1
|
Zhao P, Feng L, Jiang W, Wu P, Liu Y, Ren H, Jin X, Zhang L, Mi H, Zhou X. Unveiling the emerging role of curcumin to alleviate ochratoxin A-induced muscle toxicity in grass carp (Ctenopharyngodon idella): in vitro and in vivo studies. J Anim Sci Biotechnol 2024; 15:72. [PMID: 38734645 PMCID: PMC11088780 DOI: 10.1186/s40104-024-01023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/11/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Ochratoxin A (OTA), a globally abundant and extremely hazardous pollutant, is a significant source of contamination in aquafeeds and is responsible for severe food pollution. The developmental toxicity of OTA and the potential relieving strategy of natural products remain unclear. This study screened the substance curcumin (Cur), which had the best effect in alleviating OTA inhibition of myoblast proliferation, from 96 natural products and investigated its effect and mechanism in reducing OTA myotoxicity in vivo and in vitro. METHODS A total of 720 healthy juvenile grass carp, with an initial average body weight of 11.06 ± 0.05 g, were randomly assigned into 4 groups: the control group (without OTA and Cur), 1.2 mg/kg OTA group, 400 mg/kg Cur group, and 1.2 mg/kg OTA + 400 mg/kg Cur group. Each treatment consisted of 3 replicates (180 fish) for 60 d. RESULTS Firstly, we cultured, purified, and identified myoblasts using the tissue block culture method. Through preliminary screening and re-screening of 96 substances, we examined cell proliferation-related indicators such as cell viability and ultimately found that Cur had the best effect. Secondly, Cur could alleviate OTA-inhibited myoblast differentiation and myofibrillar development-related proteins (MyoG and MYHC) in vivo and in vitro and improve the growth performance of grass carp. Then, Cur could also promote the expression of OTA-inhibited protein synthesis-related proteins (S6K1 and TOR), which was related to the activation of the AKT/TOR signaling pathway. Finally, Cur could downregulate the expression of OTA-enhanced protein degradation-related genes (murf1, foxo3a, and ub), which was related to the inhibition of the FoxO3a signaling pathway. CONCLUSIONS In summary, our data demonstrated the effectiveness of Cur in alleviating OTA myotoxicity in vivo and in vitro. This study confirms the rapidity, feasibility, and effectiveness of establishing a natural product screening method targeting myoblasts to alleviate fungal toxin toxicity.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
3
|
Zhao P, Liu X, Feng L, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Yang J, Zhou XQ. New perspective on mechanism in muscle toxicity of ochratoxin A: Model of juvenile grass carp (Ctenopharyngodon idella). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106701. [PMID: 37776711 DOI: 10.1016/j.aquatox.2023.106701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Ochratoxin A (OTA) is a common fungal toxin that pollutes raw materials of aquatic feeds (such as corn, soybean meal, and wheat). This study explored the effects of OTA through diet on muscle toxicity in juvenile grass carp (Ctenopharyngodon idella). The following results were obtained for the muscle. (1) With an increase in dietary OTA, the residue of OTA in muscle increased, muscle fiber diameter and density decreased, and even muscle fiber breakage. (2) OTA caused oxidative stress by downregulating GPx1 (a, b) and Trx via inhibited the PGC1-α/Nrf2 signaling pathway. (3) OTA exacerbated endoplasmic reticulum stress in the muscle by causing endoplasmic reticulum expansion (results of transmission electron microscopy) and upregulating the expression of GRP78, eIF2α, ATF6, PERK, and CHOP. (4) OTA reduced muscle fiber diameter by inhibiting protein synthesis (AKT, TOR, and S6K1) and promoting the mRNA expression of protein degradation-related genes (MURF1, MAFBX, and FoxO3a), as well as by reducing AKT and promoting the immunofluorescence expression of FoxO3. (5) OTA inhibits collagen deposition by downregulating TGF-β1, TGF-βR1, Smad2, Smad3, Smad4, CTGF, TIMP, PHD, and LOX mRNA expressions as well as the CTGF immunofluorescence expression. Moreover, based on the GSH and collagen content contents, the upper safe dose for OTA-induced toxicity was 963.6 and 1129.6 μg/kg diet, respectively. Using the example of OTA, our research has provided new insights that raise concerns about the quality of aquatic products by exploring muscle toxicity caused by mycotoxins.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Juan Yang
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China.
| |
Collapse
|
4
|
Zhang Y, Liu L, Hou X, Zhang Z, Zhou X, Gao W. Role of Autophagy Mediated by AMPK/DDiT4/mTOR Axis in HT22 Cells Under Oxygen and Glucose Deprivation/Reoxygenation. ACS OMEGA 2023; 8:9221-9229. [PMID: 36936290 PMCID: PMC10018509 DOI: 10.1021/acsomega.2c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Background: cerebral ischemia/reperfusion (I/R) injury is an important complication of ischemic stroke, and autophagy is one of the mechanisms of it. In this study, we aimed to determine the role and mechanism of autophagy in cerebral I/R injury. Methods: the oxygen and glucose deprivation/reoxygenation (OGD/R) method was used to model cerebral I/R injury in HT22 cells. CCK-8 and LDH were conducted to detect viability and damage of the cells, respectively. Apoptosis was measured by flow cytometry and Tunel staining. Autophagic vesicles of HT22 cells were assessed by transmission electron microscopy. Western blotting analysis was used to examine the protein expression involving AMPK/DDiT4/mTOR axis and autophagy-related proteins. 3-Methyladenine and rapamycin were, respectively, used to inhibit and activate autophagy, compound C and AICAR acted as AMPK inhibitor and activator, respectively, and were used to control the starting link of AMPK/DDiT4/mTOR axis. Results: autophagy was activated in HT22 cells after OGD/R was characterized by an increased number of autophagic vesicles, the expression of Beclin1 and LC3II/LC3I, and a decrease in the expression of P62. Rapamycin could increase the viability, reduce LDH leakage rate, and alleviate cell apoptosis in OGD/R cells by activating autophagy. 3-Methyladenine played an opposite role to rapamycin in OGD/R cells. The expression of DDiT4 and the ratio of p-AMPK/AMPK were increased after OGD/R in HT22 cells. While the ratio of p-mTOR/mTOR was reduced by OGD/R, AICAR effectively increased the number of autophagic vesicles, improved viability, reduced LDH leakage rate, and alleviated apoptosis in HT22 cells which suffered OGD/R. However, the effects of compound C in OGD/R HT22 cells were opposite to that of AICAR. Conclusions: autophagy is activated after OGD/R; autophagy activator rapamycin significantly enhanced the protective effect of autophagy on cells of OGD/R. AMPK/DDiT4/mTOR axis is an important pathway to activate autophagy, and AMPK/DDiT4/mTOR-mediated autophagy significantly alleviates cell damage caused by OGD/R.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijuan Gao
- . Phone: 86 311 89926007. Fax: (86) 311 89926000
| |
Collapse
|
5
|
Zhao P, Liu X, Jiang WD, Wu P, Liu Y, Jiang J, Zhang L, Mi HF, Kuang SY, Tang L, Zhou XQ, Feng L. The multiple biotoxicity integrated study in grass carp (Ctenopharyngodon idella) caused by Ochratoxin A: Oxidative damage, apoptosis and immunosuppression. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129268. [PMID: 35739783 DOI: 10.1016/j.jhazmat.2022.129268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Ochratoxin A (OTA) is a common hazardous food contaminant that seriously endangers human and animal health. However, limited study is focused on aquatic animal. This research investigated the multiple biotoxicity of OTA on spleen (SP) and head kidney (HK) in grass carp and its related mechanism. Our data showed that, dietary supplemented with OTA above 1209 μg/kg caused histopathological damages by decreasing the number of lymphocytes and necrotizing renal parenchymal cells. Meanwhile, OTA caused oxidative damage and reduced the isoforms mRNAs transcripts of antioxidant enzymes (e.g., GPX1, GPX4, GSTO) partly due to suppressing NF-E2-related factor 2 (Nrf2). OTA triggered apoptosis through mitochondria and death receptor pathway potentially by p38 mitogen-activated protein kinase (p38MAPK) activation. Besides, OTA exacerbated inflammation by down-regulation of anti-inflammatory factor (e.g., IL-10, IL-4) and up-regulations of pro-inflammatory factors (e.g., TNF-α, IL-6), which could be ascribed to signaling meditation of Janus kinase / signal transducer and activator of transcription (JAK/STAT). Additionally, the safe upper limits of OTA were estimated to be 677.6 and 695.08 μg/kg based on the immune-related indexes (C3 contents in the SP and LZ activities in the HK, respectively). Our study has provided a wide insight for toxicological assessment of feed pollutant in aquatic animals.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
6
|
Chen J, Yang S, Li P, Wu A, Nepovimova E, Long M, Wu W, Kuca K. MicroRNA regulates the toxicological mechanism of four mycotoxins in vivo and in vitro. J Anim Sci Biotechnol 2022; 13:37. [PMID: 35197116 PMCID: PMC8867758 DOI: 10.1186/s40104-021-00653-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022] Open
Abstract
Mycotoxins can cause body poisoning and induce carcinogenesis, often with a high mortality rate. Therefore, it is of great significance to seek new targets that indicate mycotoxin activity and to diagnose and intervene in mycotoxin-induced diseases in their early stages. MicroRNAs (miRNAs) are physiological regulators whose dysregulation is closely related to the development of diseases. They are thus important markers for the occurrence and development of diseases. In this review, consideration is given to the toxicological mechanisms associated with four major mycotoxins (ochratoxin A, aflatoxin B1, deoxynivalenol, and zearalenone). The roles that miRNAs play in these mechanisms and the interactions between them and their target genes are explained, and summarize the important role of histone modifications in their toxicity. As a result, the ways that miRNAs are regulated in the pathogenicity signaling pathways are revealed which highlights the roles played by miRNAs in preventing and controlling the harmful effects of the mycotoxins. It is hoped that this review will provide a theoretical basis for the prevention and control of the damage caused by these mycotoxins.
Collapse
Affiliation(s)
- Jia Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuhua Yang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic. .,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
7
|
Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int J Mol Sci 2021; 22:ijms222011237. [PMID: 34681895 PMCID: PMC8539333 DOI: 10.3390/ijms222011237] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.
Collapse
|
8
|
Gu C, Gao X, Guo D, Wang J, Wu Q, Nepovimova E, Wu W, Kuca K. Combined Effect of Deoxynivalenol (DON) and Porcine Circovirus Type 2 (Pcv2) on Inflammatory Cytokine mRNA Expression. Toxins (Basel) 2021; 13:toxins13060422. [PMID: 34199278 PMCID: PMC8231776 DOI: 10.3390/toxins13060422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
A host’s immune system can be invaded by mycotoxin deoxynivalenol (DON) poisoning and porcine circovirus type 2 (PCV2) infections, which affect the host’s natural immune function. Pro-inflammatory cytokines, IL-1β and IL-6, are important regulators in the process of natural immune response, which participate in inflammatory response and enhance immune-mediated tissue damage. Preliminary studies have shown that DON promotes PCV2 infection by activating the MAPK signaling pathway. Here, we explored whether the mRNA expression of IL-1β and IL-6, induced by the combination of DON and PCV2, would depend on the MAPK signaling pathway. Specific pharmacological antagonists U0126, SP600125 and SB203580, were used to inhibit the activities of ERK, JNK and p38 in the MAPK signaling pathway, respectively. Then, the mRNA expression of IL-1β and IL-6 in PK-15 cells was detected to explore the effect of the MAPK signaling pathway on IL-1β and IL-6 mRNA induced by DON and PCV2. The results showed that PK-15 cells treated with DON or PCV2 induced the mRNA expression of IL-1β and IL-6 in a time- and dose-dependent manner. The combination of DON and PCV2 has an additive effect on inducing the mRNA expression of IL-1β and IL-6. Additionally, both DON and PCV2 could induce the mRNA expression of IL-1β and IL-6 via the ERK and the p38 MAPK signal pathways, while PCV2 could induce it via the JNK signal pathway. Taken together, our results suggest that MAPKs play a contributory role in IL-1β and IL-6 mRNA expression when induced by both DON and PCV2.
Collapse
Affiliation(s)
- Chao Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Xiuge Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Dawei Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Jiacai Wang
- Shandong Vocational Animal Science and Veterinary College, 88 Shengli East Street, Weifang 261061, China;
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- Correspondence: (W.W.); (K.K.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- Biomedical Research Center, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Correspondence: (W.W.); (K.K.)
| |
Collapse
|
9
|
Ochratoxin A induces nephrotoxicity in vitro and in vivo via pyroptosis. Arch Toxicol 2021; 95:1489-1502. [PMID: 33543323 DOI: 10.1007/s00204-021-02993-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/28/2021] [Indexed: 01/12/2023]
Abstract
Ochratoxin A (OTA), a prevalent nephrotoxic mycotoxin contaminant in food and feedstuff, has been reported to induce renal injury. To disclose the nephrotoxicity of continuous administration of OTA and to investigate potential mechanisms related to pyroptosis, male C57BL/6 mice were intraperitoneally injected with 1.0 and 2.0 mg/kg B.W. OTA every other day for 14 days. At 2.0 mg/kg B.W. OTA administration significantly increased histological injury and renal fibrosis molecules (α-SMA, Vimentin, TGF-β) and activated the NOD-like receptor protein 3 (NLRP3) inflammasome and induced pyroptosis compared with control. In the in vitro tests, Madin-Darby canine kidney (MDCK) epithelial cells were exposed to 0-4.0 μg/ml OTA for 24 h in serum-free medium. Data showed that OTA dose-dependently affected cell viability and significantly up-regulated renal fibrosis genes (α-SMA, Vimentin, TGF-β). 2.0 μg/ml OTA significantly induced NLRP3 inflammasome activation and caspase-1-dependent pyroptosis, increasing the expression and secretion of pro-inflammatory cytokines (IL-6, TNF-α) and pyroptosis-related genes (GSDMD, IL-1β, IL-18) in MDCK cells. These outcomes were significantly abrogated after inhibiting NLRP3 activation with inhibitor MCC950 and silencing NLRP3 with small interfering RNA (siRNA). Furthermore, knockdown of caspase-1 also ameliorated OTA-induced renal fibrosis via the inhibition of pyroptosis. Collectively, the chosen doses of OTA-triggered nephrotoxicity through NLRP3 inflammasome activation and caspase-1-dependent pyroptosis both in vitro and in vivo.
Collapse
|
10
|
Liu D, Ge L, Wang Q, Su J, Chen X, Wang C, Huang K. Low-level contamination of deoxynivalenol: A threat from environmental toxins to porcine epidemic diarrhea virus infection. ENVIRONMENT INTERNATIONAL 2020; 143:105949. [PMID: 32673909 PMCID: PMC7357974 DOI: 10.1016/j.envint.2020.105949] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 05/27/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungal species that commonly present in the global environment, especially in cereals and animal forages. The changing global environment may further increase the exposure to these toxins, posing a serious threat to humans and animals. Recently, coronavirus has become one of the most important pathogens threatening human and animal health. It is not clear whether environmental toxins, such as mycotoxins, will affect coronavirus infection. Given that pigs are among the animals most affected by coronavirus and highly homologous to humans, weaned piglets and IPEC-J2 cells were respectively chosen as in vivo and in vitro model to explore the impacts of deoxynivalenol (DON), the most abundant trichothecene mycotoxin in feed, on porcine epidemic diarrhea virus (PEDV) infection and the mechanisms involved. In vivo, twenty-seven piglets infected naturally with PEDV were randomly divided into three groups, receiving the basal diet containing 0, 750 and 1500 μg/kg DON, respectively. Significant increases in the diarrhea rates, gut barrier injury and PEDV proliferation of piglets' small intestine were observed in experimental groups compared with the control. Additionally, the autophagosome-like vesicles and the autophagy-related proteins expression were also increased in experimental groups. In vitro, we observed that 0.1, 0.5 and 1.0 μM DON significantly promoted the entry and replication of PEDV in IPEC-J2 cells, along with the induction of a complete autophagy. CRISPR-Cas9-mediated knockout of LC3B indicated a vital role of autophagy in the promotion. Pretreatment with p38 signaling inhibitor could significantly block the induction of autophagy, indicating that DON could promote the PEDV infection by triggering p38-mediated autophagy. Our findings suggest that mycotoxin could influence the prevalence of coronavirus and provide new ideas for the prevention and control of coronavirus.
Collapse
Affiliation(s)
- Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Qing Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jiarui Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
11
|
Le G, Yuan X, Hou L, Ge L, Liu S, Muhmood A, Liu K, Lin Z, Liu D, Gan F, Song S, Pan C, Chen X, Huang K. Ochratoxin A induces glomerular injury through activating the ERK/NF-κB signaling pathway. Food Chem Toxicol 2020; 143:111516. [PMID: 32615238 DOI: 10.1016/j.fct.2020.111516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/16/2023]
Abstract
Ochratoxin A (OTA) was reported to induce proximal tubules nephrotoxicity in humans and animals. However, the toxicity of OTA on glomeruli has rarely been studied. We investigated OTA-induced glomerular injury and the underlying mechanisms. Mice were intraperitoneally treated with OTA (0, 0.5, 1.5 and 2.5 mg/kg b.w.) on alternate day for 3 weeks. OTA exposure decreased the weight gain ratio, the kidney index and increased the levels of serum creatinine and blood urea nitrogen. It induced also fragmentation and atrophy in glomeruli, and increased the expression of TNF-α, IL-6, COX-2, TGF-β, α-SMA and vimentin in a dose-dependent manner. Human mesangial cells (HMC) were treated with OTA (0-8 μM) for 48 h. Treatment of HMC cells with OTA increased cell inhibition rate, up-regulated the expression of IL-6, TGF-β, α-SMA and vimentin in a dose-dependent manner. Additionally, it enhanced the phosphorylation of ERK1/2 and p65, degradation of IκB-α and translocation of p65 into the nucleus. OTA-induced toxicity was attenuated by NF-κB and ERK1/2 inhibitors. In conclusion, these results suggest that OTA exposure induces glomerular injury via activation of the ERK/NF-κB signaling pathway, and provide novel insights into the research of OTA induced nephrotoxicity.
Collapse
Affiliation(s)
- Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Xin Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kai Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cuilin Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
12
|
Regulation of taurine in OTA-induced apoptosis and autophagy. Toxicon 2020; 181:82-90. [PMID: 32371067 DOI: 10.1016/j.toxicon.2020.04.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/12/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
Ochratoxin A (OTA), one of the most deleterious mycotoxins, could cause a variety of toxicological effects especially nephrotoxicity in animals and humans. Taurine, a wide-distributed cytoprotective amino acid, plays an important role as a basic factor for maintaining cellular integrity homeostasis. However, the potential effect of taurine in OTA-induced nephrotoxicity remains unknown. In the present study, we demonstrated that OTA treatment at 4.0-8.0 μM increased apoptosis in PK-15 cells as shown by increased the ratio of apoptosis and protein expression of Bax and cleaved-caspase-3, decreased protein expression of Bcl-2. Meantime, OTA treatment triggered autophagy, as indicated by markedly increased the protein expression of LC3-II and fluorescence intensity of GFP-LC3 dots. Taurine supplementation decreased OTA-induced cytotoxicity and attenuated apoptosis as shown by the decreased Annexin V/PI staining and the decreased expression of apoptosis-related proteins including Bax and caspase-3. Meanwhile, taurine attenuated OTA-induced autophagy by decreased the protein expression of LC3-II and fluorescence intensity of GFP-LC3 dots to maintain cellular homeostasis. In conclusion, taurine treatment could alleviate OTA-induced apoptosis and inhibit the triggered autophagy in PK-15 cells. Our study provides supportive data for the potential roles of taurine in reducing OTA-induced renal toxicity.
Collapse
|
13
|
Ochratoxin A exposure causes meiotic failure and oocyte deterioration in mice. Theriogenology 2019; 148:236-248. [PMID: 31735432 DOI: 10.1016/j.theriogenology.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi and occurs naturally in various foodstuffs and some animal-derived products. This mycotoxin can cause deleterious effects on kidney, liver, central nervous, and immune system. However, potential mechanisms regarding how OTA disrupts the mammalian oocyte quality have not been clearly defined. In this study, we proved that OTA weakened oocyte quality by impairing oocyte meiotic maturation. We found that female mice treated with 1 mg/kg body weight OTA by intraperitoneal (IP) injection for 7 days displayed ovarian dysfunction and decreased offspring number. We also found that OTA treatment at 7.5 μM for 16 h decreased the rate of first polar body extrusion by disrupting spindle and chromosome alignment. In addition, OTA caused oxidative stress by inducing the accumulation of reactive oxygen species and consumption of antioxidants during meiosis, consequently resulting in oocytes apoptosis. Mitochondrial damage and insufficient energy supply were also observed in OTA-pretreated oocytes, which led to the meiotic failure of oocyte. Moreover, the epigenetic modifications were also affected, showing with altered 5 mC, 5hmC, H3K9ac, and H3K9me3 levels in mice oocytes. In summary, these results showed that OTA could decrease oocyte maturation and fertility by inducing oxidative stress and epigenetic changes.
Collapse
|
14
|
Yao Z, Yang Z, Chen F, Jiang Y, Fu C, Wang Y, Lu R, Wu H. Autophagy is essential for the endothelial differentiation of breast cancer stem‑like cells. Int J Mol Med 2019; 45:255-264. [PMID: 31746369 DOI: 10.3892/ijmm.2019.4399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/04/2019] [Indexed: 12/09/2022] Open
Abstract
Blood vessels serve an important role in tumor growth and metastasis, and recent studies have shown that certain tumor cancer stem cells may differentiate into endothelial cells and contribute to angiogenesis. In the present study, vascular endothelial growth factor (VEGF) was used to induce endothelial differentiation of breast cancer stem‑like cells (BCSLCs), and methods including flow cytometry, western blotting and immunofluorescence were used to study the relationship between autophagy and the endothelial differentiation of BCSLCs. The results showed that BCSLCs could differentiate into endothelial cells under the induction of VEGF in vitro. Subsequently, the role of autophagy in the endothelial differentiation of BCSLCs was examined. Autophagic activity was measured during endothelial differentiation of BCSLCs, and the association between autophagy and endothelial differentiation was investigated using autophagy activators, autophagy inhibitors and autophagy related 5 (Atg5)‑knockdown BCSLCs. Autophagy was increased during endothelial differentiation of BCSLCs, and there was a positive association between autophagy and endothelial differentiation. The ability of cells to undergo endothelial differentiation was reduced in BCSLCs with Atg5 knockdown. Therefore, autophagy was essential for endothelial differentiation of BCSLCs, and the findings of the present study may highlight novel potential avenues for reducing angiogenesis and improving treatment of breast cancer.
Collapse
Affiliation(s)
- Ziang Yao
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Zeqing Yang
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Fengjia Chen
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yue Jiang
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Chengzhu Fu
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yong Wang
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Ronghao Lu
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Haige Wu
- School of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
15
|
Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, Kumar AP. Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems. Biomolecules 2019; 9:E530. [PMID: 31557936 PMCID: PMC6843293 DOI: 10.3390/biom9100530] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discussed.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Maryam Azarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autónoma de Barcelona, Barcelona, Spain.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran.
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Zhang Z, Wang X, Ma C, Li Z, Chen H, Zhang Z, Li T. Genipin protects rats against lipopolysaccharide-induced acute lung injury by reinforcing autophagy. Int Immunopharmacol 2019; 72:21-30. [PMID: 30959368 DOI: 10.1016/j.intimp.2019.03.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Although the protective effects of genipin against acute lung injury (ALI) have been described previously, the associated mechanism remains unclear. We have previously reported that genipin exerts its pharmacological effects by regulating autophagy. Here, we hypothesized that the up-regulation of autophagy may contribute to the protective effects exhibited by genipin against ALI. In the present study, ALI was induced by intratracheal LPS administration in rats. Genipin treatment significantly reduced LPS-induced lung injury as evidenced by improved histopathology, decreased lung edema, total cells, and protein concentration in the bronchoalveolar lavage fluid (BALF). This protection was inhibited by 3-methyladenine (3-MA), an inhibitor of autophagy. Genipin treatment reduced the expression of P62 and increased the expression of Beclin-1 and LC3II, indicating increased autophagy. Genipin treatment also alleviated LPS-induced cell apoptosis (down-regulation of Bax, up-regulation of Bcl-2, and decreased number of terminal deoxynucleotidyl transferase dUTP nick end label-positive cells) and oxidative stress (increased SOD and decreased MDA content) in the lung. Furthermore, genipin attenuated LPS-induced production of TNF-α, IL-1β, and IL-6 in the lung and BALF. These protective effects induced by genipin were reversed by 3-MA treatment, indicating that autophagy was involved in the protective effects exerted by genipin against inflammation and apoptosis in ALI. In A549 cells incubated with LPS for 6 h, genipin treatment increased the number of GFP-LC3 punctae. 3-MA prevented the protective effects of genipin against mitochondrial dysfunction and cell death. These findings suggest that genipin protects against apoptosis and inflammation in LPS-induced ALI by promoting autophagy.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Xue Wang
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Chengzhou Ma
- Department of Anesthesiology, Dongcheng Street Hospital of Linqu, Weifang, Shandong Province, China
| | - Zhiwang Li
- Department of Anesthesiology, The First People's Hospital of Chenzhou/Institute of Translation Medicine, University of South China, Chenzhou 423000, China
| | - Huayong Chen
- Department of Anesthesiology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Zhiming Zhang
- Department of Anesthesiology, The First People's Hospital of Chenzhou/Institute of Translation Medicine, University of South China, Chenzhou 423000, China.
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Institute of Translation Medicine, University of South China, Chenzhou 423000, China.
| |
Collapse
|