1
|
Sadighara P, Mahdavi V, Tahmasebi R, Saatloo NV. Cell proliferation assay for determination of estrogenic components in food: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:621-627. [PMID: 35934880 DOI: 10.1515/reveh-2022-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Due to the widespread use and environmental pollution of estrogenic chemicals, the need for screening tests to detect these compounds is felt more than ever. These compounds lead to cell proliferation. Therefore, studies used cell proliferation to evaluate estrogenic compounds was studied in this systematic review. This systematic review was performed with the keywords; DNA proliferation, cell proliferation, estrogenic component, estrogen, food, bioassay, screening, and detection. After initial screening and full text quality assessment, 16 manuscripts were selected and data were extracted. Four cell lines, MCF-7, MDA-MB-231, Ishikawa, and T47D cells were used in the studies. MCF-7 was more sensitive to estrogenic compounds than other lines. Most of the samples studied were plant compounds and mycotoxins and substances that migrate from packaging to food. This screening test is valid and has similar results as others.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rahele Tahmasebi
- Research and Department of Chromatography, Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| | - Naiema Vakili Saatloo
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Vélez MD, Llano-Ramirez MA, Ramón C, Rojas J, Bedoya C, Arango-Varela S, Santa-González GA, Gil M. Antioxidant capacity and cytotoxic effect of an optimized extract of isabella grape ( Vitis labrusca) on breast cancer cells. Heliyon 2023; 9:e16540. [PMID: 37260897 PMCID: PMC10227348 DOI: 10.1016/j.heliyon.2023.e16540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
The phenolic profile of Isabella grape (Vitis labrusca) offers beneficial properties to human health and makes it a functional food product. In order to better understand the phenolic compounds found in this grape variety and the biological effect they induce on breast cancer cells, an ultrasound-assisted extraction was carried out. During the extraction of polyphenols from Isabella grapes organically grown in Antioquia (Colombia), parameters such as frequency (33 kHz and 40 kHz), time and solvent were optimized to finally obtain a crude extract with antioxidant properties (Oxygen Radical Absorbance Capacity, ORAC: 293.22 ± 34.73 μmol of Trolox/g of sample), associated with a total polyphenol content (TPC) of 43.14 ± 5.00 mg GAE/g sample and a total anthocyanin content composed of 17.69 ± 2.59 mg of malvidin-3-glucoside/100 g of sample. MCF-7 breast cancer cells were treated with different concentrations of the optimized extract, and results show a decrease in cell viability related to mitochondrial membrane depolarization, ROS increase, and chromatin condensation. To determine the possible death induction mechanism, molecular docking was simulated to predict the molecular interactions between the most abundant phenolic compounds in Isabella grape and the main apoptosis-related proteins. The results obtained from in silico and in vitro experiments were consistent with each other, suggesting that the phenolic compounds found in Isabella grape can be considered potential adjuvant chemopreventive agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- M. Daniela Vélez
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - María A. Llano-Ramirez
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Carolina Ramón
- Química Básica, Aplicada y Ambiente Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Jessica Rojas
- Didáctica y Modelamiento en Ciencias Exactas y Aplicadas (DAVINCI), Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Carolina Bedoya
- Food Engineering Research Group, Unilasallista Corporación Universitaria, Caldas 055440, Colombia
| | - Sandra Arango-Varela
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Maritza Gil
- Química Básica, Aplicada y Ambiente Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| |
Collapse
|
3
|
Guzzo F, Buommino E, Landrum L, Russo R, Lembo F, Fiorentino A, D’Abrosca B. Phytochemical Investigation of Myrcianthes cisplatensis: Structural Characterization of New p-Coumaroyl Alkylphloroglucinols and Antimicrobial Evaluation against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1046. [PMID: 36903907 PMCID: PMC10005737 DOI: 10.3390/plants12051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Species of Myrtaceae Juss., the ninth largest family of flowering plants, are a valuable source of bioactive specialized metabolites. A leading position belongs to phloroglucinol derivatives, thanks to their unusual structural features and biological and pharmacological properties. Myrcianthes cisplatensis (Cambess.) O. Berg, a common tree on the banks of rivers and streams of Uruguay, southern Brazil, and northern Argentina, with aromatic leaves, is known as a diuretic, febrifuge, tonic, and good remedy for lung and bronchial diseases. Despite knowledge about traditional use, few data on its phytochemical properties have been reported in the literature. The methanol extract of M. cisplatensis, grown in Arizona, USA, was first partitioned between dichloromethane and water and then with ethyl acetate. The enriched fractions were evaluated using a broth microdilution assay against Staphylococcus aureus ATCC 29213 and 43300 (methicillin-resistant S. aureus (MRSA)). The potential antimicrobial activity seemed to increase in the dichloromethane extract, with a MIC value of 16 µg/mL against both strains. Following a bio-guided approach, chromatographic techniques allowed for isolating three coumarin derivatives, namely endoperoxide G3, catechin, and quercitrin, and four new p-coumaroyl alkylphloroglucinol glucosides, named p-coumaroylmyrciacommulone A-D. Their structures were characterized through spectroscopic techniques: 2D-NMR experiments (HSQC, HMBC, and HSQC-TOCSY) and spectrometric analyses (HR-MS). The antimicrobial assessment of pure compounds against S. aureus ATCC 29213 and ATCC 43300 demonstrated the best activity for p-coumaroylmyrciacommulone C and D with the growth inhibition of 50% at 32 µg/mL against both strains of S. aureus.
Collapse
Affiliation(s)
- Francesca Guzzo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Elisabetta Buommino
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Leslie Landrum
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4108, USA
| | - Rosita Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Brigida D’Abrosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
4
|
Bouguellid G, Debbache-Benaida N, Atmani-Kilani D, Russo C, Lavorgna M, Piscitelli C, Ayouni K, Berboucha-Rahmani M, Isidori M, Atmani D. Pistacia lentiscus L. fruits showed promising antimutagenic and antigenotoxic activity using both in-vitro and in-vivo test systems. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:603-621. [PMID: 35387576 DOI: 10.1080/15287394.2022.2057885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pistacia lentiscus L. is one of the most popular medicinal plants attributed to its beneficial properties on human health. However, few toxicogenetic studies have been carried out. Therefore, the aim of this study was to examine the potential genotoxic/antigenotoxic and mutagenic/antimutagenic properties of oil, ethyl acetate and ethanolic extracts of P. lentiscus L. fruits using in vitro the Ames and Umu assays, as well as in vivo micronucleus (MN) test. Extracts did not exert any significant mutagenic/genotoxic effects but provided protection against standard mutagenic and genotoxic agents including 2 nitrofluorene (2-NF) at 2.5 and 5 µg/ml; sodium azide at 5 and 10 µg/ml; 3-methylcholanthrene (3-MC) at 25 and 50 μg/ml; cyclophosphamide (CP) at 50 and 100 μg/ml; 4-nitroquinoline 1-oxide (4-NQO) at 0.05 µg/ml and 2-amino-anthracene (AA) at 0.2 µg/ml. Further, cytotoxicity and selectivity were examined on human hepatocarcinoma (HepG2), and MCF-7 breast cancer cell lines as well as a human normal-like fibroblast cell line (TelCOFS02MA) using MTT assay. Among all extracts, PF1 (ethanolic) showed the most significant selectivity index (SI) (HepG2:11.98; MCF7:4.83), which led to further investigations using an animal model. Oral administration of PF1 (125-1000 mg/kg b.w.) significantly decreased the number of micronucleated cells in CP -initiated (50 mg/kg b.w.) mice, while the number of micronucleated reticulocytes (MNRET), micronucleated polychromatic erythrocytes (MNPCE) or mitotic index (MI) were not markedly affected. Further, PF1 significantly enhanced catalase (CAT) and superoxide dismutase (SOD) activities in the livers and kidneys of these animals. The obtained results indicated the beneficial properties of P. lentiscus L. fruits for use in therapy against harmful effects of genotoxic and mutagenic agents. However, while promising it should be noted that the obtained results are preliminary and need to be confirmed prior to therapeutic use.
Collapse
Affiliation(s)
- Ghania Bouguellid
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Nadjet Debbache-Benaida
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Dina Atmani-Kilani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Chiara Russo
- Farmaceutiche, Università della Campania "Luigi Vanvitelli"Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e , Via Vivaldi 43, I-81100 Caserta, Italy
| | - Margherita Lavorgna
- Farmaceutiche, Università della Campania "Luigi Vanvitelli"Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e , Via Vivaldi 43, I-81100 Caserta, Italy
| | - Concetta Piscitelli
- Farmaceutiche, Università della Campania "Luigi Vanvitelli"Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e , Via Vivaldi 43, I-81100 Caserta, Italy
| | - Karima Ayouni
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Meriem Berboucha-Rahmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Marina Isidori
- Farmaceutiche, Università della Campania "Luigi Vanvitelli"Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e , Via Vivaldi 43, I-81100 Caserta, Italy
| | - Djebbar Atmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| |
Collapse
|
5
|
Shining the spotlight on NMR metabolic profiling and bioactivities of different solvent extracts of Piliostigma thonningii. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gonçalves S, Gaivão I. Natural Ingredients Common in the Trás-os-Montes Region (Portugal) for Use in the Cosmetic Industry: A Review about Chemical Composition and Antigenotoxic Properties. Molecules 2021; 26:5255. [PMID: 34500687 PMCID: PMC8433906 DOI: 10.3390/molecules26175255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
The natural cosmetics market has grown since consumers became aware of the concept of natural-based ingredients. A significant number of cosmetics have an ecological impact on the environment and carry noxious and chemically potent substances. Thus, the use of natural and organic cosmetics becomes increasingly important since it is clear that topical treatment with cosmeceuticals can help improve skin rejuvenation. A substantial investigation into the benefits that fruits and plants can bring to health is required. Studies have shown that antigenotoxic properties are linked to anti-aging properties. Several studies have shown potential antigenotoxicity in natural ingredients such as Almonds (Prunus dulcis), Elderberry (Sambucus nigra), Olives (Olea europaea), and Grapes (Vitis vinifera). This review presents an overview of research conducted on these natural ingredients, the most common in the Northeast of Portugal. This region of Portugal possesses the most organic farmers, and ingredients are easily obtained. The Northeast of Portugal also has climatic, topographic, and pedological differences that contribute to agricultural diversity.
Collapse
Affiliation(s)
| | - Isabel Gaivão
- Department of Genetics and Biotechnology and CECAV, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
7
|
Lavorgna M, Pacifico S, Nugnes R, Russo C, Orlo E, Piccolella S, Isidori M. Theobromacacao Criollo var. Beans: Biological Properties and Chemical Profile. Foods 2021; 10:foods10030571. [PMID: 33803449 PMCID: PMC8001065 DOI: 10.3390/foods10030571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Theobroma cacao provides precious products such as polyphenol-rich beans that are useful for nutraceutical purposes. The geographical area may influence the chemical composition of raw cocoa beans in terms of the polyphenols and biological qualities of the products. This work aimed to investigate the biological properties and the chemical composition of two different samples of Criollo var. cocoa raw beans coming from two areas (Indonesia; Peru). Beans underwent biphasic extraction obtaining lipophilic and hydroalcoholic extracts. The extracts were tested for antiradical, antimutagenic, and antigenotoxic effects. Cell viability inhibition toward breast, gastric/esophageal colorectal adenocarcinoma, and hepatoblastoma human cell lines was evaluated. Extracts were chemically investigated through UV-Vis spectroscopy and ultra-high-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QqTOF MS/MS). Results showed that the Indonesian bean hydroalcoholic extracts were able to scavenge 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) cation radical better than the Peruvian hydroalcoholic extracts (ECs50: 72.63 vs. 322.20 μg/mL). Extracts showed antimutagenic and antigenotoxic activity. The viability inhibitory effect on breast and hepatic cancer cells was reached only for the Indonesian hydroalcoholic extracts at hundreds of μg/mL. Phenylpropenoyl-L-amino acids, hydroxycinnamoyl aminoacids conjugates, and procyanidin compounds were found mainly in the hydroalcoholic extracts, whereas fatty acids and lyso-phospholipids were found mainly in lipophilic fractions. Fatty acid and (epi)catechins appeared to be affected by different environmental conditions of the geographical areas.
Collapse
|
8
|
Maynard LD, Slinn HL, Glassmire AE, Matarrita-Carranza B, Dodson CD, Nguyen TT, Burroughs MJ, Dyer LA, Jeffrey CS, Whitehead SR. Secondary metabolites in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal. Ecology 2020; 101:e03192. [PMID: 32892339 DOI: 10.1002/ecy.3192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 11/07/2022]
Abstract
Deciphering the ecological roles of plant secondary metabolites requires integrative studies that assess both the allocation patterns of compounds and their bioactivity in ecological interactions. Secondary metabolites have been primarily studied in leaves, but many are unique to fruits and can have numerous potential roles in interactions with both mutualists (seed dispersers) and antagonists (pathogens and predators). We described 10 alkenylphenol compounds from the plant species Piper sancti-felicis (Piperaceae), quantified their patterns of intraplant allocation across tissues and fruit development, and examined their ecological role in fruit interactions. We found that unripe and ripe fruit pulp had the highest concentrations and diversity of alkenylphenols, followed by flowers; leaves and seeds had only a few compounds at detectable concentrations. We observed a nonlinear pattern of alkenylphenol allocation across fruit development, increasing as flowers developed into unripe pulp then decreasing as pulp ripened. This pattern is consistent with the hypothesis that alkenylphenols function to defend fruits from pre-dispersal antagonists and are allocated based on the contribution of the tissue to the plant's fitness, but could also be explained by non-adaptive constraints. To assess the impacts of alkenylphenols in interactions with antagonists and mutualists, we performed fungal bioassays, field observations, and vertebrate feeding experiments. In fungal bioassays, we found that alkenylphenols had a negative effect on the growth of most fungal taxa. In field observations, nocturnal dispersers (bats) removed the majority of infructescences, and diurnal dispersers (birds) removed a larger proportion of unripe infructescences. In feeding experiments, bats exhibited an aversion to alkenylphenols, but birds did not. This observed behavior in bats, combined with our results showing a decrease in alkenylphenols during ripening, suggests that alkenylphenols in fruits represent a trade-off (defending against pathogens but reducing disperser preference). These results provide insight into the ecological significance of a little studied class of secondary metabolites in seed dispersal and fruit defense. More generally, documenting intraplant spatiotemporal allocation patterns in angiosperms and examining mechanisms behind these patterns with ecological experiments is likely to further our understanding of the evolutionary ecology of plant chemical traits.
Collapse
Affiliation(s)
- Lauren D Maynard
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Heather L Slinn
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | - Craig D Dodson
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | | | - Megan J Burroughs
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | - Lee A Dyer
- Department of Biology, University of Nevada, Reno, Nevada, 89557, USA
| | - Christopher S Jeffrey
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
9
|
Margueritte L, Markov P, Chiron L, Starck JP, Vonthron-Sénécheau C, Bourjot M, Delsuc MA. Automatic differential analysis of NMR experiments in complex samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:469-479. [PMID: 29152789 DOI: 10.1002/mrc.4683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion-ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak-picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies.
Collapse
Affiliation(s)
- Laure Margueritte
- Laboratoire d'Innovation Thérapeutique (LIT) UMR CNRS 7200, LabEx Medalis, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | - Petar Markov
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Lionel Chiron
- CASC4DE Le Lodge, 20, Avenue du Neuhof, Strasbourg 67100, France
| | | | - Catherine Vonthron-Sénécheau
- Laboratoire d'Innovation Thérapeutique (LIT) UMR CNRS 7200, LabEx Medalis, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | - Mélanie Bourjot
- Laboratoire d'Innovation Thérapeutique (LIT) UMR CNRS 7200, LabEx Medalis, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | - Marc-André Delsuc
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U596, CNRS UMR 7104, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Ameliorative effects of fruit stem extract from Muscat Bailey A against chronic UV-induced skin damage in BALB/c mice. Biomed Pharmacother 2018; 97:1680-1688. [DOI: 10.1016/j.biopha.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
|