underlying mechanisms of DQ damage to the CNS remain obscure. We demonstrated that the brainstem was the primary region where DQ damaged the CNS. DQ exposure damaged both neurons and glial cells and disrupted neurotransmitter metabolism. DQ caused brainstem demyelination, as indicated by the loss of myelin sheaths, decreased levels of myelination biomarkers, and abnormal myelin morphology. Mechanistically, the expression of the mitochondrial calcium uniporter (MCU) was increased in the DQ-exposed brainstem, and MCU knockdown mice were less sensitive to DQ-induced demyelination and CNS injury by attenuating disturbances in brain energy metabolism via the AMPK pathway. Moreover, the inhibition of MCU efficiently improved DQ-induced mitochondrial dysfunction in vitro. Overall, this study is the first to reveal that the brainstem is the key injured brain region and that demyelination is the prominent pathological feature induced by DQ exposure. The MCU is a potential therapeutic target for DQ-induced demyelination and CNS injury. These novel findings expand our understanding of DQ-induced CNS injury and offer a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jie Zhou
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Yingli Yang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Cong Liu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Jiafei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mei Yang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Mengran Zhang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Duan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Tian Zhang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Yapei Sun
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Qin Yu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Zhiqin Xia
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Xinglin Wan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Weixia Duan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China.
| | - Shangcheng Xu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Comparsi B, Meinerz DF, Dalla Corte CL, Prestes AS, Stefanello ST, Santos DB, Souza DD, Farina M, Dafre AL, Posser T, Franco JL, Rocha JBT. N-acetylcysteine does not protect behavioral and biochemical toxicological effect after acute exposure of diphenyl ditelluride. Toxicol Mech Methods 2014; 24:529-35. [DOI: 10.3109/15376516.2014.920449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Signaling mechanisms and disrupted cytoskeleton in the diphenyl ditelluride neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:458601. [PMID: 25050142 PMCID: PMC4090446 DOI: 10.1155/2014/458601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 01/14/2023]
Abstract
Evidence from our group supports that diphenyl ditelluride (PhTe)2 neurotoxicity depends on modulation of signaling pathways initiated at the plasma membrane. The (PhTe)2-evoked signal is transduced downstream of voltage-dependent Ca2+ channels (VDCC), N-methyl-D-aspartate receptors (NMDA), or metabotropic glutamate receptors activation via different kinase pathways (protein kinase A, phospholipase C/protein kinase C, mitogen-activated protein kinases (MAPKs), and Akt signaling pathway). Among the most relevant cues of misregulated signaling mechanisms evoked by (PhTe)2 is the cytoskeleton of neural cells. The in vivo and in vitro exposure to (PhTe)2 induce hyperphosphorylation/hypophosphorylation of neuronal and glial intermediate filament (IF) proteins (neurofilaments and glial fibrillary acidic protein, resp.) in different brain structures of young rats. Phosphorylation of IFs at specific sites modulates their association/disassociation and interferes with important physiological roles, such as axonal transport. Disrupted cytoskeleton is a crucial marker of neurodegeneration and is associated with reactive astrogliosis and apoptotic cell death. This review focuses the current knowledge and important results on the mechanisms of (PhTe)2 neurotoxicity with special emphasis on the cytoskeletal proteins and their differential regulation by kinases/phosphatases and Ca2+-mediated mechanisms in developmental rat brain. We propose that the disrupted cytoskeletal homeostasis could support brain damage provoked by this neurotoxicant.
Collapse
|