1
|
Lee YR, Lee HW, Park KM, Lee NK, Paik HD. Anti-inflammatory effects of Lactiplantibacillus plantarum strains through MAPK, NF-κB, and AP-1 signaling pathways and its application in soy milk. Food Res Int 2025; 208:116216. [PMID: 40263848 DOI: 10.1016/j.foodres.2025.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigated the anti-inflammatory effects of probiotic Lactiplantibacillus plantarum strains isolated from kimchi and its application in soy milk. L. plantarum WB3801 and L. plantarum WB3802 exhibited probiotic properties. Moreover, L. plantarum strains inhibited inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 murine macrophages without inducing cytotoxicity. This resulted in decreased nitric oxide and prostaglandin E2 levels. Additionally, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 mRNA levels were downregulated, and the activation of mitogen-activated protein kinase, nuclear factor-κB, and activator protein-1 was suppressed. Furthermore, fermented soy milk with fructooligosaccharides by L. plantarum strains exhibited stable physicochemical characteristics over the 28-day storage period, and its anti-inflammatory effects were consistent with those of the L. plantarum strains. Therefore, L. plantarum WB3801 and L. plantarum WB3802 can be utilized as functional components in foods with anti-inflammatory effects.
Collapse
Affiliation(s)
- Yu-Rim Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye-Won Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Wen XY, Yang N, Gao Y, Ma WN, Fu Y, Geng RF, Zhang YL. PRDX1 exerts a photoprotection effect by inhibiting oxidative stress and regulating MAPK signaling on retinal pigment epithelium. BMC Ophthalmol 2024; 24:237. [PMID: 38844903 PMCID: PMC11155104 DOI: 10.1186/s12886-024-03489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate the photoprotection effect of peroxiredoxin 1 (PRDX1) protein in ultraviolet B (UVB) irradiation-induced damage of retinal pigment epithelium (RPE) and its possible molecular mechanism. METHODS ARPE-19 cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the PRDX1 expression. The corresponding kits were employed to measure the levels or activities of lactate dehydrogenase (LDH), 8-hydroxy-2-deoxyguanosine (8-OHdG), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). Western blotting was applied to examine PRDX1 expression and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS After exposure to 20 mJ/cm2 intensity of UVB irradiation for 24 h, ARPE-19 cells viability was decreased, the leakage degree of LDH and 8-OHdG were increased, and cell apoptosis was elevated. The expression of PRDX1 was significantly down-regulated in UVB-induced ARPE-19 cells. The low expression of PRDX1 was involved in high irradiation intensity. Overexpression of PRDX1 increased cell activity, decreased cell apoptosis, and LDH as well as 8-OHdG leakage in UVB-induced ARPE-19 cells. In addition to alleviating UVB-induced cell damage, PRDX1 overexpression also inhibited UVB-induced oxidative stress (down-regulation of ROS and MDA levels, up-regulation of GSH-Px and SOD activities) and the activation of MAPK signaling pathway in ARPE-19 cells. CONCLUSION PRDX1 exerts a photoprotection effect on RPE by attenuating UVB-induced cell damage and inhibiting oxidative stress, which can be attributed to the inhibition of MAPK signaling pathway activation.
Collapse
Affiliation(s)
- Xiao-Ying Wen
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Na Yang
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yang Gao
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Wei-Na Ma
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yan Fu
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Ren-Fei Geng
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yue-Ling Zhang
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China.
| |
Collapse
|
3
|
Huang L, Kim JH, You L, Park SH, Zhang J, Shin CY, Sutopo NC, Byun HW, Omaliss K, Masphal K, Son J, Kim GR, Lee BH, Kim JH, Lee J, Cho JY. Anti-oxidative, anti-apoptotic, and anti-inflammatory activities of Connarus semidecandrus Jack ethanol extract in UVB-irradiated human keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117574. [PMID: 38097025 DOI: 10.1016/j.jep.2023.117574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Connarus semidecandrus Jack (Family: connaraceae) is a medicinal plant known for its wide distribution throughout Southeast Asia. Renowned for its diverse therapeutic properties, it has been traditionally used for treating fever, skin irritation, and colic. AIM OF THE STUDY Numerous individuals suffer from skin issues, including wrinkles, hyperpigmentation, and inflammation, due to environmental factors. Although many drugs are available to treat skin problems, chemical drugs have many shortcomings and side effects. Therefore, natural products are attractive potential medicines for alleviating skin troubles. We recently showed that Connarus semidecandrus Jack ethanol extract (Cs-EE) has anti-alopecia potential. This paper aims to explore the potential skin-protective effects and underlying molecular mechanisms of Connarus semidecandrus Jack in UVB-induced human keratinocytes (HaCaT). MATERIALS AND METHODS Before utilization, Cs-EE was dissolved in dimethyl sulfoxide (DMSO) and was preserved at a temperature of -20 °C. The phytochemical constituents of Cs-EE were detected by gas chromatography-mass spectrometry analysis (GC-MS). Sequentially, HaCaT cells were exposed to varying concentrations of Cs-EE prior to ultraviolet B (UVB) irradiation. Evaluations of cellular responses in HaCaT cells, including assessments of cell viability, deoxyribonucleic acid (DNA) damage, and gene and protein expressions, were carried out. To explore the specific signaling pathway involved, we conducted a luciferase assay in addition to validating these pathways using Western blot analysis. RESULTS Nitric oxide (NO) and intracellular reactive oxygen species were decreased. Melanin production through the activation of melanocytes by α-melanocyte-stimulating hormone (MSH) was also inhibited by Cs-EE. Furthermore, the mRNA expression levels of key factors such as cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), MMP-1, MMP-3, and MMP-9 exhibited a remarkable decrease. In addition, the phosphorylation of TAK1 within the signaling cascade exhibited a decline, and the activities of the transcription factor AP-1 were decreased according to a luciferase reporter assay. CONCLUSIONS Taken together, these findings suggest that the anti-inflammatory, anti-aging, and anti-apoptotic effects of Cs-EE indicate the compound's potential usefulness as a natural component in pharmaceutical and cosmetic products.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Long You
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jianmei Zhang
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | | | - Hye-Woo Byun
- Biodiversity Research and Cooperation Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Keo Omaliss
- Forestry Administration, Ministry of Agriculture Forestry and Fisheries, #40 Norodom Blvd, Daun Penh, Phnom Penh, 12205, Cambodia.
| | - Kry Masphal
- Forestry Administration, Ministry of Agriculture Forestry and Fisheries, #40 Norodom Blvd, Daun Penh, Phnom Penh, 12205, Cambodia.
| | - Jino Son
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Ga Ryun Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Jong-Hoon Kim
- Department of Veterinary Physiology College of Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jongsung Lee
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Hyun JH, Yu HS, Woo IK, Lee GW, Lee NK, Paik HD. Anti-inflammatory activities of Levilactobacillus brevis KU15147 in RAW 264.7 cells stimulated with lipopolysaccharide on attenuating NF-κB, AP-1, and MAPK signaling pathways. Food Sci Biotechnol 2023; 32:2105-2115. [PMID: 37860733 PMCID: PMC10581997 DOI: 10.1007/s10068-023-01318-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023] Open
Abstract
Probiotics confer many beneficial effects on several illnesses, ranging from microbial diarrhea to inflammatory diseases. This study was conducted on whether Levilactobacillus brevis KU15147 obtained from kimchi has anti-inflammatory effects in RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and antioxidant potential. L. brevis KU15147 reduced nitric oxide and prostaglandin E2 levels with decreasing the activation of inducible nitric oxide synthase and cyclooxygenase-2 without cell cytotoxicity. In addition, L. brevis KU15147 attenuated proinflammatory cytokine production including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in RAW 264.7 cells stimulated with LPS. Additionally, L. brevis KU15147 reduced the activity of nuclear factor-κB, activator protein-1, and mitogen-activated protein kinase signaling pathways. Furthermore, L. brevis KU15147 downregulated the production of reactive oxygen species. Therefore, L. brevis KU15147 was concluded that had an inhibition effect on LPS-induced inflammatory responses and can be used in functional foods to suppress inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01318-w.
Collapse
Affiliation(s)
- Jun-Hyun Hyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Im-Kyung Woo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gil-Woong Lee
- View of Creativity, GHBio Co., Ltd., 120 Neungdong-Ro, Seoul, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
5
|
Abstract
Legumes are a staple of diets all around the world. In some least developed countries, they are the primary source of protein; however, their beneficial properties go beyond their nutritional value. Recent research has shown that legumes have bioactive compounds like peptides, polyphenols and saponins, which exhibit antioxidant, antihypertensive, anti-inflammatory and other biological activities. Thus, these compounds could be an alternative treatment for inflammatory diseases, in particular, chronic inflammation such as arthritis, obesity and cancer. Nowadays, there is a growing interest in alternative therapies derived from natural products; accordingly, the present review has compiled the bioactive compounds found in legumes that have demonstrated an anti-inflammatory effect in non-clinical studies.
Collapse
|
6
|
Saito M, Watanabe H, Sasaki M, Ookubo M, Yarita T, Shiraiwa M, Asayama M. Coproduction of lipids and carotenoids by the novel green alga Coelastrella sp. depending on cultivation conditions. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 37:e00769. [PMID: 36660172 PMCID: PMC9843265 DOI: 10.1016/j.btre.2022.e00769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 12/23/2022]
Abstract
A novel green alga Coelastrella sp. D3-1 was isolated, and its unique and significant lipid and carotenoid coproduction capability was characterised depending on cultivation conditions. The main component of produced lipids was triacylglycerol under nutrient depletion conditions, in which fatty-methyl-esters made up 20-44% of the dry cell weight (DCW) and consisted of abundant C16:0 and C18:1 fatty acids. The red (orange)-stage cells also produced a large portion of carotenoids (38.5% of the DCW) involving echinenone, canthaxanthin, and astaxanthin as major components accumulated over only 5-6 days under optimal conditions. Stress tests revealed resistance of the cells to pH 2-11, high temperatures (40-60 °C), ultraviolet irradiation, drought, and H2O2 treatment, thereby showing a robust nature. Both green- and red (orange)-stage cell extracts also showed antioxidant and anti-inflammatory abilities, implying that they have significant functions as useful biorefinery materials.
Collapse
Affiliation(s)
- Mizuki Saito
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0332, Japan
| | - Haruka Watanabe
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0332, Japan
| | - Mitsuki Sasaki
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0332, Japan
| | - Madoka Ookubo
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0332, Japan
| | - Takashi Yarita
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0332, Japan,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Fuchu, Tokyo 183-8509, Japan
| | - Masakazu Shiraiwa
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0332, Japan,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Fuchu, Tokyo 183-8509, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0332, Japan,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Fuchu, Tokyo 183-8509, Japan,Corresponding author at: College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0332, Japan.
| |
Collapse
|
7
|
Lee JA, Shin JY, Hong SS, Cho YR, Park JH, Seo DW, Oh JS, Kang JS, Lee JH, Ahn EK. Tetracera loureiri Extract Regulates Lipopolysaccharide-Induced Inflammatory Response Via Nuclear Factor-κB and Mitogen Activated Protein Kinase Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:284. [PMID: 35161266 PMCID: PMC8839383 DOI: 10.3390/plants11030284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Tetracera loureiri (T. loureiri) is a woody climber inhabiting open deciduous or evergreen forests in Southeast Asia. A decoction comprising its stem and other herbs is a traditional Thai remedy for fatigue and jaundice, as well as to promote overall health. Anti-inflammatory effects induced by T. loureiri extract have not been reported. In this study, we investigated the anti-inflammatory effect of an ethanol extract of T. loureiri (ETL) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages. We found that ETL treatment inhibited the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells, without affecting cell viability. The effect of ETL on the expression of various pro-inflammatory mediators was analyzed using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). We observed that ETL inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels and decreased the production of prostaglandin E2 (PGE2) by COX-2 in RAW264.7 macrophages. ETL dose-dependently reduced the production of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in LPS-induced RAW264.7 cells, in a dose-dependent manner. Furthermore, ETL suppressed the LPS-induced nuclear translocation of the nuclear factor, NF-κB. Additionally, ETL was found to inhibit the activation of mitogen-activated protein kinases (MAPK), such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and p38 MAPK. In conclusion, our findings demonstrate that ETL inhibits the expression of pro-inflammatory mediators and cytokines, thereby downregulating NF-κB and MAPK signaling pathways in LPS-stimulated macrophages, Consequently, ETL is a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jung A Lee
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju Young Shin
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Young-Rak Cho
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Jae-Shin Kang
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Jae Ho Lee
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| |
Collapse
|
8
|
Streptoglycerides E-H, Unsaturated Polyketides from the Marine-Derived Bacterium Streptomyces specialis and Their Anti-Inflammatory Activity. Mar Drugs 2022; 20:md20010044. [PMID: 35049899 PMCID: PMC8781396 DOI: 10.3390/md20010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
Four new streptoglycerides E-H (1-4), with a rare 6/5/5/-membered ring system, were isolated from a marine-derived actinomycete Streptomyces specialis. The structures of 1-4 were elucidated by detailed analysis of HRESIMS, 1D and 2D NMR data and ECD spectra as well as comparison of their spectroscopic data with those reported in literature. Compounds 1-4 showed significant anti-inflammatory activity by inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) production in Raw 264.7 cells with IC50 values ranging from 3.5 to 10.9 µM. Especially, 2 suppressed mRNA expression levels of iNOS and IL-6 without cytotoxicity.
Collapse
|
9
|
Zhou JT, Ren KD, Hou J, Chen J, Yang G. α‑rhamnrtin‑3‑α‑rhamnoside exerts anti‑inflammatory effects on lipopolysaccharide‑stimulated RAW264.7 cells by abrogating NF‑κB and activating the Nrf2 signaling pathway. Mol Med Rep 2021; 24:799. [PMID: 34523697 PMCID: PMC8456313 DOI: 10.3892/mmr.2021.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
α-rhamnrtin-3-α-rhamnoside (ARR) is the principal compound extracted from Loranthus tanakae Franch. & Sav. However, its underlying pharmacological properties remain undetermined. Inflammation is a defense mechanism of the body; however, the excessive activation of the inflammatory response can result in physical injury. The present study aimed to investigate the effects of ARR on lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to determine the underlying molecular mechanism. A Cell Counting Kit-8 assay was performed to assess cytotoxicity. Nitric oxide (NO) production was measured via a NO colorimetric kit. Levels of prostaglandin E2 (PGE2) and proinflammatory cytokines, IL-1β and IL-6, were detected using ELISAs. Reverse transcription-quantitative (RT-q)PCR analysis was performed to detect the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and IL-1β in LPS-induced RAW246.7 cells. Western blotting, immunofluorescence and immunohistochemistry analyses were performed to measure the expression levels of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins to elucidate the molecular mechanisms of the inflammatory response. The results of the cytotoxicity assay revealed that doses of ARR ≤200 µg/ml exhibited no significant effect on the viability of RAW264.7 cells. The results of the Griess assay demonstrated that ARR inhibited the production of NO. In addition, the results of the ELISAs and RT-qPCR analysis discovered that ARR reduced the production of the proinflammatory cytokines, IL-1β and IL-6, as well as the proinflammatory mediators, PGE2, iNOS and COX-2, in LPS-induced RAW264.7 cells. Immunohistochemical analysis demonstrated that ARR inhibited LPS-induced activation of TNF-associated factor 6 (TRAF6) and NF-κB p65 signaling molecules, while reversing the downregulation of the NOD-like receptor family CARD domain containing 3 (NLRC3) signaling molecule, which was consistent with the results of the western blotting analysis. Immunofluorescence results indicated that ARR reduced the increase of NF-κB p65 nuclear expression induced by LPS. Furthermore, the results of the western blotting experiments also revealed that ARR upregulated heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and Nrf2 pathway molecules. In conclusion, the results of the present study suggested that ARR may exert anti-inflammatory effects by downregulating NF-κB and activating Nrf2-mediated inflammatory responses, suggesting that ARR may be an attractive anti-inflammatory candidate drug.
Collapse
Affiliation(s)
- Jiang Tao Zhou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Kai Da Ren
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jing Hou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jie Chen
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Guan'e Yang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
10
|
Transcriptome Analysis Reveals Possible Immunomodulatory Activity Mechanism of Chlorella sp. Exopolysaccharides on RAW264.7 Macrophages. Mar Drugs 2021; 19:md19040217. [PMID: 33919822 PMCID: PMC8070752 DOI: 10.3390/md19040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, the exopolysaccharides of Chlorella sp. (CEP) were isolated to obtain the purified fraction CEP4. Characterization results showed that CEP4 was a sulfated heteropolysaccharide. The main monosaccharide components of CEP4 are glucosamine hydrochloride (40.8%) and glucuronic acid (21.0%). The impact of CEP4 on the immune activity of RAW264.7 macrophage cytokines was detected, and the results showed that CEP4 induced the production of nitric oxide (NO), TNF-α, and IL-6 in a dose-dependent pattern within a range of 6 μg/mL. A total of 4824 differentially expressed genes (DEGs) were obtained from the results of RNA-seq. Gene enrichment analysis showed that immune-related genes such as NFKB1, IL-6, and IL-1β were significantly upregulated, while the genes RIPK1 and TLR4 were significantly downregulated. KEGG pathway enrichment analysis showed that DEGs were significantly enriched in immune-related biological processes, including toll-like receptor (TLR) signaling pathway, cytosolic DNA-sensing pathway, and C-type lectin receptor signaling pathway. Protein–protein interaction (PPI) network analysis showed that HSP90AB1, Rbx1, ISG15, Psmb6, Psmb3, Psmb8, PSMA7, Polr2f, Rpsa, and NEDD8 were the hub genes with an essential role in the immune activity of CEP4. The preliminary results of the present study revealed the potential mechanism of CEP4 in the immune regulation of RAW264.7 macrophages, suggesting that CEP4 is a promising immunoregulatory agent.
Collapse
|
11
|
Anti-Inflammatory Activity of Diterpenoids from Celastrus orbiculatus in Lipopolysaccharide-Stimulated RAW264.7 Cells. J Immunol Res 2020; 2020:7207354. [PMID: 32802895 PMCID: PMC7414338 DOI: 10.1155/2020/7207354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Celastrus orbiculatus Thunb has been known as an ethnopharmacological medicinal plant for antitumor, anti-inflammatory, and analgesic effects. Although various pharmacological studies of C. orbiculatus extract has been reported, an anti-inflammatory mechanism study of their phytochemical constituents has not been fully elucidated. In this study, compounds 1-17, including undescribed podocarpane-type trinorditerpenoid (3), were purified from C. orbiculatus and their chemical structure were determined by high-resolution electrospray ionization mass (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopic data. To investigate the anti-inflammatory activity of compounds 1-17, nitric oxide (NO) secretion was evaluated in LPS-treated murine macrophages, RAW264.7 cells. Among compounds 1-17, deoxynimbidiol (1) and new trinorditerpenoid (3) showed the most potent inhibitory effects (IC50: 4.9 and 12.6 μM, respectively) on lipopolysaccharide- (LPS-) stimulated NO releases as well as proinflammatory mediators, such as inducible nitric oxide (iNOS), cyclooxygenase- (COX-) 2, interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α. Its inhibitory activity of proinflammatory mediators is contributed by suppressing the activation of nuclear transcription factor- (NF-) κB and mitogen-activated protein kinase (MAPK) signaling cascades including p65, inhibition of NF-κB (IκB), extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38. Therefore, these results demonstrated that diterpenoids 1 and 3 obtained from C. orbiculatus may be considered a potential candidate for the treatment of inflammatory diseases.
Collapse
|
12
|
Zhang Q, Zhang JH, He YQ, Zhang QL, Zhu B, Shen Y, Liu MQ, Zhu LL, Xin HL, Qin LP, Zhang QY. Iridoid glycosides from Morinda officinalis How. exert anti-inflammatory and anti-arthritic effects through inactivating MAPK and NF-κB signaling pathways. BMC Complement Med Ther 2020; 20:172. [PMID: 32503513 PMCID: PMC7275542 DOI: 10.1186/s12906-020-02895-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background The root of Morinda officinalis How. (MO, the family of Rubiaceae) has long been used to treat inflammatory diseases in China and other eastern Asian countries, and iridoid glycosides extracted from MO (MOIG) are believed to contribute to this anti-inflammatory effect. However, the mechanism underlying the anti-inflammatory and anti-arthritic activities of MOIG has not been elucidated. The aim of the present study was to determine how MOIG exerted anti-inflammatory and anti-arthritic effects in vivo and in RAW 264.7 macrophages. Methods MOIG were enriched by XDA-1 macroporous resin. The maximum feasible dose method was adopted to evaluate its acute toxicity. The analgesic effect of MOIG was evaluated by acetic acid writhing test and the anti-inflammatory effect was evaluated by cotton-pellet granuloma test in rats and air pouch granuloma test in mice. The anti-arthritic effect was evaluated by establishing an adjuvant arthritis model induced by Complete Freund’s Adjuvant (CFA). The viability of the cultured RAW 264.7 macrophages was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The anti-inflammatory activity was evaluated by measuring NO, IL-1β, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 cells. The protein level of inflammatory responsive genes was evaluated by Western blot analysis. Results MOIG had no significant toxicity at maximum feasible dose of 22.5 g/kg. MO extracts and MOIG (50,100 and 200 mg/kg) all evoked a significantly inhibitory effects on the frequency of twisting induced by acetic acid in mice compared with the model control group. Administration of MO extracts and MOIG markedly decreased the dry and wet weight of cotton pellet granuloma in rats and air pouch granuloma in mice. MOIG significantly attenuated the paw swelling and decreased the arthritic score, weight loss, spleen index, and the serum level of inflammatory factors IL-1β, IL-6 and IL-17a in CFA-induced arthritic rats. MOIG inhibited the production of inflammatory cytokines in LPS-stimulated RAW264.7 cells, and the expressions of iNOS, COX-2 and proteins related to MAPK and NF-κB signaling pathways in LPS-stimulated RAW 264.7 macrophages. Conclusion MOIG exerted anti-inflammatory and anti-arthritic activities through inactivating MAPK and NF-κB signaling pathways, and this finding may provide a sound experimental basis for the clinical treatment of rheumatoid arthritis with MOIG.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jian-Hua Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Qiong He
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Quan-Long Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Bo Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Yi Shen
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Meng-Qin Liu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lu-Lin Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Hai-Liang Xin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Lu-Ping Qin
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Qiao-Yan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Chen J, Ullah H, Zheng Z, Gu X, Su C, Xiao L, Wu X, Xiong F, Li Q, Zha L. Soyasaponins reduce inflammation by downregulating MyD88 expression and suppressing the recruitments of TLR4 and MyD88 into lipid rafts. BMC Complement Med Ther 2020; 20:167. [PMID: 32493316 PMCID: PMC7268359 DOI: 10.1186/s12906-020-2864-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Previous studies indicate that soyasaponins may reduce inflammation via modulating toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling. However, its underlying mechanisms are still not fully understood. Methods Lipopolysaccharide (LPS)-challenged inflamed male ICR mice were intervened by intragastrical administration with 10 and 20 μmol/kg·BW of soyasaponin A1, A2 or I for 8 weeks. The serum inflammatory markers were determined by commercial kits and the expression of molecules in TLR4/MyD88 signaling pathway in liver by real-time PCR and western blotting. The recruitments of TLR4 and MyD88 into lipid rafts of live tissue lysates were detected by sucrose gradient ultracentrifugation and western blotting. LPS-stimulated RAW264.7 macrophages were treated with 10, 20 and 40 μmol/L of soyasaponin A1, A2 or I for 2 h. MyD88-overexpressed HEK293T cells were treated with 20 and 40 μmol/L of soyasaponins (A1, A2 or I) or 20 μmol/L of ST2825 (a MyD88 inhibitor) for 6 h. The expression of molecules in TLR4/MyD88 signaling pathway were determined by western blotting. Data were analyzed by using one way analysis of variance or t-test by SPSS 20.0 statistical software. Results Soyasaponins A1, A2 or I significantly reduced the levels of tumor necrosis factor alpha (TNFα), interleukin (IL)-6 and nitric oxide (NO) in serum (p < 0.05), and decreased the mRNA levels of TNFα, IL-6, IL-1β, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) (p < 0.05), the protein levels of myeloid differentiation protein 2 (MD-2), TLR4, MyD88, toll-interleukin1 receptor domain containing adaptor protein (TIRAP), phosphorylated interleukin-1 receptor-associated kinase 4 (p-IRAK-4), phosphorylated interleukin-1 receptor-associated kinase 1 (p-IRAK-1) and TNF receptor associated factor 6 (TRAF6) (p < 0.05), and the recruitments of TLR4 and MyD88 into lipid rafts in liver (p < 0.05). In LPS-stimulated macrophages, soyasaponins A2 or I significantly decreased MyD88 (p < 0.05), soyasaponins A1, A2 or I reduced p-IRAK-4 and p-IRAK-1 (p < 0.05), and soyasaponin I decreased TRAF6 (p < 0.05). In MyD88-overexpressed HEK293T cells, soyasaponins (A1, A2 or I) and ST2825 significantly decreased MyD88 and TRAF6 (p < 0.05). Conclusion Soyasaponins can reduce inflammation by downregulating MyD88 expression and suppressing the recruitments of TLR4 and MyD88 into lipid rafts. This study provides novel understanding about the anti-inflammatory mechanism of soyasaponins.
Collapse
Affiliation(s)
- Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Hidayat Ullah
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Xiangfu Gu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Lingyu Xiao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Xinglong Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qing Li
- Department of Dietetics, Nanfang Hospital, Southern Medical University, No.1838, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
14
|
Liu WH, Shi LS, Chung MC, Chang TC, Lee SY. Antcamphin M Inhibits TLR4-Mediated Inflammatory Responses by Upregulating the Nrf2/HO-1 Pathway and Suppressing the NLRP3 Inflammasome Pathway in Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1611-1626. [PMID: 31645125 DOI: 10.1142/s0192415x19500824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The medicinal mushroom Antrodia cinnamomea has been demonstrated to have anti-inflammatory properties. However, the bioactive compounds in A. cinnamomea need further investigation. The present study aimed to understand the mechanism of action of antcamphin M, an ergostanoid isolated from A. cinnamomea mycelium and to clarify its underlying mechanisms of action. RAW264.7 cells were pretreated with the indicated concentrations of antcamphin M, prior to stimulation with lipopolysaccharide (LPS). Cell viability, production of nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and chemokines, as well as the inflammation-related signaling pathways were investigated. The study revealed that antcamphin M significantly decreased the LPS-induced production of NO, PGE2, pro-inflammatory cytokines, and keratinocyte chemoattractant CXCL1 (KC), along with the levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins without significant cytotoxicity, indicating it had a better anti-inflammatory activity than that of gisenoside Rb1 and Rg1. Additionally, antcamphin M significantly inhibited the activation of MAPKs (p38, ERK, and JNK), NFκB, and components of the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathways and also increased the levels of nuclear factor erythroid-2-related factor (Nrf2) and heme oxygenase-1 (HO-1). These findings suggest that antcamphin M possesses potent anti-inflammatory activities and could be a potential candidate for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Wei-Hsiu Liu
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Min-Chieh Chung
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Tsu-Chung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
15
|
Optimization of Microwave-Assisted Extraction of Polysaccharides from Ulva pertusa and Evaluation of Their Antioxidant Activity. Antioxidants (Basel) 2019; 8:antiox8050129. [PMID: 31091698 PMCID: PMC6562377 DOI: 10.3390/antiox8050129] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/18/2023] Open
Abstract
The use of green marine seaweed Ulva spp. as foods, feed supplements, and functional ingredients has gained increasing interest. Microwave-assisted extraction technology was employed to improve the extraction yield and composition of Ulva pertusa polysaccharides. The antioxidant activity of ulvan was also evaluated. The impacts of four independent variables, i.e., extraction time (X1, 30 to 60 min), power (X2, 500 to 700 W), water-to-raw-material ratio (X3, 40 to 70), and pH (X4, 5 to 7) were evaluated. The chemical structure of different polysaccharides fractions was investigated via FT-IR and the determination of their antioxidant activities. A response surface methodology based on a Box–Behnken design (BBD) was used to optimize the extraction conditions as follows: extraction time of 43.63 min, power level of 600 W, water-to-raw-material ratio of 55.45, pH of 6.57, and maximum yield of 41.91%, with a desired value of 0.381. Ulvan exerted a strong antioxidant effect against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and showed reducing power in vitro. Ulvan protected RAW 264.7 cells against H2O2-induced oxidative stress by upregulating the expression and enhancing the activity of oxidative enzymes such as superoxide dismutase (SOD) and superoxide dismutase (CAT). The results suggest that the polysaccharides from U. pertusa might be promising bioactive compounds for commercial use.
Collapse
|
16
|
Herrera T, Navarro Del Hierro J, Fornari T, Reglero G, Martin D. Acid hydrolysis of saponin-rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin-rich extracts and other bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3157-3167. [PMID: 30536393 DOI: 10.1002/jsfa.9531] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Typical hydrolysis times of saponins generally do not take into consideration the effect of time on the degradation of the target compounds, namely sapogenins. When producing natural extracts, it should be borne in mind that conducting hydrolysis to yield a target compound might also affect the final composition of the extracts in terms of other bioactive compounds. In our study, saponin-rich extracts from fenugreek, quinoa, lentil, and soybean were produced and their acid hydrolysis to give sapogenin-rich extracts was conducted over different periods (0-6 h). The disappearance of saponins and appearance of sapogenins was analyzed using high-performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS) and gas chromatography-mass spectrometry (GC-MS), respectively. The impact of hydrolysis on the phytosterols and tocopherol in the extracts was also evaluated. RESULTS Fenugreek showed the highest saponin content (169 g kg-1 ), followed by lentil (20 g kg-1 ), quinoa (15 g kg-1 ), and soybean (13 g kg-1 ). Hydrolysis for 1 h caused the complete disappearance of saponins and the greatest release of sapogenins. Hydrolyzed fenugreek and quinoa extracts contained the highest amounts of sapogenins and minor fractions of phytosterols and tocopherol. Hydrolyzed extracts of lentil and soybean contained a major fraction of phytosterols and a low fraction of sapogenins. In all cases, sapogenins decreased after 1 h of hydrolysis, phytosterols slightly decreased, and tocopherol was unaffected. Standards of diosgenin and oleanolic acid also showed this decreasing pattern under acid hydrolysis conditions. CONCLUSION Hydrolysis times of 1 h for saponin-rich extracts from the assayed seeds guarantee the maximum transformation to sapogenin-rich extracts, along with phytosterols and tocopherol. Fenugreek and quinoa seeds are preferred for this. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Teresa Herrera
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
| | - Joaquín Navarro Del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
| | - Tiziana Fornari
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
- Imdea-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, UAM, Madrid, Spain
| |
Collapse
|
17
|
Yang Y, Chen J, Lei L, Li F, Tang Y, Yuan Y, Zhang Y, Wu S, Yin R, Ming J. Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage RAW264.7 cells. Food Chem Toxicol 2019; 125:38-45. [DOI: 10.1016/j.fct.2018.12.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
18
|
Cho H, Park JH, Ahn EK, Oh JS. Kobophenol A Isolated from Roots of Caragana sinica (Buc'hoz) Rehder Exhibits Anti-inflammatory Activity by Regulating NF-κB Nuclear Translocation in J774A.1 Cells. Toxicol Rep 2018; 5:647-653. [PMID: 30023311 PMCID: PMC6046687 DOI: 10.1016/j.toxrep.2018.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
Kobophenol A (KPA) is a biologically active natural compound isolated from the roots of Caragana sinica (Buc'hoz) Rehder (C. sinica). However, the anti-inflammatory effects of KPA have not been reported. This study aims to find out whether KPA isolated from roots of C. sinica can act as a potential substance on inflammation and analyze the molecular mechanism using the lipopolysaccharide (LPS)-stimulated J774 A.1 macrophage cell line. We showed that KPA treatment significantly suppressed the production of nitric oxide (NO) by inhibiting inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner without cytotoxicity. In the KPA also inhibited pro-inflammatory cytokine gene expression and production, such as interleukin-1β (IL-1β) and interleukin-6 (IL-6) in LPS-stimulated J774 A.1 cells. As continuing study on the mechanisms involved, we confirmed that these effects of KPA were related to the inhibition of nuclear factor-κB (NF-κB) pathway including the suppression of IκB kinase α/β (IKKα/β) phosphorylation and translocation of NF-κB into the nucleus. Taken together, the present study is the first to demonstrate that KPA isolated from C. sinica suppresses the expression of inflammatory mediators and cytokines by inhibiting NF-κB nuclear translocation in LPS-stimulated J774 A.1 macrophages. KPA may be a potential candidate for the treatment of inflammatory diseases in the future.
Collapse
Key Words
- C. sinica, Caragana sinica
- IKKα/β, IκB kinase α/β
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- IκB, inhibitory κB
- KPA, Kobophenol A
- LPS, lipopolysaccharide
- MAPKs, Mitogen-activated protein kinases
- NF-κB, nuclear factor-κB
- NO, nitric oxide
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PGE2, Prostaglandin E2
- TNF-α, tumor necrosis factor-α
- iNOS, inducible nitric oxide synthase
- inducible nitric oxide synthase
- kobophenol A
- nitric oxide
- nuclear factor-κB
- pro-inflammatory cytokines
Collapse
Affiliation(s)
- Hana Cho
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Republic of Korea
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
- Correspondining author at: Department of Pharmacy, College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|