1
|
M A, I MA, Ramalingam K, Shanmugam R. Biomedical Applications of Lauric Acid: A Narrative Review. Cureus 2024; 16:e62770. [PMID: 39036266 PMCID: PMC11260118 DOI: 10.7759/cureus.62770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Lauric acid, a major component of coconut oil, has been studied for its various health benefits over the years. Lauric acid is a medium-chained fatty acid with several potential biomedical applications based on its antimicrobial action, capacity for drug delivery, tissue engineering scaffolds, and cleansing capabilities. Various studies are carried out in vitro and in vivo using experimental animals, such as rats, shedding light on the efficacy of lauric acid. The studies related to lauric acid were brought under one umbrella and emphasized the need for further research to explore the efficacy of lauric acid in human health. This review aims to scientifically assess the reported data and present a narrative review on lauric acid in medicine.
Collapse
Affiliation(s)
- Ameena M
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meignana Arumugham I
- Public Health Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
2
|
Zhou M, Li J, Xu J, Zheng L, Xu S. Exploring human CYP4 enzymes: Physiological roles, function in diseases and focus on inhibitors. Drug Discov Today 2023; 28:103560. [PMID: 36958639 DOI: 10.1016/j.drudis.2023.103560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The cytochrome P450 (CYP)4 family of enzymes are monooxygenases responsible for the ω-oxidation of endogenous fatty acids and eicosanoids and play a crucial part in regulating numerous eicosanoid signaling pathways. Recently, CYP4 gained attention as a potential therapeutic target for several human diseases, including cancer, cardiovascular diseases and inflammation. Small-molecule inhibitors of CYP4 could provide promising treatments for these diseases. The aim of the present review is to highlight the advances in the field of CYP4, discussing the physiology and pathology of the CYP4 family and compiling CYP4 inhibitors into groups based on their chemical classes to provide clues for the future discovery of drug candidates targeting CYP4.
Collapse
Affiliation(s)
- Manzhen Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Junda Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215300, China.
| |
Collapse
|
3
|
Riecan M, Paluchova V, Lopes M, Brejchova K, Kuda O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol Ther 2021; 231:107972. [PMID: 34453998 DOI: 10.1016/j.pharmthera.2021.107972] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) represent a complex lipid class that contains both signaling mediators and structural components of lipid biofilms in humans. The majority of endogenous FAHFAs share a common chemical architecture, characterized by an estolide bond that links the hydroxy fatty acid (HFA) backbone and the fatty acid (FA). Two structurally and functionally distinct FAHFA superfamilies are recognized based on the position of the estolide bond: omega-FAHFAs and in-chain branched FAHFAs. The existing variety of possible HFAs and FAs combined with the position of the estolide bond generates a vast quantity of unique structures identified in FAHFA families. In this review, we discuss the anti-diabetic and anti-inflammatory effects of branched FAHFAs and the role of omega-FAHFA-derived lipids as surfactants in the tear film lipid layer and dry eye disease. To emphasize potential pharmacological targets, we recapitulate the biosynthesis of the HFA backbone within the superfamilies together with the degradation pathways and the FAHFA regioisomer distribution in human and mouse adipose tissue. We propose a theoretical involvement of cytochrome P450 enzymes in the generation and degradation of saturated HFA backbones and present an overview of small-molecule inhibitors used in FAHFA research. The FAHFA lipid class is huge and largely unexplored. Besides the unknown biological effects of individual FAHFAs, also the enigmatic enzymatic machinery behind their synthesis could provide new therapeutic approaches for inflammatory metabolic or eye diseases. Therefore, understanding the mechanisms of (FA)HFA synthesis at the molecular level should be the next step in FAHFA research.
Collapse
Affiliation(s)
- Martin Riecan
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Veronika Paluchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Magno Lopes
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
| |
Collapse
|
5
|
Yamaori S, Araki N, Shionoiri M, Ikehata K, Kamijo S, Ohmori S, Watanabe K. A Specific Probe Substrate for Evaluation of CYP4A11 Activity in Human Tissue Microsomes and a Highly Selective CYP4A11 Inhibitor: Luciferin-4A and Epalrestat. J Pharmacol Exp Ther 2018; 366:446-457. [PMID: 29976573 DOI: 10.1124/jpet.118.249557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/29/2018] [Indexed: 03/08/2025] Open
Abstract
The specificity of cytochrome P450 4A11 (CYP4A11) against luciferin-4A O-demethylation in human liver microsomes (HLMs) and human renal microsomes (HRMs) and selectivity of CYP4A11 inhibition by epalrestat were investigated. Kinetic analysis of luciferin-4A O-demethylation yielded Vmax and S50 values of 39.7 pmol/min per milligram protein and 43.2 μM for HLMs (Hill coefficient 1.24) and 39.4 pmol/min per milligram protein and 33.8 μM for HRMs (Hill coefficient 1.34), respectively. Among the selective CYP inhibitors tested, HET0016 (CYP4 inhibitor) exclusively inhibited luciferin-4A O-demethylation by HLMs and HRMs. Furthermore, anti-CYP4A11 antibody nearly abolished the activity of both tissue microsomes. Luciferin-4A O-demethylase activity of HLMs was significantly correlated with lauric acid ω-hydroxylase activity, a marker of CYP4A11 activity (r = 0.904, P < 0.0001). Next, effects of epalrestat on CYP-mediated drug oxidations were examined. Epalrestat showed the most potent inhibition against CYP4A11 (IC50 = 1.82 μM) among the 17 recombinant enzymes tested. The inhibitory effect of epalrestat on CYP4A11 was at least 10-fold stronger than those on CYP4F2, CYP4F3B, and CYP4F12. For known CYP4 inhibitors, in contrast, HET0016 inhibited the activities of CYP4A11 and CYP4F2 (IC50 = 0.0137-0.0182 μM); 17-octadecynoic acid reduced activities of CYP4A11, CYP4F2, CYP4F3B, and CYP4F12 to a similar extent (IC50 = 5.70-17.7 μM). Epalrestat selectively and effectively inhibited the CYP4A11 activity of HLMs (IC50 = 0.913 μM) and HRMs (IC50 = 0.659 μM). These results indicated that luciferin-4A O-demethylase activity is a good CYP4A11 marker of HLMs and HRMs, and that epalrestat is a more selective CYP4A11 inhibitor compared with known CYP4 inhibitors.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Noriyuki Araki
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Mio Shionoiri
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Kurumi Ikehata
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Shinobu Kamijo
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Shigeru Ohmori
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Kazuhito Watanabe
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| |
Collapse
|