1
|
Abdel-Aziz N, Saif-Elnasr M. Citicoline modulates inflammatory signaling pathways in the spleen of rats exposed to gamma-radiation. Immunopharmacol Immunotoxicol 2024:1-8. [PMID: 39049671 DOI: 10.1080/08923973.2024.2381759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIM The spleen has an essential role in immune responses regulation and is considered the biggest peripheral immune organ. Citicoline is used for various brain disorders management. This study aimed to examine the using possibility of citicoline to treat γ-radiation-induced splenic inflammation in rats. MATERIALS AND METHODS Eighteen male albino rats were classified into: Group 1 (control) animals were kept as control. Group 2 (γ-radiation) animals were total-body γ-irradiated with 6 Gy. Group 3 (γ-radiation + citicoline) rats were γ-irradiated with 6 Gy, then injected intraperitoneally with citicoline (300 mg/kg/d) 5 min after irradiation for one week. Levels of TNF-α, IL-1β, iNOS, NF-κB, JAK2, and STAT3 were determined in spleen tissue, along with histopathological examination. RESULTS Rats exposure to gamma-radiation led to elevation in splenic TNF-α, IL-1β, NF-κB, iNOS, JAK2, and STAT3 levels significantly. Treatment with citicoline after gamma-radiation exposure improved this elevation, and modulated gamma-radiation-induced histopathological alterations. CONCLUSIONS This data showed that citicoline inhibited γ-radiation-induced splenic inflammation via suppressing NF-κB and JAK2/STAT3 signaling pathways in spleen tissue.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Zhang X, Chen X, Wang L, He C, Shi Z, Fu Q, Xu W, Zhang S, Hu S. Review of the Efficacy and Mechanisms of Traditional Chinese Medicines as a Therapeutic Option for Ionizing Radiation Induced Damage. Front Pharmacol 2021; 12:617559. [PMID: 33658941 PMCID: PMC7917257 DOI: 10.3389/fphar.2021.617559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation damage refers to acute, delayed, or chronic tissue damage associated with ionizing radiation. Specific or effective therapeutic options for systemic injuries induced by ionizing radiation have not been developed. Studies have shown that Chinese herbal Medicine or Chinese Herbal Prescription exhibit preventive properties against radiation damage. These medicines inhibit tissue injuries and promote repair with very minimal side effects. This study reviews traditional Chinese herbal medicines and prescriptions with radiation protective effects as well as their mechanisms of action. The information obtained will guide the development of alternative radioprotectants.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Xu
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Azimi V, Mirakzehi MT, Saleh H. Hydroalcoholic extract of Withania somnifera leaf and α-tocopherol acetate in diets containing oxidised oil: effects on growth performance, immune response, and oxidative status in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1808537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vahid Azimi
- Department of Animal Science, Higher Educational Complex of Saravan, Saravan, Iran
| | | | - Hassan Saleh
- Department of Animal Science, Higher Educational Complex of Saravan, Saravan, Iran
| |
Collapse
|
4
|
Koo HJ, Lee KR, Kim HS, Lee BM. Detoxification effects of aloe polysaccharide and propolis on the urinary excretion of metabolites in smokers. Food Chem Toxicol 2019; 130:99-108. [PMID: 31112706 DOI: 10.1016/j.fct.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/28/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to investigate the detoxifying effects of aloe polysaccharide (APS), propolis, and the mixture of APS and propolis on the urinary excretion of major human tobacco carcinogens, BaP and an addictive stimulant alkaloid, nicotine. Smokers (≥20 cigarettes/day) were randomly classified into four subgroups (10 people/group) and were given 600 mg/day of APS, 600 mg/day of propolis, or 600 mg/day of the mixture of APS (420 mg/day) and propolis (180 mg/day) for four weeks. Urinary excretion of BaP and cotinine (a metabolite of nicotine) increased in a time-dependent manner increased after supplementation with APS (BaP, 2.23-fold; cotinine, 2.64-fold), propolis (BaP, 1.30-fold; cotinine, 2.08-fold), and the mixture (BaP, 2.33-fold; cotinine, 2.28-fold) compared with smoker control. Creatinine, glucose, and total bilirubin levels significantly decreased in a time-dependent manner after supplementation with APS (creatinine, 15.24%; glucose, 40.22%; total bilirubin, 48.82%), propolis (creatinine, 16.83%; glucose, 36.25%; total bilirubin, 52.59%), and the mixture (creatinine, 16.36%; glucose, 46.37%; total bilirubin, 39.20%) (p < 0.05). These results suggest that supplementation with APS, propolis, or the mixture could reduce the risk of cancer or other diseases associated with tobacco smoking by enhancing urinary excretion of BaP and nicotine.
Collapse
Affiliation(s)
- Hyun Jung Koo
- Department of Medicinal and Industrial Crops, Department of Medicinal & Industrial Crops, Korea National College of Agriculture and Fisheries, Kongjwipatjwi-ro 1515, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Kyoung Rim Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-Do, 16419, South Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-Do, 16419, South Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-Do, 16419, South Korea.
| |
Collapse
|
5
|
Mitigating effect of fermented Korean red ginseng extract with yeast and probiotics in 1-chloro-2,4-dinitrobenzene-induced skin allergic inflammation. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0014-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Miura S, Yamaguchi M, Yoshino H, Nakai Y, Kashiwakura I. Dose-Dependent Increase of Nrf2 Target Gene Expression in Mice Exposed to Ionizing Radiation. Radiat Res 2018; 191:176-188. [PMID: 30566388 DOI: 10.1667/rr15203.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nuclear factor-erythroid-2-related factor 2 transcription factor (Nrf2) is activated by reactive oxygen species (ROS) and binds to antioxidant response elements in the promoter regions of its target genes involved in redox regulation and antioxidative functions. In this study, we elucidated the relationship between radiation dose and the expression response of Nrf2 target genes involved in oxidative stress, such as heme oxygenase 1, ferritin heavy polypeptide 1 ( Fth1), NADPH dehydrogenase quinone 1, glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione reductase ( Gsr) and thioredoxin reductase 1 genes, in peripheral blood from X-ray irradiated mice. Whole-body radiation doses ranged from 0.5 to 3 Gy, and gene expressions were analyzed using reverse transcription quantitative polymerase chain reaction. A significant relationship was observed only for one gene: a statistically significant positive correlation between radiation dose and Fth1 mRNA expression was detected. However, Fth1 did not show any correlations with the biological damages induced by radiation tested in this study. Furthermore, while Gsr expression was significantly associated with spleen weight loss, splenic cell number reduction and bone marrow cell death apoptosis, no significant correlation was observed between Gsr expression and radiation dose. Together these results indicate that Nrf2 target gene expression is closely related to radiation dose and its level may reflect biological damages induced by ionizing radiation. These findings suggest the possibility for application of these target genes as a bio-dosimeter and/or damage marker in individuals exposed to ionizing radiation.
Collapse
Affiliation(s)
- Shuta Miura
- a Department of Radiology, Akita Kousei Medical Center, Akita 011-0948, Japan
| | - Masaru Yamaguchi
- b Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Hironori Yoshino
- b Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Yuji Nakai
- c Institute for Food Sciences, Hirosaki University, Aomori 038-0012, Japan
| | - Ikuo Kashiwakura
- b Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| |
Collapse
|
7
|
Ding F, Zhang N, Wang Z, Qiu J. The Radioprotective Effect of Polyphenols From Pinecones of Pinus koraiensis
and Their Synergistic Effect With Auricularia auricula-judae
(Bull.) J. Schröt Polysaccharides. STARCH-STARKE 2018. [DOI: 10.1002/star.201800009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fangli Ding
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Naixun Zhang
- Department of Food Science and Engineering; School of Forestry; Northeast Forestry University; Harbin 150040 China
| | - Zhenyu Wang
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Junqiang Qiu
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
8
|
Sil S, Ghosh T. Etoricoxib inhibits peripheral inflammation and alters immune responses in intracerebroventricular colchicine injected rats. J Neuroimmunol 2018; 317:15-23. [PMID: 29501081 DOI: 10.1016/j.jneuroim.2018.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/07/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
The present study was designed to investigate the effectiveness of etoricoxib induced inhibition of neuroinflammation by studying the peripheral inflammatory markers and select immune parameters in intracerebroventricular colchicine injected rats (ICIR). Results showed time dependent upregulation of the inflammatory markers in the serum along with alterations of peripheral immune parameters in ICIR and dose-dependent recovery was observed upon administration of etoricoxib to ICIR; most of these effects were greater with the longer duration of study. The present study indicates that colchicine induced neuroinflammation may cause systemic inflammation and alteration of immune responses which are mediated by increased cox- 2 activity.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India
| | - Tusharkanti Ghosh
- Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India.
| |
Collapse
|
9
|
|
10
|
Yun KL, Wang ZY. Target/signalling pathways of natural plant-derived radioprotective agents from treatment to potential candidates: A reverse thought on anti-tumour drugs. Biomed Pharmacother 2017; 91:1122-1151. [DOI: 10.1016/j.biopha.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
|
11
|
Kim W, Kang J, Lee S, Youn B. Effects of traditional oriental medicines as anti-cytotoxic agents in radiotherapy. Oncol Lett 2017; 13:4593-4601. [PMID: 28599460 DOI: 10.3892/ol.2017.6042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
The primary goal of radiotherapy in oncology is to enhance the efficacy of tumor cell death while decreasing damage to surrounding normal cells. Positive therapeutic outcomes may be accomplished by improved targeting, precisely targeting tumor cells or protecting normal cells against radiation-induced damage. The potential for antioxidants to decrease normal tissue damage induced by radiation has been investigated in animal models for a number of decades. In attempts for radioprotection, certain synthetic chemicals are suggested as antioxidants and normal tissue protectors against radiation-induced damage, but they have exhibited limitations in pharmacological application due to undesirable effects and high toxicities at clinical doses. The present review focuses on the radioprotective efficacy of traditional oriental medicines with the advantage of low toxicity at pharmacological doses and how such treatments may influence various harmful effects induced by radiation in vitro and in vivo. In addition, medicinal plants and their active constituents with biological activities that may be associated with alleviation of radiation-induced damage through antioxidant, anti-inflammatory, wound healing and immunostimulatory properties are discussed.
Collapse
Affiliation(s)
- Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Jihoon Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Buhyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
12
|
Li H, Wang Z, Xu Y, Sun G. Pine polyphenols from Pinus koraiensis prevent injuries induced by gamma radiation in mice. PeerJ 2016; 4:e1870. [PMID: 27069807 PMCID: PMC4824883 DOI: 10.7717/peerj.1870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022] Open
Abstract
Pine polyphenols (PPs) are bioactive dietary constituents that enhance health and help prevent diseases through antioxidants. Antioxidants reduce the level of oxidative damages caused by ionizing radiation (IR). The main purpose of this paper is to study the protective effect of PPs on peripheral blood, liver and spleen injuries in mice induced by IR. ICR (Institute of Cancer Research) male mice were administered orally with PPs (200 mg/kg b.wt.) once daily for 14 consecutive days prior to 7 Gy γ-radiations. PPs showed strong antioxidant activities. PPs significantly increased white blood cells, red blood cells and platelets counts. PPs also significantly reduced lipid peroxidation and increased the activities of superoxide dismutase, catalase and glutathione peroxidases, and the level of glutathione. PPs reduced the spleen morphologic injury. In addition, PPs inhibited mitochondria-dependent apoptosis pathways in splenocytes induced by IR. These results indicate that PPs are radioprotective promising reagents.
Collapse
Affiliation(s)
- Hui Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin, Heilongjiang , China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin, Heilongjiang , China
| | - Yier Xu
- Department of Pharmacology, Pharmaceutical Academy of Harbin Pharmaceutical Group , Harbin, Heilongjiang , China
| | - Guicai Sun
- Department of Orthopaedics, The Fourth Hospital Affiliated to Nanchang University , Nanchang, Jiangxi , China
| |
Collapse
|
13
|
Keum DI, Pi LQ, Hwang ST, Lee WS. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model. J Ginseng Res 2015; 40:169-75. [PMID: 27158238 PMCID: PMC4845051 DOI: 10.1016/j.jgr.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022] Open
Abstract
Background Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression.
Collapse
Affiliation(s)
- Dong In Keum
- Department of Dermatology and Institute of Hair and Cosmetic Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Long-Quan Pi
- Department of Dermatology, Yanbian University Hospital, Yanji, Jilin, China
| | | | - Won-Soo Lee
- Department of Dermatology and Institute of Hair and Cosmetic Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|