1
|
Noori E, Hashemi N, Rezaee D, Maleki R, Shams F, Kazemi B, Bandepour M, Rahimi F. Potential therapeutic options for celiac Disease: An update on Current evidence from Gluten-Free diet to cell therapy. Int Immunopharmacol 2024; 133:112020. [PMID: 38608449 DOI: 10.1016/j.intimp.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.
Collapse
Affiliation(s)
- Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandepour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
Jorgensen R, Devarahalli SS, Shah Y, Gao H, Arul Arasan TS, Ng PKW, Gangur V. Advances in Gluten Hypersensitivity: Novel Dietary-Based Therapeutics in Research and Development. Int J Mol Sci 2024; 25:4399. [PMID: 38673984 PMCID: PMC11050004 DOI: 10.3390/ijms25084399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Gluten hypersensitivity is characterized by the production of IgE antibodies against specific wheat proteins (allergens) and a myriad of clinical allergic symptoms including life-threatening anaphylaxis. Currently, the only recommended treatment for gluten hypersensitivity is the complete avoidance of gluten. There have been extensive efforts to develop dietary-based novel therapeutics for combating this disorder. There were four objectives for this study: (i) to compile the current understanding of the mechanism of gluten hypersensitivity; (ii) to critically evaluate the outcome from preclinical testing of novel therapeutics in animal models; (iii) to determine the potential of novel dietary-based therapeutic approaches under development in humans; and (iv) to synthesize the outcomes from these studies and identify the gaps in research to inform future translational research. We used Google Scholar and PubMed databases with appropriate keywords to retrieve published papers. All material was thoroughly checked to obtain the relevant data to address the objectives. Our findings collectively demonstrate that there are at least five promising dietary-based therapeutic approaches for mitigating gluten hypersensitivity in development. Of these, two have advanced to a limited human clinical trial, and the others are at the preclinical testing level. Further translational research is expected to offer novel dietary-based therapeutic options for patients with gluten hypersensitivity in the future.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Shambhavi Shivaramaiah Devarahalli
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Yash Shah
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Tamil Selvan Arul Arasan
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA;
| | - Venugopal Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (S.S.D.); (Y.S.); (H.G.); (T.S.A.A.)
| |
Collapse
|
3
|
Gastrointestinal digestion products of shrimp (Penaeus vannamei) proteins retain an allergenic potential. Food Res Int 2022; 162:111916. [DOI: 10.1016/j.foodres.2022.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
|
4
|
Assessing Hydrolyzed Gluten Content in Dietary Enzyme Supplements Following Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Partially digested gluten fragments from grains including wheat, rye, spelt and barley are responsible for triggering an inflammatory response in the intestinal tract of Celiac Disease (CD) and Non-Celiac Gluten Sensitive (NCGS) individuals. Fermentation is an effective method to metabolize gluten, with enzymes from bacterial or fungal species being released to help in this process. However, the levels of gluten in commercially available enzymes, including those involved in gluten fermentation, are unknown. In this study we investigated gluten levels in commercially available dietary enzymes combined with assessing their effect on inflammatory response in human cell culture assays. Using antibodies that recognize different gluten epitopes (G12, R5, 2D4, MloBS and Skerritt), we employed ELISA and immunoblotting methodologies to determine gluten content in crude gluten, crude gliadin, pepsin-trypsin digested gluten and a selection of commercially available enzymes. We further investigated the effect of these compounds on inflammatory response in immortalized immune and intestinal human cell lines, as well as in peripheral blood mononuclear cells (PBMCs) from coeliac individuals. All tested supplemental enzyme products reported a gluten concentration that was equivalent to or below 20 parts per million (ppm) as compared with an intact wheat reference standard and a pepsin-trypsin digested standard. Similarly, the inflammatory response to IL-8 and TNF-α inflammatory cytokines in mammalian cell lines and PBMCs from coeliac individuals to the commercial enzymes was not significantly different to 20 ppm of crude gluten, crude gliadin or pepsin-trypsin digested gluten. This combined approach provides insight into the extent of gluten breakdown in the fermentation process and the safety of these products to gluten-sensitive individuals.
Collapse
|
5
|
Gupta KB, Mantha AK, Dhiman M. Mitigation of Gliadin-Induced Inflammation and Cellular Damage by Curcumin in Human Intestinal Cell Lines. Inflammation 2021; 44:873-889. [PMID: 33394186 DOI: 10.1007/s10753-020-01383-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Wheat is a major diet from many years; apart from its nutritious value, the wheat protein gliadin is responsible for many inflammatory diseases like celiac disease (CD), and non-celiac gluten sensitivity (NCGS). In this study, the gliadin-induced inflammation and associated cellular damage along with the protective role of curcumin was evaluated using human intestinal cell lines (HCT-116 and HT-29) as a model. Cells were cultured and exposed to 160 μg/ml of gliadin, 100 μM H2O2, and 10 μM curcumin (3 h pretreatment) followed by the assessment of inflammation. Spectrophotometric methods, real-time-PCR, ELISA, Western blotting, and confocal microscopy techniques were used to assess inflammatory markers such as advanced oxidation protein products (AOPPs) level, activity of myeloperoxidase (MPO) and NADPH oxidase (NOX), cytokines, and cell damage markers. The results show that gliadin increases the AOPPs level and the activity of MPO and NOX expression. It enhances inflammation by increasing expression of pro-inflammatory cytokines, altered expression of anti-inflammatory, and regulatory cytokines. It exacerbates the cellular damage by increasing MMP-2 and 9 and decreasing integrin α and β expression. Gliadin promotes disease pathogenesis by inducing the inflammation and cellular damage which further alter the cellular homeostasis. The pretreatment of curcumin counteracts the adverse effect of gliadin and protect the cells via diminishing the inflammation and help the cell to regain the cellular morphology suggesting phytochemical-based remedial interventions against wheat allergies.
Collapse
Affiliation(s)
- Kunj Bihari Gupta
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Anil K Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|