1
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
2
|
Cai J, Chen H, Wang R, Zhong Q, Chen W, Zhang M, He R, Chen W. Membrane Damage and Metabolic Disruption as the Mechanisms of Linalool against Pseudomonas fragi: An Amino Acid Metabolomics Study. Foods 2024; 13:2501. [PMID: 39200428 PMCID: PMC11353791 DOI: 10.3390/foods13162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Pseudomonas fragi (P. fragi) is usually detected in low-temperature meat products, and seriously threatens food safety and human health. Therefore, the study investigated the antibacterial mechanism of linalool against P. fragi from membrane damage and metabolic disruption. Results from field-emission transmission electron microscopy (FETEM) and atomic force microscopy (AFM) showed that linalool damage membrane integrity increases surface shrinkage and roughness. According to Fourier transform infrared (FTIR) spectra results, the components in the membrane underwent significant changes, including nucleic acid leakage, carbohydrate production, protein denaturation and modification, and fatty acid content reduction. The data obtained from amino acid metabolomics indicated that linalool caused excessive synthesis and metabolism of specific amino acids, particularly tryptophan metabolism and arginine biosynthesis. The reduced activities of glucose 6-phosphate dehydrogenase (G6PDH), malate dehydrogenase (MDH), and phosphofructokinase (PFK) suggested that linalool impair the respiratory chain and energy metabolism. Meanwhile, genes encoding the above enzymes were differentially expressed, with pfkB overexpression and zwf and mqo downregulation. Furthermore, molecular docking revealed that linalool can interact with the amino acid residues of G6DPH, MDH and PFK through hydrogen bonds. Therefore, it is hypothesized that the mechanism of linalool against P. fragi may involve cell membrane damage (structure and morphology), disturbance of energy metabolism (TCA cycle, EMP and HMP pathway) and amino acid metabolism (cysteine, glutamic acid and citrulline). These findings contribute to the development of linalool as a promising antibacterial agent in response to the food security challenge.
Collapse
Affiliation(s)
- Jiaxin Cai
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Haiming Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Runqiu Wang
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Qiuping Zhong
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Weijun Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Ming Zhang
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Rongrong He
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Wenxue Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| |
Collapse
|
3
|
Eriksson TBJ, Isaksson M, Engfeldt M, Dahlin J, Tegner Y, Ofenloch R, Bruze M. Contact allergy in Swedish professional ice hockey players. Contact Dermatitis 2024; 90:574-584. [PMID: 38501375 DOI: 10.1111/cod.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Professional ice hockey players may contract irritant and allergic contact dermatitis. AIMS To investigate the presence of contact allergy (CA) in professional ice hockey players in Sweden. METHODS Ten teams from the two top leagues were assessed for potential occupational exposure to sensitizers. Exactly 107 players were patch tested with an extended baseline series and a working series, in total 74 test preparations. The CA rates were compared between the ice hockey players and controls from the general population and dermatitis patients. RESULTS One out of 4 players had at least one contact allergy. The most common sensitizers were Amerchol L 101, nickel and oxidized limonene. CA was as common in the ice hockey players as in dermatitis patients and significantly more common than in the general population. Fragrances and combined sensitizers in cosmetic products (fragrances + preservatives + emulsifier) were significantly more common in ice hockey players compared with the general population. CONCLUSION The possible relationship between CA to fragrances and cosmetic products on the one hand and the presence of dermatitis on the other should be explored further.
Collapse
Affiliation(s)
- Tomas B J Eriksson
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Marléne Isaksson
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Malin Engfeldt
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Jakob Dahlin
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Yelverton Tegner
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Robert Ofenloch
- Occupational Dermatology, Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
4
|
Hareng L, Kolle SN, Gomes C, Schneider S, Wahl M. Critical assessment of the endocrine potential of Linalool and Linalyl acetate: proactive testing strategy assessing estrogenic and androgenic activity of Lavender oil main components. Arch Toxicol 2024; 98:347-361. [PMID: 37906319 PMCID: PMC10761525 DOI: 10.1007/s00204-023-03623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
The acyclic linear monoterpenes Linalool (Lin) and Linalyl acetate (LinAc) occur in nature as major constituents of various essential oils such as lavender oils. A potential endocrine activity of these compounds was discussed in literature including premature thelarche and prepubertal gynecomastia due to lavender product use. This study aims to follow-up on these critical findings reported by testing Lin and LinAc in several studies in line with current guidance and regulatory framework. No relevant anti-/ER and AR-mediated activity was observed in recombinant yeast cell-based screening tests and guideline reporter gene in vitro assays in mammalian cells. Findings in the screening test suggested an anti-androgenic activity, which could not be confirmed in the respective mammalian cell guideline assay. Mechanistic guideline in vivo studies (Uterotrophic and Hershberger assays) with Lin did not show significant dose related changes in estrogen or androgen sensitive organ weights and a guideline reproductive toxicity screening study did not reveal evident effects on sex steroid hormone sensitive organ weights, associated histopathological findings and altered sperm parameters. Estrous cycling and mating/fertility indices were not affected and no evident Lin-related steroid hormone dependent effects were found in the offspring. Overall, the initial concerns from literature were not confirmed. Findings in the yeast screening test were aberrant from follow-up guideline in vitro and in vivo studies, which underlines the need to apply careful interpretation of single in vitro test results to support a respective line of evidence and to establish a biologically plausible link to an adverse outcome.
Collapse
|
5
|
Dascalu D, Isvoran A, Ianovici N. Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants. Molecules 2023; 28:4640. [PMID: 37375196 DOI: 10.3390/molecules28124640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acyclic terpenes are biologically active natural products having applicability in medicine, pharmacy, cosmetics and other practices. Consequently, humans are exposed to these chemicals, and it is necessary to assess their pharmacokinetics profiles and possible toxicity. The present study considers a computational approach to predict both the biological and toxicological effects of nine acyclic monoterpenes: beta-myrcene, beta-ocimene, citronellal, citrolellol, citronellyl acetate, geranial, geraniol, linalool and linalyl acetate. The outcomes of the study emphasize that the investigated compounds are usually safe for humans, they do not lead to hepatotoxicity, cardiotoxicity, mutagenicity, carcinogenicity and endocrine disruption, and usually do not have an inhibitory potential against the cytochromes involved in the metabolism of xenobiotics, excepting CYP2B6. The inhibition of CYP2B6 should be further analyzed as this enzyme is involved in both the metabolism of several common drugs and in the activation of some procarcinogens. Skin and eye irritation, toxicity through respiration and skin-sensitization potential are the possible harmful effects revealed by the investigated compounds. These outcomes underline the necessity of in vivo studies regarding the pharmacokinetics and toxicological properties of acyclic monoterpenes so as to better establish the clinical relevance of their use.
Collapse
Affiliation(s)
- Daniela Dascalu
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Nicoleta Ianovici
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Environmental Biology and Biomonitoring Research Center, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| |
Collapse
|
6
|
Zhai R, Ma J, An Y, Wen Z, Liu Y, Sun Q, Xie P, Zhao S. Ultra-stable Linalool/water Pickering Emulsions: A Combined Experimental and Simulation Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
In-Depth Study of Thymus vulgaris Essential Oil: Towards Understanding the Antibacterial Target Mechanism and Toxicological and Pharmacological Aspects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3368883. [PMID: 35909468 PMCID: PMC9334058 DOI: 10.1155/2022/3368883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Questions have been raised apropos the emerging problem of microbial resistance, which may pose a great hazard to the human health. Among biosafe compounds are essential oils which captured consumer draw due to their multifunctional properties compared to chemical medication drugs. Here, we examined the chemical profile and the mechanism(s) of action of the Thymus vulgaris essential oil (TVEO) against a Gram-negative bacterium Salmonella enterica Typhimurium ATTCC 10028 (S. enterica Typhimurium ATTCC 10028) and two Gram-positive bacteria Staphyloccocus aureus ATCC 6538 (S. aureus ATCC 6538) and Listeria monocytogenes ATCC 19117 (L. monocytogenes ATCC 19117). Findings showed that TVEO was principally composed of thymol, o-cymene, and γ-terpinene with 47.44, 16.55, and 7.80%, respectively. Molecular docking simulations stipulated that thymol and β-sesquiphellandrene (a minor compound at 1.37%) could target multiple bacterial pathways including topoisomerase II and DNA and RNA polymerases of the three tested bacteria. This result pointed plausible impairments of the pathogenic bacteria cell replication and transcription processes. Through computational approach, the VEGA quantitative structure–activity relationship (QSAR) model, we revealed that among twenty-six TVEO compounds, sixteen had no toxic effects and could be safe for human consumption as compared to the Food and Drug Administration (FDA) approved drugs (ciprofloxacin and rifamycin SV). Assessed by the SwissADME server, the pharmacokinetic profile of all identified TVEO compounds define their absorption, distribution, metabolism, and excretion (ADME) properties and were assessed. In order to predict their biological activity spectrum based on their chemical structure, all TVEO compounds were subjected to PASS (Prediction of Activity Spectra for Substances) online tool. Results indicated that the tested compounds could have multiple biological activities and various enzymatic targets. Findings of our study support that identified compounds of TVEO can be a safe and effective alternative to synthetic drugs and can easily combats hazardous multidrug-resistant bacteria.
Collapse
|
8
|
Ma Q, Xu Y, Xiao H, Mariga AM, Chen Y, Zhang X, Wang L, Li D, Li L, Luo Z. Rethinking of botanical volatile organic compounds applied in food preservation: Challenges in acquisition, application, microbial inhibition and stimulation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Raclavská H, Růžičková J, Juchelková D, Šafář M, Brťková H, Slamová K. The quality of composts prepared in automatic composters from fruit waste generated by the production of beverages. BIORESOURCE TECHNOLOGY 2021; 341:125878. [PMID: 34523548 DOI: 10.1016/j.biortech.2021.125878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Ensuring the processing of food waste from the production of food and beverages intheautomatic composters can be difficult because of the physicochemical properties of input raw materials. Very often, the final product does not meet the requirements forcomposts according to the European Compost Network. Optimisation of input food waste from theproduction ofbeverages was performed by the addition of the bulk materials such assawdust and clay minerals (bentonite). Toxicity of the compost is caused by organic compounds with polar and non-polar properties. These compounds belong to the groups ofalcohols, aldehydes and ketones, carboxylic acids, tannin, and phenols, coumarins and terpenes. Phytotoxicity is mostly influenced by the group of terpenes. The addition ofsawdust used as bulking agent decreases the concentrations of almost all chemical compounds. Thegroup of tannin and compounds containing phenols represents an exception because these compounds are released from sawdust.
Collapse
Affiliation(s)
- Helena Raclavská
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| | - Jana Růžičková
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| | - Michal Šafář
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic.
| | - Hana Brťková
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| | - Karolina Slamová
- Institute of Foreign Languages, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
10
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
11
|
Raslan R, Hassim MH, Chemmangattuvalappil NG, Ng DK, Ten JY. Safety and health risk assessment methodology of dermal and inhalation exposure to formulated products ingredients. Regul Toxicol Pharmacol 2020; 116:104753. [DOI: 10.1016/j.yrtph.2020.104753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
|
12
|
Satyal P, Setzer WN. Chemical Compositions of Commercial Essential Oils From Coriandrum sativum Fruits and Aerial Parts. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20933067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coriander and cilantro, the fruit and herb of Coriandrum sativum, are popular additives in various cuisines worldwide. The essential oils derived from coriander and cilantro are also popular and have shown some remarkable biological properties and health benefits. In this report, we have analyzed the essential oil compositions of 19 commercial coriander and 28 commercial cilantro essential oil samples by gas chromatography–mass spectrometry (GC–MS) techniques. In addition, 5 coriander and 4 cilantro commercial essential oil samples were analyzed by chiral GC–MS. Commercial coriander essential oil is dominated by linalool (62.2%-76.7%) with lesser quantities of α-pinene (0.3%-11.4%), γ-terpinene (0.6%-11.6%), and camphor (0.0%-5.5%). Commercial cilantro essential oil is composed largely of (2 E)-decenal (16.0%-46.6%), linalool (11.8%-29.8%), (2 E)-decen-1-ol (0.0%-24.7%), decanal (5.2%-18.7%), (2 E)-dodecenal (4.1%-8.7%), and 1-decanol (0.0%-9.5%). The enantiomeric distribution of linalool was 87% (+)-linalool:13% (−)-linalool in both coriander and cilantro essential oils, while α-pinene was 93% (+):7% (−) in coriander, 90% (+):10% (−) in cilantro; and (+)-camphor:(−)-camphor was 13%:87% in both essential oils. Chiral GC–MS analysis was able to detect an adulterated coriander essential oil sample. The data provided in this study serves to establish a baseline for future evaluations of these essential oils as well as a screen for authenticity or adulteration.
Collapse
Affiliation(s)
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, USA
- Department of Chemistry, University of Alabama, Huntsville, AL, USA
| |
Collapse
|
13
|
Ponte HAS, Lima MIDO, Lima EDO, Pereira FDO. Linalool modulates dermatophyte susceptibility to azole drugs. Med Mycol 2020; 58:272-274. [PMID: 31329906 DOI: 10.1093/mmy/myz041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/06/2023] Open
Abstract
This study investigated the monoterpene linalool and its resistance modulating activity involving ergosterol biosynthesis inhibitors (ketoconazole, fluconazole, and itraconazole) in strains of Microsporum spp. and Trichophyton spp. The minimum inhibitory concentration (MIC) of test-drugs were determined by microdilution. The modulating effect of linalool was evaluated by determining the MIC of the antifungals in the presence of subinhibitory concentrations of linalool. We also investigated the association effect (checkerboard) of linalool together with ketoconazole and itraconazole. The fungi became more sensitive to ketoconazole and itraconazole in the presence of linalool. The linalool and azole drug associations presented synergism.
Collapse
Affiliation(s)
- Hellen Aparecida Silva Ponte
- Laboratory of Biochemistry, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Maria Islaine de Oliveira Lima
- Laboratory of Biochemistry, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Edeltrudes de Oliveira Lima
- Laboratory of Mycology, Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraıba, João Pessoa, Brazil
| | - Fillipe de Oliveira Pereira
- Laboratory of Biochemistry, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| |
Collapse
|
14
|
Soo Lim D, Min Choi S, Kim KB, Yoon K, Kacew S, Sik Kim H, Lee BM. Determination of fragrance allergens and their dermal sensitization quantitative risk assessment (QRA) in 107 spray perfumes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1173-1185. [PMID: 30415634 DOI: 10.1080/15287394.2018.1543232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cutaneous allergy occurs primarily as a result of using cosmetic, household, and laundry products available on the market that contain fragrances. The aim of this study was to develop a rapid and specific high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method for quantification of 25 fragrance allergens (amyl cinnamyl alcohol, benzyl alcohol, benzyl benzoate, benzyl cinnamate, benzyl salicylate, citronellol, cinnamyl alcohol, citral, coumarin, eugenol, farnesol, geraniol, hydroxycitronellal, HICC (4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboaldehyde), isoeugenol, isoeugenyl acetate, lilial (butyl phenyl methyl propional), limonene, linalool, methyl 2-octynoate, etc.). In addition, an exposure-based quantitative risk assessment (QRA) was performed to determine safe levels of fragrance ingredients in 107 perfumes. In 76 women's and 31 men's fragrances, 25 allergens were identified at concentrations ranging from undetectable (N.D.) to 8,997.68 mg/kg, and from N.D. to 17,352.34 mg/kg, respectively. An exposure-based sensitization QRA revealed that the ratios of acceptable exposure level (AEL) to consumer exposure level (CEL) of fragrance ingredients were greater than 1, suggesting an absence of skin sensitizing potential. However, the maximum level used in the exposure scenario was determined by the product purpose and application type, and AEL/CEL ratios of lilial, HICC, citral, isoeugenol, and methyl 2-octynoate analyzed in women's perfume were 0.53, 0.67 0.19, 0.13, and 0.57, respectively. As the ratios of AEL:CEL of these fragrance ingredients were below 1, the utilization of these potential skin sensitizers is not considered safe. Our findings indicate that the sensitization risk of allergens with AEL:CEL ratios below 1 detected in fragrances needs to be reduced to the appropriate human safety level for risk management.
Collapse
Affiliation(s)
- Duck Soo Lim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Seul Min Choi
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , South Korea
| | - Kyungsil Yoon
- c Lung Cancer Branch, Research Institute , National Cancer Center , Goyang , South Korea
| | - Sam Kacew
- d McLaughlin Centre for Population Health Risk Assessment, University of Ottawa , Ottawa , ON , Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| |
Collapse
|
15
|
Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces 2018; 171:566-578. [DOI: 10.1016/j.colsurfb.2018.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
|
16
|
Pereira I, Zielińska A, Ferreira NR, Silva AM, Souto EB. Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method. Int J Pharm 2018; 549:261-270. [PMID: 30075252 DOI: 10.1016/j.ijpharm.2018.07.068] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
Linalool (C10H18O), also known as 3, 7-dimethyl-1, 6-octadien-3-ol, is the most common acyclic monoterpene tertiary alcohol present in essential oils of several aromatic plant species. Previous studies indicate that linalool is a valuable compound with a wide range of therapeutic properties. The promising therapeutic effects of linalool are however limited by its poor water solubility and volatility. Recently, the encapsulation of linalool in drug delivery systems, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) has demonstrated to overcome linalool physicochemical limitations. The present study aimed the production and optimization of linalool encapsulation in SLN applying the experimental full factorial design. The estimation of the long-term stability of the produced linalool-loaded SLN was carried out using a new centrifugal sedimentation method, LUMiSizer®. SLN dispersions were produced by the hot high pressure homogenization (HPH) method. The influence of the independent variables, surfactant and lipid concentrations on linalool-loaded SLN particle size, polydispersity index (PI) and zeta potential (ZP) was evaluated by a 22 factorial design composed of 2 variables which were set at 2-levels each. For each of the three dependent variables, analysis of the variance (ANOVA) was performed using a 95% confidence interval. The concentration of surfactant, as well as, the interaction between the different concentrations of lipid and surfactant, hada statistically significant effect on the particle size and PI. Experimental factorial design has been successfully employed to develop an optimal SLN dispersion, requiring a minimum of performed experiments. Based on the obtained results, the optimal linalool-loaded SLN dispersion was composed of 1% (w/v) linalool 2% (w/v) of solid lipid and 5% (w/v) of surfactant. Furthermore, the stability analysis revealed that the produced linalool-loaded SLN dispersions have limited storage stability which can be easily overcome through the assembly of a polymeric coating on the SLN surface. LUMiSizer® has been successfully used in the kinetic analysis of linalool-SLN during accelerated storage time.
Collapse
Affiliation(s)
- Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Nuno R Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CQ Pharma, (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Amélia M Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
17
|
Guo S, Geng Z, Zhang W, Liang J, Wang C, Deng Z, Du S. The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests. Int J Mol Sci 2016; 17:ijms17111836. [PMID: 27827929 PMCID: PMC5133837 DOI: 10.3390/ijms17111836] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022] Open
Abstract
To investigate the chemical composition and insecticidal activity of the essential oils of certain Chinese medicinal herbs and spices, the essential oils were extracted from the stem barks, leaves, and fruits of Cinnamomum camphora (L.) Presl, which were found to possess strong fumigant toxicity against Tribolium castaneum and Lasioderma serricorne adults. The essential oils of the plants were extracted by the method of steam distillation using a Clavenger apparatus. Their composition was determined by gas chromatography/mass spectrometric (GC-MS) analyses (HP-5MS column), and their insecticidal activity was measured by seal-spaced fumigation. D-camphor (51.3%), 1,8-cineole (4.3%), and α-terpineol (3.8%), while D-camphor (28.1%), linalool (22.9%), and 1,8-cineole (5.3%) were the main constituents of its fruits. The essential oils of the C. camphora all showed fumigant and contact toxicity. Other compounds exhibited various levels of bioactivities. The results indicate that the essential oils of C. camphora and its individual compounds can be considered a natural resource for the two stored-product insect management.
Collapse
Affiliation(s)
- Shanshan Guo
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, Beijing 100875, China.
| | - Zhufeng Geng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, Beijing 100875, China.
- Analytical and Testing Center, Beijing Normal University, Beijing 100875, China.
| | - Wenjuan Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, Beijing 100875, China.
| | - Junyu Liang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, Beijing 100875, China.
| | - Chengfang Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, Beijing 100875, China.
| | - Zhiwei Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, Beijing 100875, China.
- Analytical and Testing Center, Beijing Normal University, Beijing 100875, China.
| | - Shushan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|