1
|
Rana MS, Rayhan NMA, Emon MSH, Islam MT, Rathry K, Hasan MM, Islam Mansur MM, Srijon BC, Islam MS, Ray A, Rakib MA, Islam A, Kudrat-E-Zahan M, Hossen MF, Asraf MA. Antioxidant activity of Schiff base ligands using the DPPH scavenging assay: an updated review. RSC Adv 2024; 14:33094-33123. [PMID: 39434996 PMCID: PMC11492428 DOI: 10.1039/d4ra04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Schiff base ligands, formed from primary amines and carbonyl compounds, are potential antioxidants because they scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals via hydrogen atom transfer (HAT) and single electron transfer (SET) routes. This review aims to help design, synthesize, and discuss the antioxidant activity of Schiff base ligands based on their structure. This study critically discussed the solvent effect and the structural changes of Schiff base ligands responsible for DPPH scavenging activity, such as proton donating, electron-donating, and electron-withdrawing substituents, conjugation and ring structure. The ligands with electron-donating substituent groups in the phenolic ring demonstrated greater activity by readily stabilizing the radical and some of them showed higher activity than the standard. The activity also depends on the solvent used; the activity increases in those solvents that promote the proton and electron donation of the Schiff base. Schiff bases are most important due to their versatile applications, which can be explained by their antioxidant activity. The data led to the conclusion that the Schiff base ligand will serve as a source of synthetic antioxidants. There should be lots of scope for research on the antioxidant activity of Schiff bases. This review will assist researchers in studying Schiff base-based antioxidants and their applications. All the data analyzed in this paper was found from in vitro tests; for more clearance supplementary tests and in vivo investigations are crucial.
Collapse
Affiliation(s)
- Md Sohel Rana
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | | | | | - Md Tanvir Islam
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Khandaker Rathry
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Mahadi Hasan
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | | | | | - Md Shohidul Islam
- Department of Pharmacy, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Anik Ray
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Abdur Rakib
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Azharul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Kudrat-E-Zahan
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Faruk Hossen
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Ali Asraf
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| |
Collapse
|
2
|
Yang SJ, Yang FY, Zou YN, Wang YS, Ding ZM, Zhang LD, Zhou X, Liu M, Duan ZQ, Huo LJ. Propyl gallate exposure affects the mouse 2-cell stage embryonic development through inducing oxidative stress and autophagy. Food Chem Toxicol 2024; 185:114488. [PMID: 38325633 DOI: 10.1016/j.fct.2024.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Propyl gallate (PG), owing to its exceptional antioxidant properties, is extensively used in industries such as food processing. The potential harmful impacts of PG have sparked concern among people. It has been reported that exposure of PG has certain reproductive toxicity, which can affect the maturation of mouse oocytes and induce testicular dysfunction. However, its impact on early embryonic development is still unclear. In this study, we explored the toxic effects and potential mechanisms of PG on mouse 2-cell stage embryonic development. The results showed that exposure of PG can decrease the development of 2-cell stage embryos and repress the development of 4-cell stage embryos. Further study found that PG could induce intracellular oxidative stress and the accumulation of DNA damage in 2-cell stage embryos. Moreover, exposure of PG impaired the function of mitochondria and lysosomes in 2-cell stage embryos, thereby triggering the occurrence of autophagy. In addition, exposure of PG altered the epigenetic modification of 2-cell stage embryos, displaying a decreased level of DNA methylation and an increased level of H3K4me3. In summary, our results indicated that exposure of PG can damage the development of mouse 2-cell stage embryos by inducing oxidative stress, DNA damage, and autophagy, and altering epigenetic modification.
Collapse
Affiliation(s)
- Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Fu-Yi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yi-Nuo Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yong-Sheng Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Li-Dan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
Liu S, Qu H, Mao Y, Yao L, Dong B, Zheng L. Ce(IV)-coordinated organogel-based assay for on-site monitoring of propyl gallate with turn-on fluorescence signal. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132001. [PMID: 37429188 DOI: 10.1016/j.jhazmat.2023.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Propyl gallate (PG) is a commonly used synthetic phenolic antioxidant in foodstuffs and industrial products. Due to the potential health risk of PG, rapid and on-site detection in food and environment samples are important to guarantee human health. Herein, we demonstrated rapid monitoring of PG by a fluorescence turn-on strategy based on a specific fluorogenic reaction between PG and polyethyleneimine (PEI). Specifically, Ce4+ with oxidase-mimicking activity oxidized PG to its oxides, which then reacted with PEI through the Michael addition to generate the fluorescent compound. The proposed fluorogenic reaction had good specificity for PG, which could distinguish PG from other phenolic antioxidants and interferences. Furthermore, portable and low-cost organogel test kits were prepared using poly(ethylene glycol) diacrylate for quantitative and on-site detection of PG via a smartphone-based sensing platform. The organogel-based assay detection limit was 1.0 μg mL-1 with recoveries ranging from 80.2% to 106.2% in edible oils and surface water. Suitability of the developed assay was also validated by high-performance liquid chromatography. Our study provides an effective fluorescent approach to rapid, specific, and convenient monitoring of PG, which is useful for diminishing the risk of PG exposure.
Collapse
Affiliation(s)
- Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
4
|
Yang SJ, Wang YS, Zhang LD, Ding ZM, Zhou X, Duan ZQ, Liu M, Liang AX, Huo LJ. High-dose synthetic phenolic antioxidant propyl gallate impairs mouse oocyte meiotic maturation through inducing mitochondrial dysfunction and DNA damage. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37052413 DOI: 10.1002/tox.23807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Propyl gallate (PG) is one of the most widely used antioxidants in food products, cosmetics and pharmaceutical industries. Increased research has suggested that exposure to PG influences reproductive health in humans and animals. However, until now, it has not yet been confirmed whether PG would impact oocyte quality. In this study, the hazardous effects of PG on oocyte meiotic maturation were investigated in mice. The findings showed that PG exposure compromises oocyte meiosis by inducing mitochondrial stress which activates apoptosis to trigger oocyte demise. Moreover, DNA damage was significantly induced in PG-treated oocytes, which might be another cause of oocyte developmental arrest and degeneration. Besides, the level of histone methylation (H3K27me2 and H3K27me3) in oocyte was also significantly increased by PG exposure. Furthermore, PG-induced oxidative stress was validated by the increased level of reactive oxygen species (ROS), which might be the underlying reason for these abnormities. In conclusion, the foregoing findings suggested that PG exposure impaired oocyte meiotic maturation by yielding mitochondrial stress to activate apoptosis, inducing DNA damage and oxidative stress, and altering histone methylation level.
Collapse
Affiliation(s)
- Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Dan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Effect of endoplasmic reticulum stress on human trophoblast cells: Survival triggering or catastrophe resulting in death. Acta Histochem 2022; 124:151951. [PMID: 35998395 DOI: 10.1016/j.acthis.2022.151951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported to play a role in the pathogenesis of intrauterine growth retardation and preeclampsia, especially implantation failure. Although in vitro ER stress studies in human trophoblast cell line have been conducted in recent years, the influence of Thapsigargin on intracellular dynamics on calcium homeostasis has not been proven. Here, the effects of ER stress and impaired calcium homeostasis on apoptosis, autophagy, cytoskeleton, hypoxia, and adhesion molecules in 2D and spheroid cultures of human trophectoderm cells were investigated at gene expression and protein levels. Thapsigargin caused ER stress by increasing GRP78 gene expression and protein levels. Human trophectoderm cells displayed different characterization properties in 2D and spheroids. While it moves in the pathway of EIF2A and IRE1A mechanisms in 2D, it proceeds in the pathway of EIF2A and ATF6 mechanisms in spheroids and triggers different responses in survival and programmed cell death mechanisms such as apoptosis and autophagy. This led to changes in the cytoskeleton, cell adhesion molecules and cell-cell interactions by affecting the hypoxia mechanism.
Collapse
|
6
|
Junk food-induced obesity- a growing threat to youngsters during the pandemic. ACTA ACUST UNITED AC 2021; 26:100364. [PMID: 34580647 PMCID: PMC8459649 DOI: 10.1016/j.obmed.2021.100364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Introduction Obesity has been declared an epidemic that does not discriminate based on age, gender, or ethnicity and thus needs urgent containment and management. Since the third wave of COVID-19 is expected to affect children the most, these children and adolescents should be more cautious while having junk foods, during covid situations due to the compromise of Immunity in the individuals and further exacerbating the organ damage. Methodology A PAN India survey organized by the Centre for Science and Environment (CSE) among 13,274 children between the ages 9–14 years reported that 93% of the children ate packed food and 68% consumed packaged sweetened beverages more than once a week, and 53% ate these products at least once in a day. Almost 25% of the School going children take ultra-processed food with high levels of sugar, salt, fat, such as pizza and burgers, from fast food outlets more than once a week. Children and adolescents who consume more junk food or addicted to such consumption might be even more vulnerable during the third wave, which will significantly affect the younger category. Conclusion There is an urgent need to spread awareness among children and young adults about these adverse effects of junk food. There is no better time than now to build a supportive environment nurturing children and young adults in society and promising good health.
Collapse
|
7
|
Liu R, Mabury SA. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11706-11719. [PMID: 32915564 DOI: 10.1021/acs.est.0c05077] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are widely used in various industrial and commercial products to retard oxidative reactions and lengthen product shelf life. In recent years, numerous studies have been conducted on the environmental occurrence, human exposure, and toxicity of SPAs. Here, we summarize the current understanding of these issues and provide recommendations for future research directions. SPAs have been detected in various environmental matrices including indoor dust, outdoor air particulates, sea sediment, and river water. Recent studies have also observed the occurrence of SPAs, such as 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4-di-tert-butyl-phenol (DBP), in humans (fat tissues, serum, urine, breast milk, and fingernails). In addition to these parent compounds, some transformation products have also been detected both in the environment and in humans. Human exposure pathways include food intake, dust ingestion, and use of personal care products. For breastfeeding infants, breast milk may be an important exposure pathway. Toxicity studies suggest some SPAs may cause hepatic toxicity, have endocrine disrupting effects, or even be carcinogenic. The toxicity effects of some transformation products are likely worse than those of the parent compound. For example, 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) can cause DNA damage at low concentrations. Future studies should investigate the contamination and environmental behaviors of novel high molecular weight SPAs, toxicity effects of coexposure to several SPAs, and toxicity effects on infants. Future studies should also develop novel SPAs with low toxicity and low migration ability, decreasing the potential for environmental pollution.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
8
|
Ham J, Lim W, Park S, Bae H, You S, Song G. Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and mitochondrial function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:845-856. [PMID: 30856500 DOI: 10.1016/j.envpol.2019.02.087] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Propyl gallate (propyl 3,4,5-trihydroxybenzoate, PG) is a phenolic antioxidant that has been used for oil-containing foods to prevent acidification. Owing to its antioxidant properties, PG has been applied to various fields and active research is currently underway to prove PG as an anticancer agent. However, there are still concerns about PG as a possible reproductive toxicant. Therefore, we determined whether PG induced male infertility. Our results indicated that PG induced testicular dysfunction in both Leydig and Sertoli cells via suppression of cell viability and steroidogenesis. These normal testis functions were destroyed by PG-induced mitochondrial dysfunction and calcium homeostasis dysregulation. In addition, PG disrupted the expression of several genes associated with the testis function and induced endoplasmic reticulum stress. Furthermore, we verified PG-induced mRNA expression changes in steroidogenesis enzymes and hormone receptors in vitro and in vivo. From the results of the qPCR analysis, we further confirmed the PG-mediated reduction in the mRNA expression of genes related to testis functions by in situ hybridization. Finally, we demonstrated that PG induced testicular toxicity via the disruption of mitochondrial or ER function and the inhibition of testicular development-related genes in mice.
Collapse
Affiliation(s)
- Jiyeon Ham
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Sunwoo Park
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyocheol Bae
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Yang C, Lim W, Bazer FW, Song G. Homosalate aggravates the invasion of human trophoblast cells as well as regulates intracellular signaling pathways including PI3K/AKT and MAPK pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1263-1273. [PMID: 30267922 DOI: 10.1016/j.envpol.2018.09.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Homosalate is an organic ultraviolet filter used in most sunscreens but has been reported to be toxic to marine organisms. The estrogenic activity of homosalate has also been reported, but its endocrine-disrupting effect remains unclear. Although homosalate has been detected in human placental tissues, its effect on the survival of human trophoblast cells needs to be investigated. Therefore, in this study, we evaluated if HTR8/SVneo, a human trophoblast cell line, treated with homosalate showed decreasing proliferative activity in a dose-dependent manner. Homosalate promoted the death of HTR8/SVneo cells with elevated lipid peroxidation and intracellular Ca2+ concentration. It also induced endoplasmic reticulum stress and mitochondrial morphological disturbances associated with the differentiation of human trophoblast cells. However, when the intracellular Ca2+ or reactive oxygen species were removed using BAPTA-AM or N-acetyl-L-cysteine (NAC), the cell proliferation suppressed by homosalate was restored. Homosalate also significantly inhibited the invasion of HTR8/SVneo cells. Furthermore, it modulated phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signaling pathways, which were involved in the cross-talk between both signaling pathways in HTR8/SVneo cells. Thus, homosalate adversely affects the survival, proliferation, and invasiveness of human trophoblast cells and therefore pregnant women should practice caution while using personal care products containing homosalate.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Lim W, An Y, Yang C, Bazer FW, Song G. Trichlorfon inhibits proliferation and promotes apoptosis of porcine trophectoderm and uterine luminal epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:555-564. [PMID: 30005267 DOI: 10.1016/j.envpol.2018.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Trichlorfon is an organophosphate insecticide widely used in agriculture. Additionally, it is applied to pigs for control of endo- and ectoparasites. Previous studies have shown the effects of trichlorfon in pigs during late stages of gestation; however, little is known about its effects during early pregnancy, including implantation and placentation. We investigated whether trichlorfon affects proliferation and apoptosis of porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. Trichlorfon inhibited the proliferation of pTr and pLE cells, as evidenced by cell cycle arrest, and altered the expression of proliferation-related proteins. In addition, trichlorfon induced cell death and apoptotic features, such as loss of mitochondrial membrane potential and DNA fragmentation, in pTr and pLE cells. Moreover, trichlorfon treatment decreased concentrations of Ca2+ in the cytoplasm in both cell lines and increased concentrations of Ca2+ in mitochondria of pTr cells. Trichlorfon inhibited the activation of phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase signaling pathways in pTr and pLE cells. Therefore, we suggest that trichlorfon-treated pTr and pLE cells exhibited abnormal cell physiology which might lead to early pregnancy failure.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Yikyung An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Avobenzone suppresses proliferative activity of human trophoblast cells and induces apoptosis mediated by mitochondrial disruption. Reprod Toxicol 2018; 81:50-57. [PMID: 29981360 DOI: 10.1016/j.reprotox.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 12/27/2022]
Abstract
Avobenzone is widely used in various personal care products, is present in swimming pools, and is toxic to aquatic organisms. However, it is unclear how avobenzone affects human trophoblast cells. Results of the present study demonstrated that avobenzone inhibited the proliferation of HTR8/SVneo cells, the immortalized human trophoblast cell line, and inhibited the expression of PCNA. In addition, avobenzone increased the activity of AKT and ERK1/2 in HTR8/SVneo cells. When LY294002 (AKT inhibitor) and U0126 (ERK1/2 inhibitor) were treated with avobenzone, the anti-proliferative effect of avobenzone was alleviated. Moreover, avobenzone promoted Ca2+ overload into the mitochondria and induced depolarization of the mitochondrial membrane. Expression of IFI27, which is located in the mitochondria, was elevated by avobenzone via inhibition of expression through siRNA transfection against IFI27, but did not alter cell properties. This study suggests that avobenzone induces mitochondrial dysfunction-mediated apoptosis leading to abnormal placentation during early pregnancy.
Collapse
|