1
|
Manimaran K, Yanto DHY, Sari IP, Karimah SN, Kamaraj C, Manoharadas S, Praburaman L, Suganthi S, Oh TH. Novel approaches of mycosynthesized zinc oxide nanoparticles (ZnONPs) using Pleurotus sajor-caju extract and their biological and environmental applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:423. [PMID: 39312006 DOI: 10.1007/s10653-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024]
Abstract
In this study, mycosynthesized zinc oxide nanoparticles (ZnONPs) are fabricated via Pleurotus sajor-caju mushroom extract, and their potential medical and environmental applications are demonstrated. The biosynthesized ZnONPs were assessed for their antibacterial, anticancer, and biodecolorization potential efficiency. They were also characterized and morphologically analyzed by UV-visible spectroscopy, XRD, FT-IR, FE-SEM, EDX, HR-TEM, Zeta potential, and GC-MS analysis. The UV visible spectrum analysis of synthesized ZnONPs analyzed outcome 354 nm was the SPR peak that the nanoparticles displayed. The characteristic Zn-O bond was indicated by a strong peak in the FT-IR study at 432.05 cm-1. Based on XRD analysis, P. sajor-caju mediated ZnONPs were crystalline nature, with an average nano particle size of 14.21 nm and a polydispersity directory of 0.29. The nanoparticles exhibit modest constancy, as shown by their zeta potential value of - 33.2 mV. The presence of oxygen and zinc was verified by EDX analysis. The ZnONPs were found to be spherical in shape and crystalline nature structure, with smooth surface morphology and a mean particle size of 10 nm using HR-TEM and SAED analysis. The significant antibacterial activity against S. aureus (6.2 ± 0.1), S. mutans (5.4 ± 0.4), and B. subtilis (5.2 ± 0.1 mm) was demonstrated by the synthesized ZnONPs made using mushroom extract. It was discovered that when the concentration of mushroom extract was increased together with synthesized ZnONPs, the bactericidal activity increased considerably. A higher concentration of ZnONPs demonstrated superior antibacterial activity across the ZnONPs ratio tests. The in vitro cytotoxicity assay showed that ZnONPs, even at low doses, had a substantial number of cytotoxic effects on liver cancer cells (LC50 values 47.42 µg/mL). The effectiveness test revealed that acid blue 129 was degraded. The best decolorization of acid blue 129 at 72.57% after 3 h of soaking serves as evidence for the theory that myco-synthesized ZnONPs by P. sajor-caju mushroom can function as catalysts in reducing the dye. The mycosynthesized ZnONPs from P. sajor-caju extract, and its potential for antibacterial, anticancer, and decolorization are in this investigation. The mycosynthesized ZnONPs suggest a novel use for nanoparticles in the creation of environmental and medicinal products.
Collapse
Affiliation(s)
- Kumar Manimaran
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Ira Puspita Sari
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Silviyani Nurul Karimah
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2454, Riyadh, Saudi Arabia
| | - Loganathan Praburaman
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Sanjeevamuthu Suganthi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Yu G, Peng J, Li L, Yu W, He B, Xie B. The role and mechanisms of cordycepin in inhibiting cancer cells. Braz J Med Biol Res 2024; 57:e13889. [PMID: 39194034 DOI: 10.1590/1414-431x2024e13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
With the escalating incidence and mortality rates of cancer, there is an ever-growing emphasis on the research of anticancer drugs. Cordycepin, the primary nucleoside antibiotic isolated from Cordyceps militaris, has emerged as a remarkable agent for cancer prevention and treatment. Functioning as a natural targeted antitumor drug, cordycepin assumes an increasingly pivotal role in cancer therapy. This review elucidates the mechanisms of cordycepin in inhibiting tumor cell proliferation, inducing apoptosis, as well as its capabilities in suppressing angiogenesis and metastasis. Moreover, the immunomodulatory effects of cordycepin in cancer treatment are explored. Additionally, the current status, challenges, and future prospects of cordycepin application in clinical trials are briefly discussed. The objective is to provide a valuable reference for the utilization of cordycepin in cancer treatment.
Collapse
Affiliation(s)
- Gong Yu
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiahua Peng
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lu Li
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Bin Xie
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Zhang J, Yang Z, Zhao Z, Zhang N. Structural and pharmacological insights into cordycepin for neoplasms and metabolic disorders. Front Pharmacol 2024; 15:1367820. [PMID: 38953102 PMCID: PMC11215060 DOI: 10.3389/fphar.2024.1367820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Cytotoxic adenosine analogues were among the earliest chemotherapeutic agents utilised in cancer treatment. Cordycepin, a natural derivative of adenosine discovered in the fungus Ophiocordyceps sinensis, directly inhibits tumours not only by impeding biosynthesis, inducing apoptosis or autophagy, regulating the cell cycle, and curtailing tumour invasion and metastasis but also modulates the immune response within the tumour microenvironment. Furthermore, extensive research highlights cordycepin's significant therapeutic potential in alleviating hyperlipidaemia and regulating glucose metabolism. This review comprehensively analyses the structure-activity relationship of cordycepin and its analogues, outlines its pharmacokinetic properties, and strategies to enhance its bioavailability. Delving into the molecular biology, it explores the pharmacological mechanisms of cordycepin in tumour suppression and metabolic disorder treatment, thereby underscoring its immense potential in drug development within these domains and laying the groundwork for innovative treatment strategies.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ziling Yang
- Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhuo Zhao
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
4
|
Liu JS, Huang RY, Wei YJ, Tsai GJ, Huang CH. Influence of Cordyceps militaris-fermented grain substrate extracts on alleviating food allergy in mice. Heliyon 2023; 9:e23315. [PMID: 38144334 PMCID: PMC10746508 DOI: 10.1016/j.heliyon.2023.e23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Background Cordyceps militaris is recognized as a tonic in traditional Chinese medicine, and there have been documented findings on the anti-allergic properties of its extract derived from the fruiting body. Due to the limited availability of wild C. militaris, a specialized grain substrate has been devised for the solid-state fermentation of its fruiting bodies. However, the fermented grain substrate is considered waste and usually used as feeds for animals. To achieve the sustainable development goals, C. militaris-fermented grain substrate (CFGS) was collected to prepare CFGS extracts. Further, the anti-allergic properties of these extracts were assessed with the aim of exploring novel applications. Methods The water extract and ethanol extract of CFGS were prepared, and their potential in alleviating allergic enteritis was assessed in mice with food allergy. Assessment of immunomodulatory effects included the measurement of serum antibodies and splenic cytokines. Additionally, influence of extracts on gut microbiota composition was examined through sequencing analysis of 16S rRNA gene from freshly collected feces of the mice. Results Daily administration of the water and ethanol extracts, at doses of 50 or 250 mg/kg body weight, demonstrated a notable alleviation of allergic diarrhea and enteritis. This was accompanied by a decrease in mast cell infiltration in the duodenum and a reduction in allergen-specific IgE production in the serum. Both extracts led to a significant decrease in IL-4 secretion. Conversely, there was an increase in IFN-γ, IL-10, and TGF-β secretion from splenocytes. Remarkably, allergic mice exhibited a distinct fecal microbiota profile compared to that of normal mice. Intriguingly, the administration of these extracts had varying effects on the fecal microbiota. Conclusion Taken together, these findings collectively indicate the potential of CFGS extracts as promising candidates for functional foods. These extracts show promise in managing allergic enteritis and modulating gut microbiota.
Collapse
Affiliation(s)
- Jia-Shan Liu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Rong-Yi Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yu-Jyun Wei
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
5
|
Taghinejad Z, Kazemi T, Fadaee M, Farshdousti Hagh M, Solali S. Pharmacological and therapeutic potentials of cordycepin in hematological malignancies. Biochem Biophys Res Commun 2023; 678:135-143. [PMID: 37634411 DOI: 10.1016/j.bbrc.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/16/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
Hematological malignancies(HMs) are highly heterogeneous diseases with globally rising incidence. Despite major improvements in the management of HMs, conventional therapies have limited efficacy, and relapses with high mortality rates are still frequent. Cordycepin, a nucleoside analog extracted from Cordyceps species, represents a wide range of therapeutic effects, including anti-inflammatory, anti-tumor, and anti-metastatic activities. Cordycepin induces apoptosis in different subtypes of HMs by triggering adenosine receptors, death receptors, and several vital signaling pathways such as MAPK, ERK, PI3K, AKT, and GSK-3β/β-catenin. This review article summarizes the impact of utilizing cordycepin on HMs, and highlights its potential as a promising avenue for future cancer research based on evidence from in vitro and in vivo studies, as well as clinical trials.
Collapse
Affiliation(s)
- Zahra Taghinejad
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Manouchehr Fadaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Cheng C, Zhang S, Gong Y, Wang X, Tang S, Wan J, Ding K, Yuan C, Sun W, Yao LH. Cordycepin inhibits myogenesis via activating the ERK1/2 MAPK signalling pathway in C2C12 cells. Biomed Pharmacother 2023; 165:115163. [PMID: 37453196 DOI: 10.1016/j.biopha.2023.115163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Cordycepin (with a molecular formula of C10H13N5O3), a natural adenosine isolated from Cordyceps militaris, has an important regulatory effect on skeletal muscle remodelling and quality maintenance. The aim of this study was to investigate the effect of cordycepin on myoblast differentiation and explore the underlying molecular mechanisms of this effect. Our results showed that cordycepin inhibited myogenesis by downregulating myogenic differentiation (MyoD) and myogenin (MyoG), preserved undifferentiated reserve cell pools by upregulating myogenic factor 5 (Myf5) and retinoblastoma-like protein p130 (p130), and enhanced energy reserves by decreasing intracellular reactive oxygen species (ROS) and enhancing mitochondrial membrane potential, mitochondrial mass, and ATP content. The effect of cordycepin on myogenesis was associated with increased phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2). PD98059 (a specific inhibitor of p-ERK1/2) attenuated the inhibitory effect of cordycepin on C2C12 differentiation. The present study reveals that cordycepin inhibits myogenesis through ERK1/2 MAPK signalling activation accompanied by an increase in skeletal muscle energy reserves and improving skeletal muscle oxidative stress, which may have implications for its further application for the prevention and treatment of degenerative muscle diseases caused by the depletion of depleted muscle stem cells.
Collapse
Affiliation(s)
- Chunfang Cheng
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Shasha Zhang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yanchun Gong
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Xuanyu Wang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Shan Tang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Juan Wan
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Kaizhi Ding
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Chunhua Yuan
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Wei Sun
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Li-Hua Yao
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China.
| |
Collapse
|
7
|
Liu PX, Ma JX, Liang RN, He XW, Zhao GZ. Development of an efficient method for separation and purification of cordycepin from liquid fermentation of Cordyceps militaris and analysis of cordycepin antitumor activity. Heliyon 2023; 9:e14184. [PMID: 36923906 PMCID: PMC10009733 DOI: 10.1016/j.heliyon.2023.e14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Cordycepin (3 '-deoxyadenosine) is the main active component of Cordyceps militaris, which is a chemical marker for quality detection of Cordyceps militaris and has important medicinal development value. Existing methods for obtaining cordycepin are complex and costly. In this study, an economical and simple method for separation and purification of cordycepin from Cordyceps militaris fermentation liquid through physical crystallization was explored. First, lyophilized powdered fermentation liquid (LPFL) and pure methanol (1 g/100 mL, w/v) were mixed, and then repeatedly dissolved and crystallized until the precipitation was white. Purified product was obtained by freeze-drying the precipitate. The substance was determined to be cordycepin by high performance liquid chromatography, mass spectrometry and infrared spectroscopy, and the purity was 94.26%. Compared with the existing methods, this method is simple and low cost. In addition, the functional activity of cordycepin was determined by in vitro test. The results exhibited that cordycepin caused death and morphological changes in human colon cancer Caco-2 cells, and significantly inhibited the proliferation of Caco-2 cells, with a half-maximal inhibitory concentration (IC50) of 107.2 μg/mL. Cordycepin could induce early apoptosis of Caco-2 and caused cell cycle arrest in the G2 phase. Caco-2 cell apoptosis and cell cycle arrest showed dose dependence to cordycepin over a certain range. These results improved cordycepin purification method, provided insights into the mechanism of cordycepin in cancer inhibition, and would provide important reference for further development and clinical application of cordycepin.
Collapse
Affiliation(s)
- Peng-Xiao Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jie-Xin Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Rui-Na Liang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiang-Wei He
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guo-Zhu Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Feng C, Chen R, Fang W, Gao X, Ying H, Zheng X, Chen L, Jiang J. Synergistic effect of CD47 blockade in combination with cordycepin treatment against cancer. Front Pharmacol 2023; 14:1144330. [PMID: 37138855 PMCID: PMC10149837 DOI: 10.3389/fphar.2023.1144330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
Cordycepin is widely considered a direct tumor-suppressive agent. However, few studies have investigated as the effect of cordycepin therapy on the tumor microenvironment (TME). In our present study, we demonstrated that cordycepin could weaken the function of M1-like macrophages in the TME and also contribute to macrophage polarization toward the M2 phenotype. Herein, we established a combined therapeutic strategy combining cordycepin and an anti-CD47 antibody. By using single-cell RNA sequencing (scRNA-seq), we showed that the combination treatment could significantly enhance the effect of cordycepin, which would reactivate macrophages and reverse macrophage polarization. In addition, the combination treatment could regulate the proportion of CD8+ T cells to prolong the progression-free survival (PFS) of patients with digestive tract malignancies. Finally, flow cytometry validated the changes in the proportions of tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs). Collectively, our findings suggested that the combination treatment of cordycepin and the anti-CD47 antibody could significantly enhance tumor suppression, increase the proportion of M1 macrophages, and decrease the proportion of M2 macrophages. In addition, the PFS in patients with digestive tract malignancies would be prolonged by regulating CD8 + T cells.
Collapse
Affiliation(s)
- Chen Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Weiwei Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Xinran Gao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiang Su, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- *Correspondence: Jingting Jiang, ; Lujun Chen,
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- *Correspondence: Jingting Jiang, ; Lujun Chen,
| |
Collapse
|
9
|
Serpi M, Ferrari V, McGuigan C, Ghazaly E, Pepper C. Synthesis and Characterization of NUC-7738, an Aryloxy Phosphoramidate of 3'-Deoxyadenosine, as a Potential Anticancer Agent. J Med Chem 2022; 65:15789-15804. [PMID: 36417756 PMCID: PMC9743095 DOI: 10.1021/acs.jmedchem.2c01348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/24/2022]
Abstract
3'-Deoxyadenosine (3'-dA, Cordycepin, 1) is a nucleoside analogue with anticancer properties, but its clinical development has been hampered due to its deactivation by adenosine deaminase (ADA) and poor cellular uptake due to low expression of the human equilibrative transporter (hENT1). Here, we describe the synthesis and characterization of NUC-7738 (7a), a 5'-aryloxy phosphoramidate prodrug of 3'-dA. We show in vitro evidence that 7a is an effective anticancer drug in a panel of solid and hematological cancer cell lines, showing its preferential cytotoxic effects on leukemic stem cells. We found that unlike 3'-dA, the activity of 7a was independent of hENT1 and kinase activity. Furthermore, it was resistant to ADA metabolic deactivation. Consistent with these findings, 7a showed increased levels of intracellular 3'-deoxyadenosine triphosphate (3'-dATP), the active metabolite. Mechanistically, levels of intracellular 3'-dATP were strongly associated with in vitro potency. NUC-7738 is now in Phase II, dose-escalation study in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Michaela Serpi
- School
of Chemistry, Cardiff University Main Building, Park Place, Cardiff CF10 3AT, Wales, U.K.
| | - Valentina Ferrari
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, King Edward VII Avenue, Cardiff CF10 3NB, U.K.
| | - Christopher McGuigan
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, King Edward VII Avenue, Cardiff CF10 3NB, U.K.
| | - Essam Ghazaly
- Centre
for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K.
| | - Chris Pepper
- Brighton
and Sussex Medical School, University of
Sussex, Brighton BN1 9PX, U.K.
| |
Collapse
|
10
|
Liu Y, Guo ZJ, Zhou XW. Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196576. [PMID: 36235111 PMCID: PMC9572669 DOI: 10.3390/molecules27196576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Chinese Cordyceps is a valuable source of natural products with various therapeutic effects. It is rich in various active components, of which adenosine, cordycepin and polysaccharides have been confirmed with significant immunomodulatory and antitumor functions. However, the underlying antitumor mechanism remains poorly understood. In this review, we summarized and analyzed the chemical characteristics of the main components and their pharmacological effects and mechanism on immunomodulatory and antitumor functions. The analysis revealed that Chinese Cordyceps promotes immune cells' antitumor function by via upregulating immune responses and downregulating immunosuppression in the tumor microenvironment and resetting the immune cells' phenotype. Moreover, Chinese Cordyceps can inhibit the growth and metastasis of tumor cells by death (including apoptosis and autophagy) induction, cell-cycle arrest, and angiogenesis inhibition. Recent evidence has revealed that the signal pathways of mitogen-activated protein kinases (MAPKs), nuclear factor kappaB (NF-κB), cysteine-aspartic proteases (caspases) and serine/threonine kinase Akt were involved in the antitumor mechanisms. In conclusion, Chinese Cordyceps, one type of magic mushroom, can be potentially developed as immunomodulator and anticancer therapeutic agents.
Collapse
|
11
|
Lee HS, Lee IH, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Study on the Mechanism of Herbal Drug FDY003 for Colorectal Cancer Treatment by Employing Network Pharmacology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) originates from the uncontrolled growth of epithelial cells in the colon or rectum. Annually, 1.9 million new CRC cases are being reported, causing 0.9 million deaths worldwide. The suppressive effects of the herbal prescription FDY003, a mixture of Cordyceps militaris, Lonicera japonica Thunberg, and Artemisia capillaris Thunberg, against CRC have previously been reported. Nonetheless, the multiple compound-multiple target mechanisms of FDY003 in CRC cells have not been fully elucidated. In this study, we used network pharmacology (NP) to analyze the polypharmacological mechanisms of action of FDY003 in CRC treatment. FDY003 promoted the suppression of viability of CRC cells and strengthened their sensitivity to anticancer drugs. The NP study enabled the investigation of 17 pharmaceutical compounds and 90 CRC-related genes that were targets of the compounds. The gene ontology terms enriched with the CRC-related target genes of FDY003 were those involved in the control of a variety of phenotypes of CRC cells, for instance, the decision of apoptosis and survival, growth, stress response, and chemical response of cells. In addition, the targeted genes of FDY003 were further enriched in various Kyoto Encyclopedia of Genes and Genomes pathways that coordinate crucial pathological processes of CRC; these are ErbB, focal adhesion, HIF-1, IL-17, MAPK, PD-L1/PD-1, PI3K-Akt, Ras, TNF, and VEGF pathways. The overall analysis results obtained from the NP methodology support the multiple-compound-multiple-target-multiple-pathway pharmacological features of FDY003 as a potential agent for CRC treatment.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
12
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
13
|
Shi L, Cao H, Fu S, Jia Z, Lu X, Cui Z, Yu D. Cordycepin enhances hyperthermia-induced apoptosis and cell cycle arrest by modulating the MAPK pathway in human lymphoma U937 cells. Mol Biol Rep 2022; 49:8673-8683. [PMID: 35763180 DOI: 10.1007/s11033-022-07705-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hyperthermia induces cancer cell death. However, the cytotoxic effect of hyperthermia is not sufficient. Cordycepin can also induce apoptosis in cancer cells and enhance the antitumoral activity of irradiation. To examine cordycepin-mediated enhancement of hyperthermia-induced apoptosis, this study investigated the combined effects and apoptotic mechanisms of hyperthermia and cordycepin on human leukemia U937 cells. METHODS Cell viability and apoptosis were measured using MTT assays, Hoechst 33342 staining and Annexin V/PI double staining. The distribution of the cell cycle and sub-G1 phase, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were examined by flow cytometry. The expression of related proteins was analyzed by western blotting. RESULTS Combined treatment with hyperthermia and cordycepin markedly augmented apoptosis by upregulating Bax and suppressing Bcl-2, Bid and activated caspase 3 and 8 expression, and apoptosis was decreased by Z-VAD-fmk (a pan caspase inhibitor). We also found that the MMP was significantly decreased and excessive ROS generation occurred. The combination treatment also induced arrest in the G2/M phase by downregulating cyclin dependent kinase 1 (CDK1) and cyclin B1 protein expression. Furthermore, it was observed that mitogen-activated protein kinase (MAPK) pathway including ERK, JNK and p38 signals was involved in the induction of apoptosis. The phosphorylated p38 and JNK were increased and ERK phosphorylation was decreased by the combined treatment. In addition, N-acetyl-L-cysteine (NAC) significantly protected the cells by restoring ROS levels and the activity of caspase-3, inactivating the MAPK pathway. CONCLUSION Cordycepin significantly enhanced hyperthermia-induced apoptosis and G2/M phase arrest in U937 cells. The combined treatment enhanced apoptosis through the MAPK pathway and mitochondrial dysfunction, and these effects could be rescued by NAC. We report for the first time that cordycepin can be used as a hyperthermia sensitizer to treat leukemia.
Collapse
Affiliation(s)
- Liying Shi
- The School of Life Science and Biotechnology, Dalian University, Dalian, 116622, People's Republic of China
| | - He Cao
- The School of Life Science and Biotechnology, Dalian University, Dalian, 116622, People's Republic of China
| | - Siyu Fu
- The School of Life Science and Biotechnology, Dalian University, Dalian, 116622, People's Republic of China
| | - Zixian Jia
- The School of Life Science and Biotechnology, Dalian University, Dalian, 116622, People's Republic of China
| | - Xuan Lu
- The School of Life Science and Biotechnology, Dalian University, Dalian, 116622, People's Republic of China
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, University of Fukui, Eiheiji, 910-1193, Japan.
| | - Dayong Yu
- The School of Life Science and Biotechnology, Dalian University, Dalian, 116622, People's Republic of China.
| |
Collapse
|
14
|
Prospects of Cordycepin and Polysaccharides Produced by Cordyceps. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Ma L, Lu Y, Li Y, Yang Z, Mao Y, Wang Y, Man S. A novel halogenated adenosine analog 5'-BrDA displays potent toxicity against colon cancer cells in vivo and in vitro. Toxicol Appl Pharmacol 2021; 436:115857. [PMID: 34979143 DOI: 10.1016/j.taap.2021.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023]
Abstract
Adenosine, as a naturally occurring nucleoside, plays an important role in human health maintenance. In recent years, many studies have shown that adenosine has the effect of cancer inhibition, and some of its analogs have been successfully marketed as anticancer drugs. This report mainly describes the anti-colon cancer activities and mechanism of a novel halogenated adenosine analog named 5'-bromodeoxyadenosine (5'-BrDA). As a result, 5'-BrDA concentration-dependently inhibited colon cancer cells proliferation, induced autophagy without disruption of lysosomal stability, and promoted autophagy-independently cellular mitochondrial apoptosis by increasing the accumulation of reactive oxygen species. Furthermore, 5'-BrDA inhibited the tumor growth of colon cancer in CT26 inbred mice without affecting the body weight in vivo. Collectively, the above-mentioned mechanisms contributed to the anticancer activity of 5'-BrDA. It is rare to discover novel anticancer adenosine analogs during the past couple of decades. We believe that our work will enrich the understanding of adenosine analogs, also, pave the way for adenosine analogs product based anticancer drug development.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaqin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhizhen Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Mao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
16
|
Cordycepin inhibits the proliferation and progression of NPC by targeting the MAPK/ERK and β-catenin pathways. Oncol Lett 2021; 23:20. [PMID: 34858524 PMCID: PMC8617562 DOI: 10.3892/ol.2021.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 12/09/2022] Open
Abstract
Cordycepin is an extract from the Cordyceps genus of ascomycete fungi. In the present study, the anticancer potential of cordycepin against nasopharyngeal carcinoma (NPC), and the potential underlying mechanisms, were investigated. Using Cell Counting Kit 8, wound-healing and Transwell assays, cordycepin was found to reduce the viability and inhibit the migration of C666-1 cells in a dose-dependent manner. In addition, in colony formation assays, co-treatment with cordycepin and cisplatin inhibited the proliferation of C666-1 cells. Furthermore, RNA sequencing analysis identified 72 significantly differentially expressed genes and different signaling pathways that may be regulated by cordycepin. After treatment with cordycepin, the expression levels of ERK1/2, phosphorylated ERK1/2 and β-catenin were significantly downregulated. Therefore, cordycepin may be a novel candidate for NPC treatment or a co-treatment candidate with cisplatin in chemotherapy.
Collapse
|
17
|
Anti-Cancer Properties of Coix Seed Oil against HT-29 Colon Cells through Regulation of the PI3K/AKT Signaling Pathway. Foods 2021; 10:foods10112833. [PMID: 34829119 PMCID: PMC8621869 DOI: 10.3390/foods10112833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
This study aims to observe the effects of coix seed oil (CSO) on HT-29 cells and investigate its possible regulation mechanism of the PI3K/Akt signaling pathway. Fatty acid analysis showed that coix seed oil mainly contains oleic acid (50.54%), linoleic acid (33.76%), palmitic acid (11.74%), and stearic acid (2.45%). Fourier transform infrared results found that the fatty acid functional groups present in the oil matched well with the vegetable oil band. The results from CCK-8 assays showed that CSO dose-dependently and time-dependently inhibited the viability of HT-29 cells in vitro. CSO inhibited cell viability, with IC50 values of 5.30 mg/mL for HT-29 obtained after 24 h treatment. Morphological changes were observed by apoptotic body/cell nucleus DNA (Hoechst 33258) staining using inverted and fluorescence microscopy. Moreover, flow cytometry analysis was used to evaluate the cell cycle and cell apoptosis. It showed that CSO induced cell apoptosis and cycle arrest in the G2 phase. Quantitative real-time PCR and Western blotting revealed that CSO induced cell apoptosis by downregulating the PI3K/AKT signaling pathway. Additionally, CSO can cause apoptosis in cancer cells by activating caspase-3, up-regulating Bax, and down-regulating Bcl-2. In conclusion, the results revealed that CSO induced G2 arrest and apoptosis of HT-29 cells by regulating the PI3K/AKT signaling pathway.
Collapse
|
18
|
Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021; 26:5886. [PMID: 34641429 PMCID: PMC8510467 DOI: 10.3390/molecules26195886] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
We conducted a systematic review of the literature on the effects of cordycepin on cell survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 publications on cordycepin were found by the cut-off date of 1 February 2021. After application of the exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The examination of 150 animal studies indicated that purified cordycepin has many potential therapeutic effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation (9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac conditions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has excellent potential as a lead for drug development, especially for age-related diseases. In addition, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution of cordycepin.
Collapse
Affiliation(s)
- Masar Radhi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Sadaf Ashraf
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK;
| | - Steven Lawrence
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Asta Arendt Tranholm
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Peter Arthur David Wellham
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Abdul Hafeez
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Ammar Sabah Khamis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Robert Thomas
- The Primrose Oncology Unit, Bedford Hospital NHS Trust, Bedford MK42 9DJ, UK;
- Department of Oncology, Addenbrooke’s Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Daniel McWilliams
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham NG5 1PB, UK
| | - Cornelia Huiberdina de Moor
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| |
Collapse
|
19
|
Mishra J, Khan W, Ahmad S, Misra K. Supercritical Carbon Dioxide Extracts of Cordyceps sinensis: Chromatography-based Metabolite Profiling and Protective Efficacy Against Hypobaric Hypoxia. Front Pharmacol 2021; 12:628924. [PMID: 34512317 PMCID: PMC8426348 DOI: 10.3389/fphar.2021.628924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
The toxicity and disposal concerns of organic solvents used in conventional extraction purposes has entailed the need for greener alternatives. Among such techniques, supercritical fluid extraction (SFE) has gained popularity by yielding extracts of high purity in a much faster manner. Carbon dioxide (CO2) is generally preferred as a supercritical solvent because of its lower temperature requirements, better diffusivity and easy removal. The present study describes the characterization of supercritical CO2 extracts of Indian variety of Cordyceps sinensis (CS)- a high-altitude medicinal mushroom widely revered in traditional medicine for its extensive anti-hypercholesterolemic, anti-inflammatory, anti-proliferative and energy-enhancing properties. Experimental parameters viz. 300 and 350 bar of extraction pressure, 60°C of temperature, 0.4°L/h CO2 of flow rate and use of 1% (v/v) of ethanol as entrainer were optimized to prepare three different extracts namely, CSF1, CSF2 and CSF3. High-performance thin-layer chromatography (HPTLC) was used for assessing the quality of all the extracts in terms of cordycepin, the pivot biomarker compound in CS. Characterization by HPTLC and GC-MS confirmed the presence of flavonoids and nucleobases and, volatile organic compounds (VOCs), respectively. The chromatographic data acquired from metabolite profiling were subjected to chemometric analysis in an open source R studio which illustrated interrelatedness between CSF1 and CSF2 in terms of two major principal components. i.e. Dim 1 and Dim 2 whose values were 40.33 and 30.52% in variables factor map plotted using the HPTLC-generated retardation factor values. The factor maps based on retention times of the VOCs exhibited a variance of Dim 1 = 43.95% and Dim 2 = 24.85%. Furthermore, the extracts demonstrated appreciable antibacterial activity against Escherichia coli and Salmonella typhi by generation of reactive oxygen species (ROS), protein leakage and efflux pump inhibition within bacterial pathogens. CSFs were elucidated to be significantly cytoprotective (p < 0.05) in a simulated hypobaric hypoxia milieu (0.5% oxygen). CSF2 showed the best results by effectively improving the viability of human embryonic kidney (HEK 293) cells to 82.36 ± 1.76% at an optimum dose of 100 µg/ml. Levels of hypoxia inducible factor-1 alpha (HIF-1α) were modulated four-fold upon supplementation with CSF2. The results collectively evinced that the CSF extracts are substantially bioactive and could be effectively utilized as mycotherapeutics for multiple bioeffects.
Collapse
Affiliation(s)
| | - Washim Khan
- Bioactive Natural Products Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,National Center for Natural Products Research, The University of Mississippi, Oxford, MS, United States
| | - Sayeed Ahmad
- Bioactive Natural Products Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
20
|
Bayazid AB, Jang YA, Kim YM, Kim JG, Lim BO. Neuroprotective Effects of Sodium Butyrate through Suppressing Neuroinflammation and Modulating Antioxidant Enzymes. Neurochem Res 2021; 46:2348-2358. [PMID: 34106394 DOI: 10.1007/s11064-021-03369-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
The discovery of effective therapeutic agents against neurodegenerative diseases (NDDs) remains challenging. Neurotoxicity, inflammations, and oxidative stress are associating factors of NDDs. Sodium butyrate (NaB) is a short-chain fatty acid found in diet and produced in the gut that reportedly protects cancer, inflammation, obesity and so on. Previously, SH-SY5Y cells were studied as in vitro models of cerebral diseases. We have investigated the neuroprotective effects of NaB in SH-SY5Y cells stimulated with TNF-α. The expression of inflammatory mediators, including iNOS, COX-2, and mitogen-activated protein kinases (MAPK) and the apoptotic regulators, including P-53, Bcl-2 associated X (BAX) Protein, and caspase-3 were analyzed by western blot analysis. The anti-apoptotic gene Bcl-2 and the pro-apoptotic gene BAX translocation were also investigated. Our results showed that NaB attenuated cell death and inhibited the NO production and decreased the expression of iNOS and COX-2 in TNF-α-stimulated SH-SY5Y cells. NaB notably ameliorated apoptotic regulatory proteins p-53, Caspase-3 and caspase-1 level, and reversed phosphorylation of extracellular signal-regulated kinases and p-38 proteins. NaB ameliorated Glucocorticoid receptor and NLRP3 inflammasome expressions. NaB also suppressed the BAX nuclear translocation and modulated Nrf-2, HO-1 and MnSOD expression in neuroblastoma cells. In addition, NaB substantially reversed the reactive oxygen species in H2O2 induced SH-SY5Y cells. Altogether, our results suggest that sodium butyrate has potential therapeutic effects against NDDs.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Department of Integrated Biosciences, Graduate School of Konkuk University, Chungju, 27478, Korea
| | - Young Ah Jang
- Convergence Research Center for Smart Healthcare, R&DB Foundation of Kyungsung University, Busan, Korea
| | - Yu Mi Kim
- Bio-Nano Technology Co, Daegu, Korea
| | - Jae Gon Kim
- BK21 FOUR, GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, 27478, Korea
| | - Beong Ou Lim
- Department of Integrated Biosciences, Graduate School of Konkuk University, Chungju, 27478, Korea.
| |
Collapse
|
21
|
Wang Y, Yang Z, Bao D, Li B, Yin X, Wu Y, Chen H, Tang G, Li N, Zou G. Improving Hypoxia Adaption Causes Distinct Effects on Growth and Bioactive Compounds Synthesis in an Entomopathogenic Fungus Cordyceps militaris. Front Microbiol 2021; 12:698436. [PMID: 34239513 PMCID: PMC8258390 DOI: 10.3389/fmicb.2021.698436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cordyceps militaris is an entomopathogenic fungus producing a variety of bioactive compounds. To meet the huge demand for medicinal and edible products, industrialized fermentation of mycelia and cultivation of stromata have been widely developed in China. The content of bioactive metabolites of C. militaris, such as cordycepin, is higher when cultivated on silkworm pupae than on rice or in broth. However, compared with other cultivation methods, C. militaris grows more slowly and accumulates less biomass. The hypoxic environment in pupa hemocoel is one of environmental factor which is not existed in other cultivation methods. It is suggested that hypoxia plays an important role on the growth and the synthesis of bioactive compounds in C. militaris. Here, we demonstrated that the distinct effects on the growth and synthesis of bioactive compounds employing different strategies of improving hypoxia adaption. The introduction of Vitreoscilla hemoglobin enhanced growth, biomass accumulation, and crude polysaccharides content of C. militaris. However, cordycepin production was decreased to 9-15% of the control group. Meanwhile, the yield of adenosine was increased significantly. Nonetheless, when the predicted bHLH transcription factor of sterol regulatory element binding proteins (SREBPs) was overexpressed in C. militaris to improve the hypoxia adaption of fungal cells, cordycepin content was significantly increased more than two-fold. These findings reveal the role of SREBPs on growth and bioactive compounds synthesis. And it also provides a scientific basis for rationally engineering strains and optimization strategies of air supply in cultivation and fermentation.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhanshan Yang
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, China
| | - Dapeng Bao
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bo Li
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin Yin
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Wu
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Chen
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guirong Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nanyi Li
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, China
| | - Gen Zou
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
22
|
Khuntawee W, Amornloetwattana R, Vongsangnak W, Namdee K, Yata T, Karttunen M, Wong-Ekkabut J. In silico and in vitro design of cordycepin encapsulation in liposomes for colon cancer treatment. RSC Adv 2021; 11:8475-8484. [PMID: 35423402 PMCID: PMC8695206 DOI: 10.1039/d1ra00038a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/17/2021] [Indexed: 01/04/2023] Open
Abstract
Cordycepin or 3'-deoxyadenosine is an interesting anti-cancer drug candidate that is found in abundance in the fungus Cordyceps militaris. It inhibits cellular growth of many cancers including lung carcinoma, melanoma, bladder cancer, and colon cancer by inducing apoptosis, anti-proliferation, anti-metastasis and by arresting the cell cycle. Cordycepin has, however, poor stability and low solubility in water, resulting in loss of its bioactivity. Liposomes can be used to overcome these obstacles. Our aim is to improve cordycepin's anti-colon cancer activity by liposome encapsulation. Cordycepin-encapsulated liposomes were designed and fabricated based on a combination of theoretical and experimental studies. Molecular dynamics (MD) simulations and free energy calculations suggest that phosphatidylcholine (PC) lipid environment is favorable for cordycepin adsorption. Cordycepin passively permeates into PC lipid bilayers without membrane damage and strongly binds to the lipids' polar groups by flipping its deoxyribose sugar toward the bilayer center. Our fabricated liposomes containing 10 : 1 molar ratio of egg yolk PC : cholesterol showed encapsulation efficiency (%EE) of 99% using microfluidic hydrodynamic focusing (MHF) methods. In our in vitro study using the HT-29 colon cancer cell line, cordycepin was able to inhibit growth by induction of apoptosis. Cell viability was significantly decreased below 50% at 125 μg mL-1 dosage after 48 h treatment with non-encapsulated and encapsulated cordycepin. Importantly, encapsulation provided (1) a 2-fold improvement in the inhibition of cancer cell growth at 125 μg mL-1 dosage and (2) 4-fold increase in release time. These in silico and in vitro studies indicate that cordycepin-encapsulated liposomes could be a potent drug candidate for colon cancer therapy.
Collapse
Affiliation(s)
- Wasinee Khuntawee
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand
| | - Rawiporn Amornloetwattana
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand
| | - Wanwipa Vongsangnak
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Department of Zoology, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Katawut Namdee
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency 111 Thailand Science Park, Paholyothin Rd., Klong Luang Pathumthani 12120 Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University Bangkok 10330 Thailand
- Natural Products and Nanoparticles Research Unit, Chulalongkorn University Bangkok 10330 Thailand
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- Department of Applied Mathematics, The University of Western Ontario London ON N6A 5B7 Canada
- The Center for Advanced Materials and Biomaterials Research, The University of Western Ontario London ON N6K 3K7 Canada
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand
| |
Collapse
|
23
|
Anti-Cancer Effect of Cordycepin on FGF9-Induced Testicular Tumorigenesis. Int J Mol Sci 2020; 21:ijms21218336. [PMID: 33172093 PMCID: PMC7672634 DOI: 10.3390/ijms21218336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cordycepin, a bioactive constituent from the fungus Cordyceps sinensis, could inhibit cancer cell proliferation and promote cell death via induction of cell cycle arrest, apoptosis and autophagy. Our novel finding from microarray analysis of cordycepin-treated MA-10 mouse Leydig tumor cells is that cordycepin down-regulated the mRNA levels of FGF9, FGF18, FGFR2 and FGFR3 genes in MA-10 cells. Meanwhile, the IPA-MAP pathway prediction result showed that cordycepin inhibited MA-10 cell proliferation by suppressing FGFs/FGFRs pathways. The in vitro study further revealed that cordycepin decreased FGF9-induced MA-10 cell proliferation by inhibiting the expressions of p-ERK1/2, p-Rb and E2F1, and subsequently reducing the expressions of cyclins and CDKs. In addition, a mouse allograft model was performed by intratumoral injection of FGF9 and/or intraperitoneal injection of cordycepin to MA-10-tumor bearing C57BL/6J mice. Results showed that FGF9-induced tumor growth in cordycepin-treated mice was significantly smaller than that in a PBS-treated control group. Furthermore, cordycepin decreased FGF9-induced FGFR1-4 protein expressions in vitro and in vivo. In summary, cordycepin inhibited FGF9-induced testicular tumor growth by suppressing the ERK1/2, Rb/E2F1, cell cycle pathways, and the expressions of FGFR1-4 proteins, suggesting that cordycepin can be used as a novel anticancer drug for testicular cancers.
Collapse
|
24
|
Kengkittipat W, Kaewmalun S, Khongkow M, Iempridee T, Jantimaporn A, Bunwatcharaphansakun P, Yostawonkul J, Yata T, Phoolcharoen W, Namdee K. Improvement of the multi-performance biocharacteristics of cordycepin using BiloNiosome-core/chitosan-shell hybrid nanocarriers. Colloids Surf B Biointerfaces 2020; 197:111369. [PMID: 33032178 DOI: 10.1016/j.colsurfb.2020.111369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022]
Abstract
Cordycepin, a derivative of the nucleotide adenosine, has displayed several pharmacological activities including enhanced apoptosis and cancer cells inhibition. However, oral administration of cordycepin has limited practical use due to its poor bioavailability in the intestine. Herein, we developed and demonstrated a hybrid nanocarrier system in the form of biloniosome-core/chitosan-shell hybrid nanocarriers (HNCs) in order to improve the bio-characteristics of cordycepin. In this study, HNCs were prepared by using a solvent (ethanol) injection method involving cordycepin as the biloniosome core and mucoadhesive chitosan biopolymer as a coating shell. Our results showed that the cordycepin-loaded HNCs were positively charged with enhanced mucoadhesive characteristics and highly stable in gastric fluid. The increased permeability of cordycepin-loaded HNCs compared with standard cordycepin was confirmed by in vitro intestinal permeation study across the human intestinal barrier. In addition, we demonstrated that the cordycepin-loaded HNCs are able to release their components in an active form resulting in enhanced anti-cancer activity in two-dimensional (2D) cell cultures as well as in three-dimensional (3D) multi-cellular spheroids of colon cancer cells. Further, quantitative real time PCR analysis of apoptotic gene expression revealed that cordycepin HNCs can induce apoptosis in cancer cells by negatively regulating the expression of B-cell lymphoma-extra large (BCL-XL). I Overall our results showed that the hybrid nanocarrier systems represent a promising strategy for improving the bio-characteristics of cordycepin which can be considered as a potential anti-cancer agent for colorectal cancer chemotherapy.
Collapse
Affiliation(s)
- Warut Kengkittipat
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Somrudee Kaewmalun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathumthani 12120, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathumthani 12120, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathumthani 12120, Thailand
| | - Angkana Jantimaporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathumthani 12120, Thailand
| | - Phichaporn Bunwatcharaphansakun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathumthani 12120, Thailand
| | - Jakarwan Yostawonkul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathumthani 12120, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
25
|
Liao X, Tao L, Guo W, Wu ZX, Du H, Wang J, Zhang J, Chen H, Chen ZS, Lin L, Sun L. Combination of Cordycepin and Apatinib Synergistically Inhibits NSCLC Cells by Down-Regulating VEGF/PI3K/Akt Signaling Pathway. Front Oncol 2020; 10:1732. [PMID: 33014856 PMCID: PMC7505117 DOI: 10.3389/fonc.2020.01732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background The application of apatinib is immensely limited by its acquired drug resistance. This research investigates whether cordycepin, a component from Cordyceps could synergize with apatinib to improve its anticancer effect on non-small cell lung cancer (NSCLC) cells. Methods The NSCLC cell lines A549, PC9, and H1993, and human bronchial epithelial (HBE) cell line Bears-2B were used in this study. Cell counting kit 8, colony formation assays, wound healing assay, transwell assay, and flow cytometry analysis were performed to assess the cell viability, the migration ability, and invasion ability of the cells. Kyoto encyclopedia of genes and genomes (KEGG), western blotting and molecular docking was applied to analyze the possible pathways affected by cordycepin. Results The combination of cordycepin and apatinib in a ratio of 5:1 synergistically reduced proliferation of NSCLC cells, inhibited cell migration and invasion, increased cell apoptosis by altering cell cycle in NSCLC A549 and PC9 cells. The VEGF/PI3K/Akt pathway was inhibited after treatment with cordycepin and apatinib. Conclusion Our findings demonstrated that the combination of cordycepin and apatinib has synergistically anticancer effect on NSCLC cells by down-regulating VEGF/PI3K/Akt signaling pathway. This result indicated that cordycepin and apatinib could be a promising drug combination against NSCLC.
Collapse
Affiliation(s)
- Xiaozhong Liao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanting Tao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Haiyan Du
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Wang
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jue Zhang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanrui Chen
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Khan MA, Tania M. Cordycepin in Anticancer Research: Molecular Mechanism of Therapeutic Effects. Curr Med Chem 2020; 27:983-996. [PMID: 30277143 DOI: 10.2174/0929867325666181001105749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cordycepin is a nucleotide analogue from Cordyceps mushrooms, which occupies a notable place in traditional medicine. OBJECTIVE In this review article, we have discussed the recent findings on the molecular aspects of cordycepin interactions with its recognized cellular targets, and possible mechanisms of its anticancer activity. METHODS We have explored databases like pubmed, google scholar, scopus and web of science for the update information on cordycepin and mechanisms of its anticancer activity, and reviewed in this study. RESULTS Cordycepin has been widely recognized for its therapeutic potential against many types of cancers by various mechanisms. More specifically, cordycepin can induce apoptosis, resist cell cycle and cause DNA damage in cancer cells, and thus kill or control cancer cell growth. Also cordycepin can induce autophagy and modulate immune system. Furthermore, cordycepin also inhibits tumor metastasis. Although many success stories of cordycepin in anticancer research in vitro and in animal model, and there is no successful clinical trial yet. CONCLUSION Ongoing research studies have reported highly potential anticancer activities of cordycepin with numerous molecular mechanisms. The in vitro and in vivo success of cordycepin in anticancer research might influence the clinical trials of cordycepin, and this molecule might be used for development of future cancer drug.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mousumi Tania
- Molecular Cancer Research Division, Red-Green Research Center, Dhaka, Bangladesh
| |
Collapse
|
27
|
Ji Y, Cao Y, Song Y. Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2737-2745. [PMID: 31304798 DOI: 10.1080/21691401.2019.1629952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma is the most common liver cancer among different types of cancers. Cordyceps Militaris mushroom species traditionally used as an alternative medicine in china for centuries. Gold nanoparticles plays vital role in the development of the anticancer drugs. In our research, we investigated the gold nanoparticles with C. Militaris on the hepatocellular carcinoma HepG2 cells. The synthesized gold nanoparticles stability and integrity was studied at different time intervals. The gold nanoparticles potentially halt the growth of the HepG2 cells at the IC50 concentration between 10 μg and 12.5 μg/ml. The HR-TEM and XRD revealed the size and shape of the synthesized gold nanoparticles. The size of the gold nanoparticles was about 15 20 nm and the shape of gold nanoparticles was face-center-cubic structure. The FT-IR results proved that the gold nanoparticles contain hydroxyl and alkynes groups. The gold nanoparticles extract develops ROS and cause damage to the mitochondrial membrane potential in the hepatocellular carcinoma HepG2 cells. The gold nanoparticles extract tends to initiate the apoptosis by activating the Bax, Bid, caspases and inhibits the activation anti-apoptotic bcl-2 in the HepG2 cells. Our results concluded that the gold nanoparticles with C. Militaris would be an efficient chemotherapeutic drug against the hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yujiang Ji
- a Department of Hepatobiliary, Pancreatic and Minimally Invasive Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University , Zhengzhou City , P. R. China
| | - Yang Cao
- b Department of Cell Biology, College of Life Sciences, Nankai University , Tianjin , P. R. China
| | - Yong Song
- c Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital , Xi'an , P. R. China
| |
Collapse
|
28
|
Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9240426. [PMID: 31583051 PMCID: PMC6754955 DOI: 10.1155/2019/9240426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Recently, reactive oxygen species (ROS), a class of highly bioactive molecules, have been extensively studied in cancers. Cancer cells typically exhibit higher levels of basal ROS than normal cells, primarily due to their increased metabolism, oncogene activation, and mitochondrial dysfunction. This moderate increase in ROS levels facilitates cancer initiation, development, and progression; however, excessive ROS concentrations can lead to various types of cell death. Therefore, therapeutic strategies that either increase intracellular ROS to toxic levels or, conversely, decrease the levels of ROS may be effective in treating cancers via ROS regulation. Chinese herbal medicine (CHM) is a major type of natural medicine and has greatly contributed to human health. CHMs have been increasingly used for adjuvant clinical treatment of tumors. Although their mechanism of action is unclear, CHMs can execute a variety of anticancer effects by regulating intracellular ROS. In this review, we summarize the dual roles of ROS in cancers, present a comprehensive analysis of and update the role of CHM—especially its active compounds and ingredients—in the prevention and treatment of cancers via ROS regulation and emphasize precautions and strategies for the use of CHM in future research and clinical trials.
Collapse
|
29
|
Han YY, Chen ZH, Shang YJ, Yan WW, Wu BY, Li CH. Cordycepin improves behavioral-LTP and dendritic structure in hippocampal CA1 area of rats. J Neurochem 2019; 151:79-90. [PMID: 31314908 DOI: 10.1111/jnc.14826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Cordycepin, an adenosine analog, has been reported to improve cognitive function, but which seems to be inconsistent with the reports showing that cordycepin inhibited long-term potentiation (LTP). Behavioral-LTP is usually used to study long-term synaptic plasticity induced by learning tasks in freely moving animals. In order to investigate simultaneously the effects of cordycepin on LTP and behavior in rats, we applied the model of behavioral-LTP induced by Y-maze learning task through recording population spikes in hippocampal CA1 region. Golgi staining and Sholl analysis were employed to assess the morphological structure of dendrites in pyramidal cells of hippocampal CA1 area, and western blotting was used to examine the level of adenosine A1 receptors and A2A receptors (A2AR). We found that cordycepin significantly improved behavioral-LTP magnitude, accompanied by increases in the total length of dendrites, the number of intersections and spine density but did not affect Y-maze learning task. Furthermore, cordycepin obviously reduced A2AR level without altering adenosine A1 receptors level; and the agonist of A2AR (CGS 21680) rather than antagonist (SCH 58261) could reverse the potentiation of behavioral-LTP induced by cordycepin. These results suggested that cordycepin improved behavioral-LTP and morphological structure of dendrite in hippocampal CA1 but did not contribute to the improvement of learning and memory. And cordycepin improved behavioral-LTP may be through reducing the level of A2AR in hippocampus. Collectively, the effects of cordycepin on cognitive function and LTP were complex and involved multiple mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China
| | - Zhao-Hui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wen-Wen Yan
- School of Life Science, South China Normal University, Guangzhou, China
| | - Bao-Yan Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
30
|
Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi. Molecules 2019; 24:molecules24122231. [PMID: 31207985 PMCID: PMC6632035 DOI: 10.3390/molecules24122231] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cordycepin (3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin. Here, we summarized the medicinal targets, biological applications, cytotoxicity, delivery carriers, stability, and pros/cons of cordycepin in clinical applications, as well as described the metabolic mechanisms of cordycepin in cordycepin-producing fungi. We posit that new approaches, including single-cell analysis, have the potential to enhance medicinal potency and unravel all facets of metabolic mechanisms of cordycepin in Cordyceps militaris.
Collapse
|
31
|
Wang Y, Lv Y, Liu TS, Yan WD, Chen LY, Li ZH, Piao YS, An RB, Lin ZH, Ren XS. Cordycepin suppresses cell proliferation and migration by targeting CLEC2 in human gastric cancer cells via Akt signaling pathway. Life Sci 2019; 223:110-119. [DOI: 10.1016/j.lfs.2019.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/03/2019] [Accepted: 03/10/2019] [Indexed: 11/28/2022]
|
32
|
Tran NKS, Kim GT, Lee DY, Kim YJ, Park HJ, Park DK, Park TS. Fermented Cordyceps militaris Extract Ameliorates Hepatosteatosis via Activation of Fatty Acid Oxidation. J Med Food 2019; 22:325-336. [PMID: 30864855 DOI: 10.1089/jmf.2018.4245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nonalcoholic fatty liver disease is a progressive disease involving the accumulation of lipid droplets in the liver. In this study, we investigated the anti-hepatosteatosis effects of fermented Cordyceps militaris extract (CME) in AML-12 hepatocytes. Although the levels of adenosine and cordycepin were reduced in the extracts of CM grown on germinated soybean (GSCE) and fermented CM grown on germinated soybean (GSC) by Pediococcus pentosaceus ON188 (ON188E), the expression of fatty acid oxidation (FAO) genes were upregulated only by GSC-ON188E treatment in a dose-dependent manner. In contrast, a lipogenic gene, stearoyl Coenzyme A desaturase 1, was downregulated by ON188E. Formation of intracellular lipid droplets by the addition of oleic acid was reduced by ON188E to levels observed in WY14643-treated cells. When cells were treated with ON188E, sphingosine kinase 2 mainly responsible for hepatic sphingosine 1-phosphate (S1P) synthesis was upregulated and S1P was elevated. Collectively, the fermented GSC extract activates FAO through elevation of S1P synthesis and has potential as a therapeutic for hepatosteatosis.
Collapse
Affiliation(s)
| | - Goon-Tae Kim
- 1 Department of Life Science, Gachon University, Sungnam, Korea
| | - Do Yup Lee
- 2 Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Korea
| | - Young-Jun Kim
- 3 Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Hye-Jin Park
- 4 Department of Food Science and Biotechnology, Gachon University, Sungnam, Korea
| | - Dong Ki Park
- 5 Cell Activation Research Institute, Sungnam, Korea
| | - Tae-Sik Park
- 1 Department of Life Science, Gachon University, Sungnam, Korea
| |
Collapse
|
33
|
Antitumor potential of new low molecular weight antioxidative preparations from the white rot fungus Cerrena unicolor against human colon cancer cells. Sci Rep 2019; 9:1975. [PMID: 30760769 PMCID: PMC6374373 DOI: 10.1038/s41598-018-37947-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the anticancer and antioxidant activities of low molecular weight subfractions isolated from secondary metabolites produced by the wood degrading fungus Cerrena unicolor. Human colon cancer cells (stage I) HT-29 and human normal colon epithelial cells CCD 841 CoTr were used in the research. The present study demonstrated that the low molecular weight subfractions exhibited inhibitory activity towards human colon cancer cells HT-29 at a concentration range of 25–200 μg/mL. All 6 subfractions inhibited proliferation of cells down to 47.5–9.2% at the highest concentrations in a dose-dependent manner. The most desired activity was exhibited by subfractions S, 3, 4, and 5, as the proliferation of HT-29 cells was inhibited to the greatest extent (16.5, 47.5, 42.7, and 26.1% of the control, respectively), while the effect on CCD 841 CoTr cells was the mildest (inhibition to 54.4, 71.4, 79.4, and 53.4%, compared to the control, respectively). The microscopic observation revealed that all extracts induced programmed cell death, i.e. apoptosis (up to 44.4% (subfraction 6) towards HT-29 and less than 20% (most fractions) towards CCD 841 CoTr), with no or a significantly low level of necrosis in both cell lines at the same time.
Collapse
|
34
|
Lin YT, Liang SM, Wu YJ, Wu YJ, Lu YJ, Jan YJ, Ko BS, Chuang YJ, Shyue SK, Kuo CC, Liou JY. Cordycepin Suppresses Endothelial Cell Proliferation, Migration, Angiogenesis, and Tumor Growth by Regulating Focal Adhesion Kinase and p53. Cancers (Basel) 2019; 11:cancers11020168. [PMID: 30717276 PMCID: PMC6406613 DOI: 10.3390/cancers11020168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Focal adhesion kinase (FAK) plays an important role in vascular development, including the regulation of endothelial cell (EC) adhesion, migration, proliferation, and survival. 3'-deoxyadenosine (cordycepin) is known to suppress FAK expression, cell migration, and the epithelial⁻mesenchymal transition in hepatocellular carcinoma (HCC). However, whether cordycepin affects FAK expression and cellular functions in ECs and the specific molecular mechanism remain unclear. In this study, we found that cordycepin suppressed FAK expression and the phosphorylation of FAK (p-FAK) at Tyr397 in ECs. Cordycepin inhibited the proliferation, wound healing, transwell migration, and tube formation of ECs. Confocal microscopy revealed that cordycepin significantly reduced FAK expression and decreased focal adhesion number of ECs. The suppressed expression of FAK was accompanied by induced p53 and p21 expression in ECs. Finally, we demonstrated that cordycepin suppressed angiogenesis in an in vivo angiogenesis assay and reduced HCC tumor growth in a xenograft nude mice model. Our study indicated that cordycepin could attenuate cell proliferation and migration and may result in the impairment of the angiogenesis process and tumor growth via downregulation of FAK and induction of p53 and p21 in ECs. Therefore, cordycepin may be used as a potential adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Ya-Ju Wu
- Department of Pathology, Taichung Veterans General Hospital, Chiayi Branch, Chiayi City 600, Taiwan.
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. .
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
35
|
Dong J, Li Y, Xiao H, Luo D, Zhang S, Zhu C, Jiang M, Cui M, Lu L, Fan S. Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. Toxicol Appl Pharmacol 2018; 364:12-21. [PMID: 30529626 DOI: 10.1016/j.taap.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022]
Abstract
Radiation therapy toward malignancies is often ineffective owing to radioresistance of cancer cells. On the basis of anti-tumor properties of cordycepin, we examined the effects of cordycepin on sensitizing breast cancer cells toward radiotherapy. Cordycepin administration promoted G2/M arrest and apoptosis of MCF-7 and MDA-MB-231 cells resulting in restraining the proliferation of the cells in vitro and in vivo following irradiation. Mechanistic investigations showed that the breast cancer cells cultured with cordycepin harbored higher levels of intracellular reactive oxygen species (ROS) and incremental numbers of γ-H2AX foci after irradiation exposure. Importantly, cordycepin treatment down-regulated the expression levels of Nuclear factor erythroid 2-related factor (Nrf2) and a series of downstream genes, such as heme oxygenase-1 (HO-1), to enhance ROS in breast cancer cells exposed to irradiation. Together, our observations demonstrate that cordycepin treatment sensitizes breast carcinoma cells toward irradiation via Nrf2/HO-1/ROS axis. Thus, our findings provide novel insights into the function and the underlying mechanism of cordycepin in radiotherapy, and suggest that cordycepin might be employed as a radiosensitizer during radiotherapy toward breast cancer in a pre-clinical setting.
Collapse
Affiliation(s)
- Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dan Luo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
36
|
Park JY, Park KM, Yoo Y, Yu H, Lee CJ, Jung HS, Kim K, Chang PS. Catalytic characteristics of a sn-1(3) regioselective lipase from Cordyceps militaris. Biotechnol Prog 2018; 35:e2744. [PMID: 30421587 DOI: 10.1002/btpr.2744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/10/2018] [Indexed: 11/06/2022]
Abstract
A total of 39 agricultural products were screened for natural sources of lipases with distinctive positional specificity. Based on this, Cordyceps militaris lipase (CML) was selected and subsequently purified by sequential chromatography involving anion-exchange, hydrophobic-interaction, and gel-permeation columns. As a result of the overall purification procedure, a remarkable increase in the specific activity of the CML (4.733 U/mg protein) was achieved, with a yield of 2.47% (purification fold of 94.54). The purified CML has a monomeric structure with a molecular mass of approximately 62 kDa. It was further identified as a putative extracellular lipase from C. militaris by the partial sequence analysis using ESI-Q-TOF MS. In a kinetic study of the CML-catalyzed hydrolysis, the values of Vmax , Km , and kcat were determined to be 4.86 μmol·min-1 ·mg-1 , 0.07 mM, and 0.29 min-1 , respectively. In particular, the relatively low Km value indicated that CML has a high affinity for its substrate. With regard to positional specificity, CML selectively cleaved triolein at the sn-1 or 3 positions of glycerol backbone, releasing 1,2(2,3)-diolein as the major products. Therefore, CML can be considered a distinctive biocatalyst with sn-1(3) regioselectivity. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2744, 2019.
Collapse
Affiliation(s)
- Jun-Young Park
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Dept. of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yoonjung Yoo
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjong Yu
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Joo Lee
- Dept. of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keesung Kim
- Research Inst. of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pahn-Shick Chang
- Dept. of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.,Research Inst. of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
37
|
The Anticancer Properties of Cordycepin and Their Underlying Mechanisms. Int J Mol Sci 2018; 19:ijms19103027. [PMID: 30287757 PMCID: PMC6212910 DOI: 10.3390/ijms19103027] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023] Open
Abstract
Cordyceps is a genus of ascomycete fungi that has been used for traditional herbal remedies. It contains various bioactive ingredients including cordycepin. Cordycepin, also known as 3-deoxyadenosine, is a major compound and has been suggested to have anticancer potential. The treatment of various cancer cells with cordycepin in effectively induces cell death and retards their cancerous properties. However, the underlying mechanism is not fully understood. Recent evidence has shed light on the molecular pathways involving cysteine-aspartic proteases (caspases), mitogen-activated protein kinases (MAPKs), and glycogen synthase kinase 3 beta (GSK-3β). Furthermore, the pathways are mediated by putative receptors, such as adenosine receptors (ADORAs), death receptors (DRs), and the epidermal growth factor receptor (EGFR). This review provides the molecular mechanisms by which cordycepin functions as a singular or combinational anticancer therapeutic agent.
Collapse
|
38
|
Zhang Y, Zhang XX, Yuan RY, Ren T, Shao ZY, Wang HF, Cai WL, Chen LT, Wang XA, Wang P. Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo. Onco Targets Ther 2018; 11:4479-4490. [PMID: 30122940 PMCID: PMC6078188 DOI: 10.2147/ott.s164670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Cordycepin, the main active ingredient of a traditional Chinese herbal remedy - extracted from Cordyceps sinensis - has been demonstrated as a very effective anti-inflammatory and antitumor drug. The present study investigated its antitumor effect on pancreatic cancer, a highly aggressive cancer with extremely poor prognosis due to malignancy, and clarified its underlying mechanism both in vitro and in vivo. Methods The antitumor viability of cordycepin on human pancreatic cancer MIAPaCa-2 and Capan-1 cells was determined by colony formation assays. Annexin V/PI double staining and flow cytometry assay were used to investigate whether cordycepin induced apoptosis and cell cycle arrest. The mitochondrial membrane potential (ΔΨm) was analyzed by Rhodamine 123 staining, and expression of related proteins evaluated by Western blot and immunohistochemistry, both on pancreatic cancer cells and tumor xenografts to reveal the potential mechanism for the effect of cordycepin. Furthermore, the in vivo efficacy was examined on nude mice bearing MIAPaCa-2 cell tumors treated by intraperitoneal injection of cordycepin (0, 15, and 50 mg/kg/d) for 28 days. Results Cordycepin inhibited cell viability, proliferation and colony formation ability and induced cell cycle arrest and early apoptosis of human pancreatic cancer cells (MIAPaCa-2 and Capan-1) in a dose- and time-dependent manner. The same effect was also observed in vivo. Decrease of ΔΨm and upregulation of Bax, cleaved caspase-3, cleaved caspase-9, and cleaved PARP as well as downregulation of Bcl-2 both in vitro and in vivo indicated that the mitochondria-mediated intrinsic pathway was involved in cordycepin's antitumor effect. Conclusion Our data showed that cordycepin inhibited the activity of pancreatic cancer both in vitro and in vivo by regulating apoptosis-related protein expression through the mitochondrial pathway and suggest that cordycepin may be a promising therapeutic option for pancreatic cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery, Hangzhou First People's Hospital, Hangzhou 310006, People's Republic of China
| | - Xiao Xi Zhang
- Shanghai Health Development Research Center, Shanghai 200040, People's Republic of China
| | - Rui Yan Yuan
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Tai Ren
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Zi Yu Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Hong Fei Wang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Wei Long Cai
- Department of General Surgery, Huzhou Central Hospital, Zhejiang 313000, People's Republic of China
| | - Li Tian Chen
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Xu An Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Ping Wang
- Department of General Surgery, Hangzhou First People's Hospital, Hangzhou 310006, People's Republic of China
| |
Collapse
|
39
|
Yang C, Zhao L, Yuan W, Wen J. Cordycepin induces apoptotic cell death and inhibits cell migration in renal cell carcinoma via regulation of microRNA-21 and PTEN phosphatase. Biomed Res 2018; 38:313-320. [PMID: 29070781 DOI: 10.2220/biomedres.38.313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cordycepin is an active component extracted from Traditional Chinese medical herb Cordyceps militaris. Many reports demonstrated that cordycepin harbors antitumor activity in a broad spectrum of cancer types. In this study the actions and the underneath molecular mechanisms of cordycepin were investigated in renal cell carcinoma Caki-1 cell line. Results showed that cordycepin induced apoptotic cell death and inhibited cell migration in Caki-1 cells. Quantitative real-time PCR results and western blot analyses indicated cordycepin dose-dependently decreased microRNA-21 expression and Akt phosphorylation levels in Caki-1 cells, but increased PTEN phosphatase levels. Block of cordycepin-induced microRNA-21 decrease or PTEN increase in Caki-1 cells by transfection of microRNA-21 mimic or PTEN siRNA significantly attenuated cordycepin-induced cell death and inhibition of cell migration. Taken together, findings in present study suggested that cordycepin induced apoptotic cell death in renal cell carcinoma through regulation of microRNA-21 and PTEN phosphatase. Furthermore, present study also firstly illustrated that cordycepin inhibited cell migration of renal cell carcinoma, which also involved microRNA-21 and PTEN phosphatase.
Collapse
Affiliation(s)
- Chao Yang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University.,Department of Urology, The First Affiliated Hospital of Zhengzhou University
| | - Linlin Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University
| |
Collapse
|
40
|
Cordycepin induces apoptosis of human ovarian cancer cells by inhibiting CCL5-mediated Akt/NF-κB signaling pathway. Cell Death Discov 2018; 4:62. [PMID: 29844932 PMCID: PMC5966410 DOI: 10.1038/s41420-018-0063-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/26/2022] Open
Abstract
The chemokine, CCL5, is a key mediator for the recruitment of immune cells into tumors and tissues. Akt/NF-κB signaling is significantly activated by CCL5. However, the role of NF-κB inactivation in apoptosis induced by negative regulation of CCL5 remains unclear. Here, we analyzed the effect of cordycepin on NF-κB activity in SKOV-3 cells and found that cordycepin-mediated inhibition of NF-κB signaling induced apoptosis in SKOV-3 cells via the serial activation of caspases. In addition, immune-blotting analysis showed that CCL5 is highly expressed in SKOV-3 cells. In addition to activating caspases, we show that, cordycepin prevents TNF-α-induced increase in CCL5, Akt, NF-κB, and c-FLIPL activation and that CCL5 siRNA could inhibit Akt/NF-κB signaling. Moreover, cordycepin negatively regulated the TNF-α-mediated IκB/NF-κB pathway and c-FLIPL activation to promote JNK phosphorylation, resulting in caspase-3 activation and apoptosis. Also, we show that c-FLIPL is rapidly lost in NF-κB activation-deficient. siRNA mediated c-FLIP inhibition increased JNK. SP600125, a selective JNK inhibitor, downregulated p-JNK expression in cordycepin-treated SKOV-3 cells, leading to suppression of cordycepin-induced apoptosis. Thus, these results indicate that cordycepin inhibits CCL5-mediated Akt/NF-κB signaling, which upregulates caspase-3 activation in SKOV-3 cells, supporting the potential of cordycepin as a therapeutic agent for ovarian cancer.
Collapse
|
41
|
Yu X, Ling J, Liu X, Guo S, Lin Y, Liu X, Su L. Cordycepin induces autophagy-mediated c-FLIPL degradation and leads to apoptosis in human non-small cell lung cancer cells. Oncotarget 2018; 8:6691-6699. [PMID: 28035061 PMCID: PMC5351663 DOI: 10.18632/oncotarget.14262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
Cordycepin, a main active composition extracted from Cordyceps militaris, has been reported to exert anti-tumor activity in a broad spectrum of cancer types. However, the function of cordycepin on human non-small cell lung cancer cells is still obscure. Our present work showed that cordycepin inhibited cell growth by inducing apoptosis and autophagy in human NSCLC cells. Further study revealed that cordycepin triggered extrinsic apoptosis associated with down-regulation of c-FLIPL which suppresses the activity of caspase-8. And ectopic expression of c-FLIPL dramatically prevented cordycepin-caused apoptosis. Meanwhile, cordycepin stimulated autophagy through suppressing mTOR signaling pathway in lung cancer cells. When autophagy was blocked by Atg5 siRNA or PI3K inhibitor LY294002, the levels of apoptosis caused by cordycepin were obviously attenuated. In addition, suppression of autophagy could also elevate the level of c-FLIPL which indicated cordycepin-triggered autophagy promoted the degradation of c-FLIPL. Therefore, we conclude that cordycepin induces apoptosis through autophagy-mediated downregulation of c-FLIPL in human NSCLC cells. Taken together, our findings provide a novel prospect on the anti-tumor property of cordycepin, which may further prompt cordycepin to serve as a promising therapeutic approach in NSCLC treatment.
Collapse
Affiliation(s)
- Xinghui Yu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| | - Jianya Ling
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| | - Xianfang Liu
- The Department of Otolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Sen Guo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| | - Yidan Lin
- The Thoracic Surgery Department of West China Hospital, West China Medical School of Sichuan University, Chengdu, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Jinan, China
| |
Collapse
|
42
|
Yan L, Wang L, Bai J, Miao X, Zeng W, Hua X, Ni R, Zhang D, Tang Q. Chromosome region maintenance-1 (CRM1) regulates apoptosis of intestinal epithelial cells via p27kip1 in Crohn's disease. Clin Res Hepatol Gastroenterol 2017; 41:445-458. [PMID: 28286054 DOI: 10.1016/j.clinre.2017.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the role of chromosome region maintenance-1 (CRM1) in Crohn's disease (CD) and its potential pathological mechanisms. METHODS The expression and distribution of CRM1 in mucosal biopsies from patients with active CD and normal controls were detected by immunohistochemistry (IHC). We established a murine model of acute colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Western blot was performed to investigate the expression levels of CRM1, apoptotic markers (active caspase-3 and cleaved PARP), p27kip1 and p-p27ser10. IHC was performed to evaluate the distribution of CRM1, and double immunofluorescence (IF) was performed to evaluate the co-localization of CRM1 and active capase-3. Cells of the human intestinal epithelial cell line HT-29 were incubated with tumor necrosis factor-α (TNF-α) to establish an apoptotic in vitro model. Western blot was performed to determine the expression levels of CRM1, active caspase-3, cleaved PARP and p-p27ser10. Cytoplasmic and nuclear extracts were assessed to examine the translocation of CRM1. The interaction between CRM1 and p27kip1 was assessed by co-immunoprecipitation (co-IP) assays. Furthermore, we used small interfering RNA (siRNA) to knock down the protein expression of CRM1 in HT-29 cells and then measured the expression of active caspase-3, cleaved PARP and p-p27ser10. Flow cytometry was used to determine the effect of CRM1 on intestinal epithelial cell (IEC) apoptosis. RESULTS We observed up-regulation of CRM1 accompanied by elevated levels of IEC apoptotic markers (active caspase-3 and cleaved PARP) and p-p27ser10 in IECs of patients with active CD and in TNBS-induced colitis model cells. However, the expression of p27kip1 was negatively correlated with the expression patterns of CRM1, p-p27ser10 and apoptotic biochemical markers. Co-localization of CRM1 and active caspase-3 in IECs of the TNBS group further indicated the possible involvement of CRM1 in IEC apoptosis. By employing TNF-α-treated HT-29 cells as an in vitro IEC apoptosis model, we found that the expression levels of CRM1 and p-p27ser10 were in accordance with active caspase-3 and cleaved PARP. In addition, immunoprecipitation confirmed the physical interaction between CRM1 and p27kip1. siRNA knockdown of CRM1 significantly inhibited the phosphorylation of p27kip1 and the expression of active caspase-3 and cleaved PARP. In addition, flow cytometry analysis also showed that silencing CRM1 by siRNA inhibited TNF-α-induced cellular apoptosis in HT-29 cells. CONCLUSIONS Up-regulated CRM1 may facilitate IEC apoptosis possibly through p27kip1 in CD, indicating an important role of CRM1 in the pathophysiology of CD.
Collapse
Affiliation(s)
- Lijun Yan
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian'an Bai
- Department of Gastroenterology, The Third Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xianjing Miao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Weiwen Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiumei Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Qiyun Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Joo JC, Hwang JH, Jo E, Kim YR, Kim DJ, Lee KB, Park SJ, Jang IS. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget 2017; 8:12211-12224. [PMID: 28099944 PMCID: PMC5355338 DOI: 10.18632/oncotarget.14661] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022] Open
Abstract
Forkhead transcription factor (Foxo3a) is a downstream effector of JNK-induced tumor suppression. However, it is not clear whether the caveolin-1 (CAV1)-mediated JNK/Foxo3a pathway is involved in cancer cell apoptosis. We found that cordycepin upregulates CAV1 expression, which was accompanied by JNK phosphorylation (p-JNK) and subsequent Foxo3a translocation into the nucleus, resulting in the upregulation of Bax protein expression. Furthermore, we found that CAV1 overexpression upregulated p-JNK, whereas CAV1 siRNA downregulated p-JNK. Additionally, SP600125, a specific JNK inhibitor, significantly increased Foxo3a phosphorylation, which downregulated Foxo3a translocation into the nucleus, indicating that CAV1 mediates JNK regulation of Foxo3a. Foxo3a siRNA downregulated Bax protein and attenuated A549 apoptosis, indicating that the CAV1-mediated JNK/Foxo3a pathway induces the apoptosis of A549 lung cancer cells. Cordycepin significantly decreased tumor volume in nude mice. Taken together, these results indicate that cordycepin promotes CAV1 upregulation to enhance JNK/Foxo3a signaling pathway activation, inducing apoptosis in lung cancer cells, and support its potential as a therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Jong Cheon Joo
- Department of Sasang Constitutional Medicine, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Jung Hoo Hwang
- College of Medicine, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Eunbi Jo
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Young-Rang Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Soo Jung Park
- Department of Sasang Constitutional Medicine, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea
| | - Ik-Soon Jang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| |
Collapse
|
44
|
Anticancer Efficacy of Cordyceps militaris Ethanol Extract in a Xenografted Leukemia Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8474703. [PMID: 28761499 PMCID: PMC5518515 DOI: 10.1155/2017/8474703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/17/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022]
Abstract
Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3β (p-GSK3β) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3β-related caspase-3-dependent apoptosis.
Collapse
|
45
|
Lu MD, Li LY, Li PH, You T, Wang FH, Sun WJ, Zheng ZQ. Gossypol induces cell death by activating apoptosis and autophagy in HT-29 cells. Mol Med Rep 2017; 16:2128-2132. [DOI: 10.3892/mmr.2017.6804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
|
46
|
Nasser MI, Masood M, Wei W, Li X, Zhou Y, Liu B, Li J, Li X. Cordycepin induces apoptosis in SGC‑7901 cells through mitochondrial extrinsic phosphorylation of PI3K/Akt by generating ROS. Int J Oncol 2017; 50:911-919. [PMID: 28197639 DOI: 10.3892/ijo.2017.3862] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/23/2016] [Indexed: 01/10/2023] Open
Abstract
Medicinal plants are affluent sources of several effectual natural drugs. Among them cordycepin which is extracted from Cordyceps militaris is a hopeful chemotherapy agent due to its extensive anti-inflammatory, anti-proliferative, antioxidant, and antitumor characteristics. This study investigated the efficacy of cordycepin in the context of human gastric cancer SGC‑7901 and searched for the cell death procedure. Cordycepin incorporates mitochondrial-mediated apoptosis in SGC‑7901 cells with the help of regulating mitochondrial extrinsic pathways by inhibition of A3AR and drive activation of DR3, which promote the activation of PI3K/Akt protein expression as well as collapse of mitochondrial membrane potential (MMP). In addition, phosphorylation of PI3K/Akt and DNA damage by cordycepin induced the production of reactive oxygen species (ROS), and mediates SGC‑7901 cell cycle cessation at S phase. Collectively, this study suggests that cordycepin might be effective as a modern chemotherapy drug for gastric cancer.
Collapse
Affiliation(s)
- Moussa Ide Nasser
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Muqaddas Masood
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Wei Wei
- Dental Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaochun Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Yifa Zhou
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Bao Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
47
|
Cordycepin inhibits migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation. J Nutr Biochem 2016; 41:109-116. [PMID: 28068557 DOI: 10.1016/j.jnutbio.2016.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/15/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
Cordycepin, a nucleoside-derivative-isolated form Cordyceps militaris, has been reported to suppress tumor cell proliferation and cause apoptosis. This study investigates the effect of cordycepin on the migration of human glioblastoma cells. Cordycepin suppressed the migration of the human glioblastoma cell lines U87MG and LN229 in transwell and wound healing assays. Cordycepin decreased protein expression of integrin α1, focal adhesion kinase (FAK), p-FAK, paxillin and p-paxillin. The lysosomal inhibitor NH4Cl blocked the ability of cordycepin to inhibit focal adhesion protein expression and glioma cell migration. In addition, the protein phosphatase inhibitors calyculin A and okadaic acid blocked the cordycepin-mediated reduction in p-Akt, p-FAK and migration. Hematoxylin and eosin staining of mouse xenografts demonstrated that cordycepin reduced brain tumor size in vivo. In conclusion, cordycepin inhibited migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation. This pathway may be a useful target for clinical therapy in the future.
Collapse
|
48
|
Kaluzki I, Hrgovic I, Hailemariam-Jahn T, Doll M, Kleemann J, Valesky EM, Kippenberger S, Kaufmann R, Zoeller N, Meissner M. Dimethylfumarate inhibits melanoma cell proliferation via p21 and p53 induction and bcl-2 and cyclin B1 downregulation. Tumour Biol 2016; 37:13627-13635. [PMID: 27468725 DOI: 10.1007/s13277-016-5285-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that dimethylfumarate (DMF), known as a highly potent anti-psoriatic agent, might have anti-tumorigenic properties in melanoma. It has recently been demonstrated that DMF inhibits melanoma proliferation by apoptosis and cell cycle inhibition and therefore inhibits melanoma metastasis. Nonetheless, the underlying mechanisms remain to be evaluated. To elucidate the effects of DMF on melanoma cell lines (A375, SK-Mel), we first performed cytotoxicity assays. No significant lactatedehydogenase (LDH) release could be found. In further analysis, we showed that DMF suppresses melanoma cell proliferation in a concentration-dependent manner. To examine whether these effects are conveyed by apoptotic mechanisms, we studied the amount of apoptotic nucleosomes and caspase 3/7 activity using ELISA analysis. Significant apoptosis was induced by DMF in both cell lines, and this could be paralleled with bcl-2 downregulation and PARP-1 cleavage. We also performed cell cycle analysis and found that DMF induced concentration-dependent arrests of G0/G1 as well as G2/M. To examine the underlying mechanisms of cell cycle arrest, we analyzed the expression profiles of important cell cycle regulator proteins such as p53, p21, cyclins A, B1, and D1, and CDKs 3, 4, and 6. Interestingly, DMF induced p53 and p21 yet inhibited cyclin B1 expression in a concentration-dependent manner. Other cell cycle regulators were not influenced by DMF. The knockdown of DMF induced p53 via siRNA led to significantly reduced apoptosis but had no influence on cell cycle arrest. We examined the adhesion of melanoma cells on lymphendothelial cells during DMF treatment and found a significant reduction in interaction. These data provide evidence that DMF inhibits melanoma proliferation by reinduction of important cell cycle inhibitors leading to a concentration-dependent G0/G1 or G2/M cell cycle arrest and induction of apoptosis via downregulation of bcl-2 and induction of p53 and PARP-1 cleavage. Hence, DMF might be an interesting agent in the treatment of melanoma and is worth further investigation in vivo.
Collapse
Affiliation(s)
- Irina Kaluzki
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Igor Hrgovic
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Tsige Hailemariam-Jahn
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Monika Doll
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Eva Maria Valesky
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Nadja Zoeller
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| |
Collapse
|
49
|
Shao LW, Huang LH, Yan S, Jin JD, Ren SY. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol Lett 2016; 12:995-1000. [PMID: 27446383 DOI: 10.3892/ol.2016.4706] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Cordycepin, also termed 3'-deoxyadenosine, is a nucleoside analogue from Cordyceps sinensis and has been reported to demonstrate numerous biological and pharmacological properties. Our previous study illustrated that the anti-tumor effect of cordycepin may be associated with apoptosis. In the present study, the apoptotic effect of cordycepin on HepG2 cells was investigated using 4',6-diamidino-2-phenylindole, tetraethylbenzimidazolylcarbocyanine iodide and propidium iodide staining analysis and flow cytometry. The results showed that cordycepin exhibited the ability to inhibit HepG2 cells in a time- and dose-dependent manner when cells produced typical apoptotic morphological changes, including chromatin condensation, the accumulation of sub-G1 cells and change mitochondrial permeability. A potential mechanism for cordycepin-induced apoptosis of human liver cancer HepG2 cells may occur through the extrinsic signaling pathway mediated by the transmembrane Fas-associated with death domain protein. Apoptosis was also associated with Bcl-2 family protein regulation, leading to altered mitochondrial membrane permeability and resulting in the release of cytochrome c into the cytosol. The activation of the caspase cascade is responsible for the execution of apoptosis. In conclusion, cordycepin-induced apoptosis in HepG2 cells involved the extrinsic and intrinsic signaling pathway and was primarily regulated by the Bcl-2 family proteins.
Collapse
Affiliation(s)
- Le-Wen Shao
- Nursing Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Li-Hua Huang
- Nursing Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sheng Yan
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian-Di Jin
- Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shao-Yan Ren
- Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
50
|
Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016; 37:8471-86. [PMID: 27059734 DOI: 10.1007/s13277-016-5035-9] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Collapse
|