1
|
Matouk AM, Abu-Elreesh GM, Abdel-Rahman MA, Desouky SE, Hashem AH. Response surface methodology and repeated-batch fermentation strategies for enhancing lipid production from marine oleaginous Candida parapsilosis Y19 using orange peel waste. Microb Cell Fact 2025; 24:16. [PMID: 39794801 PMCID: PMC11724560 DOI: 10.1186/s12934-024-02635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Oleaginous yeasts are considered promising sources for lipid production due to their ability to accumulate high levels of lipids under appropriate growth conditions. The current study aimed to isolate and identify oleaginous yeasts having superior ability to accumulate high quantities of lipids; and enhancing lipid production using response surface methodology and repeated-batch fermentation. Results revealed that, twenty marine oleaginous yeasts were isolated, and the most potent lipid producer isolate was Candida parapsilosis Y19 according to qualitative screening test using Nile-red dye. Orange peels was used as substrate where C. parapsilosis Y19 produced 1.14 g/l lipids at 23.0% in batch fermentation. To enhance the lipid production, statistical optimization using Taguchi design through Response surface methodology was carried out. Total lipids were increased to 2.46 g/l and lipid content increased to 30.7% under optimal conditions of: orange peel 75 g/l, peptone 7 g/l, yeast extract 5 g/l, inoculum size 2% (v/v), pH 5 and incubation period 6 d. Furthermore, repeated-batch fermentation of C. parapsilosis Y19 enhanced lipid production where total lipids increased at 4.19 folds (4.78 g/l) compared to batch culture (before optimization). Also, the lipid content was increased at 1.7 folds (39.1%) compared to batch culture (before optimization). Fatty acid profile of the produced lipid using repeated-batch fermentation includes unsaturated fatty acids (USFAs) at 74.8% and saturated fatty acids (SFAs) at 25.1%. Additionally, in repeated-batch fermentation, the major fatty acid was oleic acid at 45.0%; followed by linoleic acid at 26.0%. In conclusion, C. parapsilosis Y19 is considered a promising strain for lipid production. Also, both statistical optimizations using RSM and repeated-batch fermentation are efficient methods for lipid production from C. parapsilosis Y19.
Collapse
Affiliation(s)
- AbdAllah M Matouk
- Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Gadallah M Abu-Elreesh
- Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Said E Desouky
- Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
2
|
Mgeni ST, Mero HR, Mtashobya LA, Emmanuel JK. The prospect of fruit wastes in bioethanol production: A review. Heliyon 2024; 10:e38776. [PMID: 39421386 PMCID: PMC11483485 DOI: 10.1016/j.heliyon.2024.e38776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Utilising agricultural byproducts specifically fruit wastes for bioethanol production offers a promising approach to sustainable energy production and waste mitigation. This approach focuses on assessing the biochemical composition of fruit wastes, particularly their sugar content, as a key aspect of bioethanol production. This study evaluates the potential of pineapple, mango, pawpaw and watermelon fruit wastes for bioethanol production, highlighting the substantial organic waste generated during fruit processing stages such as peeling and pulping. Various techniques, including enzymatic hydrolysis, fermentation, and distillation, are reviewed to optimise bioethanol yields while addressing challenges such as seasonal availability, substrate variability and process optimisation. Besides, the environmental benefits of bioethanol derived from fruit wastes, such as reduced environmental pollution, decreased reliance on fossil fuels, and promotion of sustainable agricultural practices, are emphasised. The study deployed a comprehensive literature review using keywords, specific research questions, and a search strategy that included academic databases, library catalogues, and Google Scholar. Search results were systematically screened and selected based on their relevance to the topic.
Collapse
Affiliation(s)
- Shedrack Thomas Mgeni
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Herieth Rhodes Mero
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Lewis Atugonza Mtashobya
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | | |
Collapse
|
3
|
Pando Bedriñana R, Rodríguez Madrera R, Loureiro Rodríguez MD, López-Benítez K, Picinelli Lobo A. Green Extraction of Bioactive Compounds from Apple Pomace from the Cider Industry. Antioxidants (Basel) 2024; 13:1230. [PMID: 39456483 PMCID: PMC11505006 DOI: 10.3390/antiox13101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The cider-making industry in Asturias generates between 9000 and 12,000 tons of apple pomace per year. This by-product, the remains of the apple pressing, and made up of peel, flesh, seeds and stems, is a valuable material, containing substantial amounts of antioxidant compounds associated with healthy properties. Polyphenols such as dihydrochalcones and quercetin glycosides, and triterpenic acids, among which ursolic acid is a major compound, are the main antioxidant families described in apple pomace. The simultaneous recovery of those families has been accomplished by low frequency ultrasound-assisted extraction. Working extraction conditions were optimised by response surface methodology (RSM): time, 5.1 min; extractant composition, 68% ethanol in water; solid/liquid ratio, 1/75 and ultrasonic wave amplitude, 90%. This procedure was further applied to analyse those components in the whole apple pomace (WAP), apple peel (AP) and apple flesh (AF). On average, dry WAP contained almost 1300 µg/g of flavonols, 1200 µg/g of dihydrochalcones and 4200 µg/g of ursolic acid. These figures increased in the apple peel to, respectively 2500, 1400 and 8500 µg/g dry matter. Two linear multivariate regression models allowed the antioxidant activity of apple by-products to be predicted on the basis of their bioactive composition. The results derived from this study confirm the potential of industrial cider apple pomace as a source of high-value bioactive compounds, and the feasibility of the ultrasound-assisted extraction technique to recover those components in a simple and efficient way.
Collapse
Affiliation(s)
- Rosa Pando Bedriñana
- Area of Food Technology, Regional Agrifood Research and Development Center (SERIDA), Carretera AS267, PK19, Villaviciosa, 33300 Asturias, Spain; (R.P.B.); (R.R.M.); (K.L.-B.)
| | - Roberto Rodríguez Madrera
- Area of Food Technology, Regional Agrifood Research and Development Center (SERIDA), Carretera AS267, PK19, Villaviciosa, 33300 Asturias, Spain; (R.P.B.); (R.R.M.); (K.L.-B.)
| | | | - Karelmar López-Benítez
- Area of Food Technology, Regional Agrifood Research and Development Center (SERIDA), Carretera AS267, PK19, Villaviciosa, 33300 Asturias, Spain; (R.P.B.); (R.R.M.); (K.L.-B.)
| | - Anna Picinelli Lobo
- Area of Food Technology, Regional Agrifood Research and Development Center (SERIDA), Carretera AS267, PK19, Villaviciosa, 33300 Asturias, Spain; (R.P.B.); (R.R.M.); (K.L.-B.)
| |
Collapse
|
4
|
Hernández-Montesinos IY, Carreón-Delgado DF, Lazo-Zamalloa O, Tapia-López L, Rosas-Morales M, Ochoa-Velasco CE, Hernández-Carranza P, Cruz-Narváez Y, Ramírez-López C. Exploring Agro-Industrial By-Products: Phenolic Content, Antioxidant Capacity, and Phytochemical Profiling via FI-ESI-FTICR-MS Untargeted Analysis. Antioxidants (Basel) 2024; 13:925. [PMID: 39199171 PMCID: PMC11351152 DOI: 10.3390/antiox13080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigates agro-industrial by-products as sources of bioactive compounds, particularly focusing on phenolic compounds known for their antioxidant properties. With growing interest in natural alternatives to synthetic antioxidants due to safety concerns, this study highlights the health benefits of plant-derived phenolic compounds in food preservation and healthcare products. Traditional and advanced analytical techniques were used to obtain phytochemical profiles of various residue extracts, including espresso (SCG) and cold-brew spent coffee grounds (CBCG), pineapple peel (PP), beetroot pomace (BP), apple pomace (AP), black carrot pomace (BCP), and garlic peel (GP). Assessments of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity (AC) supported their revalorization. CBCG showed the highest TPC, TFC, and AC. TPC content in by-products decreased in the order CBCG > SCG > GP > BCP > PP > AP > BP, with a similar trend for TFC and AC. Phytochemical profiling via FI-ESI-FTICR-MS enabled the preliminary putative identification of a range of compounds, with polyphenols and terpenes being the most abundant. Univariate and multivariate analyses revealed key patterns among samples. Strong positive correlations (Pearson's R > 0.8) indicated significant contribution of polyphenols to antioxidant capacities. These findings highlight the potential of agro-industrial residues as natural antioxidants, advocating for their sustainable utilization.
Collapse
Affiliation(s)
- Itzel Yoali Hernández-Montesinos
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - David Fernando Carreón-Delgado
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Oxana Lazo-Zamalloa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Lilia Tapia-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Minerva Rosas-Morales
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Carlos Enrique Ochoa-Velasco
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, 4 Sur 104, Centro Histórico, Puebla 72000, Mexico
| | - Paola Hernández-Carranza
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, 4 Sur 104, Centro Histórico, Puebla 72000, Mexico
| | - Yair Cruz-Narváez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Av. Instituto Politécnico Nacional, Lindavista, Gustavo A. Madero, Ciudad de México 07700, Mexico
| | - Carolina Ramírez-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| |
Collapse
|
5
|
Yenigün S, Başar Y, İpek Y, Behçet L, Özen T, Demirtaş İ. Determination of antioxidant, DNA protection, enzyme inhibition potential and molecular docking studies of a biomarker ursolic acid in Nepeta species. J Biomol Struct Dyn 2024; 42:5799-5816. [PMID: 37394807 DOI: 10.1080/07391102.2023.2229440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Ursolic acid (UA), which has many biological properties such as anti-cancer, anti-inflammatory and antioxidant, and regulates some pharmacological processes, has been isolated from the flowers, leaves, berries and fruits of many plant species. In this work, UA was purified from the methanol-chloroform crude extract of Nepeta species (N. aristata, N. baytopii, N. italica, N. trachonitica, N. stenantha) using a silica gel column with chloroform or ethyl acetate solvents via bioactivity-guided isolation. The most active sub-fractions were determined under bioactivities using antioxidant and DNA protection activities and enzyme inhibitions. UA was purified from these fractions and its structure was elucidated by NMR spectroscopy techniques. The highest amount of UA was found in N. stenantha (8.53 mg UA/g), while the lowest amount of UA was found in N. trachonitica (1.92 mg UA/g). The bioactivities of UA were evaluated with antioxidant and DNA protection activities, enzyme inhibitions, kinetics and interactions. The inhibition values (IC50) of α-amylase, α-glucosidase, urease, CA, tyrosinase, lipase, AChE, and BChE were determined between 5.08 and 181.96 µM. In contrast, Ki values of enzyme inhibition kinetics were observed between 0.04 and 0.20 mM. In addition, Ki values of these enzymes for enzyme-UA interactions were calculated as 0.38, 0.86, 0.45, 1.01, 0.23, 0.41, 0.01 and 2.24 µM, respectively. It is supported that UA can be widely used as a good antioxidant against oxidative damage, an effective DNA protector against genetic diseases, and a suitable inhibitor for metabolizing enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Semiha Yenigün
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Başar
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
| | - Yaşar İpek
- Faculty of Science, Department of Chemistry, Çankırı Karatekin University, Çankırı, Turkey
| | - Lütfi Behçet
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bingöl University, Bingöl, Turkey
| | - Tevfik Özen
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - İbrahim Demirtaş
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
6
|
Szymczak K, Zakłos-Szyda M, Mietlińska K, Eliašová A, Jodłowska I, Gruľová D, Hodun G, Bonikowski R. Old Apple Cultivars as a Natural Source of Phenolics and Triterpenoids with Cytoprotective Activity on Caco-2 and HepG2 Cells. Foods 2024; 13:1014. [PMID: 38611320 PMCID: PMC11011742 DOI: 10.3390/foods13071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Apples are among the most consumed fruits worldwide. They serve as an excellent source of compounds that have a positive impact on human health. While new varieties of apples are being developed, numerous varieties have been forgotten. In this article, we present the results of research on 30 old apple cultivars, focusing on both qualitative and quantitative determination of antioxidant properties, and content of total phenolics, phenolic acids, triterpenoids and polyphenols. Our analyses show significant differences in the total content of each group of compounds between apple cultivars, as well as the phytochemical profile. The richest source of antioxidants was revealed to be 'Reneta Blenheimska' and 'Książę Albrecht Pruski' varieties, but the highest amount of phenolics had 'James Grieve' and 'Kantówka Gdańska' (KG). Among studied apples KG, 'Krótkonóżka Królewska' and 'Grochówka' (G) were the richest source of phenolic acids and polyphenols, whereas G, 'James Grieve' and 'Krótkonóżka Królewska' had the highest level of triterpenoids. Based on these findings, we selected two cultivars, G and KG, for further in vitro cell line-based studies. Based on biological activity analyses, we demonstrated not only antioxidant potential but also proapoptotic and cytoprotective properties within human-originated Caco-2 and HepG2 cell lines. In the era of a dynamically growing number of lifestyle diseases, it is particularly important to draw the attention of producers and consumers to the need to choose fruit varieties with the highest possible content of health-promoting compounds and, therefore, with the strongest health-promoting properties.
Collapse
Affiliation(s)
- Kamil Szymczak
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.Z.-S.); (I.J.)
| | - Katarzyna Mietlińska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| | - Adriana Eliašová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17, Novembra 1, SK-081 16 Prešov, Slovakia; (A.E.); (D.G.)
| | - Iga Jodłowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (M.Z.-S.); (I.J.)
| | - Daniela Gruľová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17, Novembra 1, SK-081 16 Prešov, Slovakia; (A.E.); (D.G.)
| | - Grzegorz Hodun
- Department of Variety Studies, Nursery and Gene Resources, Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland;
| | - Radosław Bonikowski
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.); (R.B.)
| |
Collapse
|
7
|
Asif M, Javaid T, Razzaq ZU, Khan MKI, Maan AA, Yousaf S, Usman A, Shahid S. Sustainable utilization of apple pomace and its emerging potential for development of functional foods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17932-17950. [PMID: 37458891 DOI: 10.1007/s11356-023-28479-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/23/2023] [Indexed: 03/09/2024]
Abstract
Apple pomace, a byproduct of apple processing industry, possesses nutritional components which are of great interests for health aspects. Apple pomace is a good source of dietary fiber, minerals, carbohydrates, phenolic, and antioxidant compounds. These bioactive compounds can be extracted by different extraction techniques which have been comprehensively described in this review article. Furthermore, the incorporation of apple pomace as functional ingredients in different food products like bakery items, extrusion-based snacks, meat, dairy, and confectionary products to improve the commercial value and health benefits has been discussed briefly. This review article can be a helpful tool for industrialists, innovative researchers, and waste management authorities to manage the apple waste in an appropriate and sustainable way.
Collapse
Affiliation(s)
- Muhammad Asif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Tahreem Javaid
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Zafar Ullah Razzaq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhmmad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan.
| | - Abid Aslam Maan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Saria Yousaf
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Usman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sidra Shahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Hussain T, Kalhoro DH, Yin Y. Identification of nutritional composition and antioxidant activities of fruit peels as a potential source of nutraceuticals. Front Nutr 2023; 9:1065698. [PMID: 36817065 PMCID: PMC9931757 DOI: 10.3389/fnut.2022.1065698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Fruit peels comprise several biologically active compounds, but their nutritional composition and antioxidant potential of different fruit varieties are limited. This study aimed to determine the nutritional composition and antioxidant properties of 12 peels of different fruit varieties such as apples, pomegranates, guavas, strawberries, grapes, and citrus fruits using a ultraviolet-visible (UV-Vis) spectrophotometer, an inductively-coupled plasma atomic emission spectroscopy (ICP-AES), and an amino acid analyzer. The highest values of TPC, TFC, lycopene, ascorbic acid [total carotenoids and total antioxidant capacity (TAC)], reducing sugars, non-reducing sugars, and total soluble proteins were reported in grapes (Black seedless) 54,501.00 ± 0.82 μM/g dry wt., guava (Gola) 198.19 ± 0.46 Rutin equivalent dry wt., strawberry (Candler) 7.23 ± 0.33 mg/g dry wt., citrus (Mausami) 646.25 ± 0.96 ug/g dry wt., apple (Kala kulu-Pak) 14.19 ± 0.38 mg/g dry wt. and 12.28 ± 0.39 μM/g dry wt., strawberry (Candler) 25.13 ± 0.40 mg/g dry wt., pomegranate (Badana) 9.80 ± 0.43 mg/g dry wt., apple (Kala kullu-Irani) 30.08 ± 0.11 mg/g dry wt., and guava (Gola) 638.18 ± 0.24 mg/g dry wt. compared with its opponent peels of fruits, respectively. All 12 peels of the fruit verities had 20 amino acids and presented as dry matter basis%. The highest trend of glutamic acid + glutamine, glycine, and aspartic acid + asparagine was observed in pomegranate (Badana) 1.20 DM basis%, guava (Surhai and Gola) 1.09 and 1.09 DM basis%, and strawberry (Desi/local and Candler) 1.15 and 1.60 DM basis% in response to other fruit peels, respectively. Regarding the mineral profile, the highest values of nitrogen (764.15 ± 0.86 mg/100 g), phosphorus (53.90 ± 0.14 mg/100 g), potassium (3,443.84 ± 0.82 mg/100 g), ferric (1.44 ± 0.00 mg/100 g), magnesium (1.31 ± 0.00 mg/100 g), and manganese (0.21 ± 0.00 mg/100 g) were found in pomegranate (Badana), grapes (Black seedless), apple (Kala kulu-Pak), and pomegranate (Badana), respectively, in context to other fruit peels' extract. Principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) were analyzed for determining the correlation among different peels of fruits. Significantly, high levels of variation were noticed among different variables of peels of fruit. Fruit variety and its peels have been distinctive variables in selecting genotypes. The dendrogram obtained from cluster analysis was distributed into two groups and consisted of eight varieties in the same group, and four fruit varieties were in second group. Overall, the results conclude that fruit peels have the abundant antioxidants and some minerals, which can effectively be utilized for nutraceuticals as well as for food security.
Collapse
Affiliation(s)
- Tarique Hussain
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Changsha, Hunan, China
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam, Sindh, Pakistan,*Correspondence: Dildar Hussain Kalhoro,
| | - Yulong Yin
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Changsha, Hunan, China,Yulong Yin,
| |
Collapse
|
9
|
Arslan H, Ondul Koc E, Ozay Y, Canli O, Ozdemir S, Tollu G, Dizge N. Antimicrobial and antioxidant activity of phenolic extracts from walnut ( Juglans regia L.) green husk by using pressure-driven membrane process. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:73-83. [PMID: 36618055 PMCID: PMC9813317 DOI: 10.1007/s13197-022-05588-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
In this study, antioxidant (DPPH and metal chelating), DNA cleavage, biofilm, and antimicrobial properties of extracted phenol from the walnut green husk (WGH) and its different concentrate and permeate samples were evaluated. For maximum phenolic compound extraction from the WGH first, the effects of solvent type (deionized water, methanol, n-hexane, acetone, and ethanol), solvent temperature (25-75 °C), and extraction time (0.5-24 h) were optimized. Then to concentrate phenolic compounds a pressure-driven membrane process was used with four different membrane types. The phenol contents of the concentrate samples were found to be microfiltration (MF) concentrate 4400 mg/L, ultrafiltration (UF) concentrate 4175 mg/L, nanofiltration (NF) concentrate 8155 mg/L, and reverse osmosis (RO) concentrate 8100 mg/L. LC-MSMS was used to determine the quantification of phenolic compounds in permeate and concentrate streams. In addition, all of the concentrate samples with high phenol content showed a high antioxidant activity as 100% with MF concentrate, UF concentrate, NF concentrated and RO concentrated. Likewise, concentrate samples were found to have very high antibiofilm activity as 82.86% for NF concentrate againts S. aureus, 85.80% for NF concentrate against P. aureginosa, 80.95% for RO concentrate against S. aureus, and 83.61% for RO-concentrate against P. aureginosa. When the antimicrobial activity of the extracted phenol from WGH and its different concentrate and permeate samples were evaluated by micro dilution and disk diffusion methods, it was found that the ability of the concentrate samples to inhibit bacterial growth was much higher than permeate ones. In addition, extracted phenol from WGH and its different concentrate and permeate samples showed significant DNA nuclease activity. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05588-w.
Collapse
Affiliation(s)
- Hudaverdi Arslan
- Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey
| | - Eda Ondul Koc
- Yeniçağa Yaşar Çelik Vocational School, Abant Izzet Baysal University, 14280 Bolu, Turkey
| | - Yasin Ozay
- Department of Environmental Protection Technologies, Tarsus University, 33400 Mersin, Turkey
| | - Oltan Canli
- Marmara Research Center, Environment and Clean Production Institute, The Scientific and Technological Research Council of Turkey, 41470 Kocaeli, Turkey
| | - Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343 Mersin, Turkey
| | - Gülsah Tollu
- Department of Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, 33343 Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey
| |
Collapse
|
10
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
11
|
Oxidative Stress and Antioxidants-A Critical Review on In Vitro Antioxidant Assays. Antioxidants (Basel) 2022; 11:antiox11122388. [PMID: 36552596 PMCID: PMC9774584 DOI: 10.3390/antiox11122388] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022] Open
Abstract
Antioxidants have been widely studied in the fields of biology, medicine, food, and nutrition sciences. There has been extensive work on developing assays for foods and biological systems. The scientific communities have well-accepted the effectiveness of endogenous antioxidants generated in the body. However, the health efficacy and the possible action of exogenous dietary antioxidants are still questionable. This may be attributed to several factors, including a lack of basic understanding of the interaction of exogenous antioxidants in the body, the lack of agreement of the different antioxidant assays, and the lack of specificity of the assays, which leads to an inability to relate specific dietary antioxidants to health outcomes. Hence, there is significant doubt regarding the relationship between dietary antioxidants to human health. In this review, we documented the variations in the current methodologies, their mechanisms, and the highly varying values for six common food substrates (fruits, vegetables, processed foods, grains, legumes, milk, and dairy-related products). Finally, we discuss the strengths and weaknesses of the antioxidant assays and examine the challenges in correlating the antioxidant activity of foods to human health.
Collapse
|
12
|
Supercritical Carbon Dioxide Extraction Process for Hibiscus taiwanensis S. Y. Hu and Tyrosinase Inhibitory Activity of Its Extract. Processes (Basel) 2022. [DOI: 10.3390/pr10112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the bioactive components in the stem of Hibiscus taiwanensis S. Y. Hu were extracted by supercritical carbon dioxide (SC-CO2), and the inhibition activity of the extract tyrosinase was analyzed. When the particle size of the powder was controlled to be 50 mesh, the effects of temperatures (40, 45, 50, 55, and 60 °C), pressures (15, 20, 25, 30, and 35 MPa), concentrations of entrainment agent (ethanol) (60, 80, and 95%) and CO2 flow rates (80, 100, 120, and 140 L/min) on the extraction rate, respectively, were studied with the single-variable method. The optimal parameters included an extraction temperature of 55 °C, an extraction pressure of 30 MPa, 80% ethanol as the entrainment agent, and the CO2 flow rate of 100 L/min. Under the optimal conditions, the extraction rate of Hibiscus taiwanensis S. Y. Hu reached more than 0.5% within 2 h. At the same time, the chemical compositions of the extract were investigated by using high-resolution liquid chromatography-mass spectrometry (LC-MS) equipped with a linear ion trap-electrostatic field orbital trap. In addition, the related activity of extract in the stem Hibiscus taiwanensis S. Y. Hu was evaluated by tyrosinase inhibition experiments. The results showed that the inhibition rate of the extract with a concentration of 0.25 mg/mL to tyrosinase reached 35.60%, indicating that the extract by SC-CO2 had the potential to be used for whitening active raw materials.
Collapse
|
13
|
Sustainable Approaches Using Green Technologies for Apple By-Product Valorisation as A New Perspective into the History of the Apple. Molecules 2022; 27:molecules27206937. [PMID: 36296530 PMCID: PMC9610383 DOI: 10.3390/molecules27206937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The apple has been recognised as the most culturally important fruit crop in temperate land areas. Centuries of human exploitation and development led to the production of thousands of apple cultivars. Nowadays, the apple represents the third most widely cultivated fruit in the world. About 30% of the total production of apples is processed, being juice and cider the main resulting products. Regarding this procedure, a large quantity of apple by-product is generated, which tends to be undervalued, and commonly remains underutilised, landfilled, or incinerated. However, apple by-product is a proven source of bioactive compounds, namely dietary fibre, fatty acids, triterpenes, or polyphenols. Therefore, the application of green technologies should be considered in order to improve the functionality of apple by-product while promoting its use as the raw material of a novel product line. The present work provides a holistic view of the apple’s historical evolution, characterises apple by-product, and reviews the application of green technologies for improving its functionality. These sustainable procedures can enable the transformation of this perishable material into a novel ingredient opening up new prospects for the apple’s potential use and consumption.
Collapse
|
14
|
Khaksar G, Sirijan M, Suntichaikamolkul N, Sirikantaramas S. Metabolomics for Agricultural Waste Valorization: Shifting Toward a Sustainable Bioeconomy. FRONTIERS IN PLANT SCIENCE 2022; 13:938480. [PMID: 35832216 PMCID: PMC9273160 DOI: 10.3389/fpls.2022.938480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Agriculture has been considered as a fundamental industry for human survival since ancient times. Local and traditional agriculture are based on circular sustainability models, which produce practically no waste. However, owing to population growth and current market demands, modern agriculture is based on linear and large-scale production systems, generating tons of organic agricultural waste (OAW), such as rejected or inedible plant tissues (shells, peels, stalks, etc.). Generally, this waste accumulates in landfills and creates negative environmental impacts. The plant kingdom is rich in metabolic diversity, harboring over 200,000 structurally distinct metabolites that are naturally present in plants. Hence, OAW is considered to be a rich source of bioactive compounds, including phenolic compounds and secondary metabolites that exert a wide range of health benefits. Accordingly, OAW can be used as extraction material for the discovery and recovery of novel functional compounds that can be reinserted into the production system. This approach would alleviate the undesired environmental impacts of OAW accumulation in landfills, while providing added value to food, pharmaceutical, cosmetic, and nutraceutical products and introducing a circular economic model in the modern agricultural industry. In this regard, metabolomics-based approaches have gained increasing interest in the agri-food sector for a variety of applications, including the rediscovery of bioactive compounds, owing to advances in analytical instrumentation and data analytics platforms. This mini review summarizes the major aspects regarding the identification of novel bioactive compounds from agricultural waste, focusing on metabolomics as the main tool.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkon Sirijan
- Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Nithiwat Suntichaikamolkul
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Butkevičiūtė A, Janulis V, Kviklys D. Triterpene Content in Flesh and Peel of Apples Grown on Different Rootstocks. PLANTS (BASEL, SWITZERLAND) 2022; 11:1247. [PMID: 35567248 PMCID: PMC9100339 DOI: 10.3390/plants11091247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Advancements in rootstock breeding and selection have revolutionized the manner in which apples are grown throughout the world. Fruit tree breeding has typically focused on key horticultural characteristics. Even though agents with health benefits have been investigated more frequently during the recent years, information about the effect of different cultivation factors, such as the rootstock, on triterpene concentration is still lacking. The present study aimed to evaluate triterpene profiles and the quantitative composition of different parts of apple fruit that was grown on 17 various origin and vigor rootstocks. HPLC analyses of triterpenes in apple samples were performed. The highest total content of triterpenes (7.72 ± 0.39 mg/g) was found in peel samples of apples grown on the dwarf rootstock 62-396-B10®. Depending on the rootstock, apple peel samples accumulated 3.52 to 4.74 times more triterpene compounds than apple flesh samples. Ursolic acid was the predominant triterpene compound in apple peel and flesh samples. The highest content of ursolic acid (5.84 ± 0.29 mg/g) was found in peel samples of apples grown on the dwarf rootstock 62-396-B10®. Meanwhile, the lowest amount of ursolic acid (3.25 ± 0.16 mg/g) was found in apple peel samples grown on the dwarf rootstock Cepiland-Pajam®2. A proper match of a cultivar and a rootstock can program a fruit tree to grow larger amounts of higher quality, antioxidant-rich, and high-nutrition-value fruit.
Collapse
Affiliation(s)
- Aurita Butkevičiūtė
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, 50162 Kaunas, Lithuania;
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, 50162 Kaunas, Lithuania;
| | - Darius Kviklys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno St. 30, 54333 Babtai, Lithuania;
- Department of Horticulture, Norwegian Institute of Bioeconomy Research—NIBIO Ullensvang, Ullensvangvegen 1005, 5781 Lofthus, Norway
| |
Collapse
|
16
|
Luntraru CM, Apostol L, Oprea OB, Neagu M, Popescu AF, Tomescu JA, Mulțescu M, Susman IE, Gaceu L. Reclaim and Valorization of Sea Buckthorn (Hippophae rhamnoides) By-Product: Antioxidant Activity and Chemical Characterization. Foods 2022; 11:foods11030462. [PMID: 35159612 PMCID: PMC8834190 DOI: 10.3390/foods11030462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The by-product resulting from the production of the sea-buckthorn (Hippophae rhamnoides) juice may be a functional food ingredient, being a valuable source of bioactive compounds, such as polyphenols, flavonoids, minerals, and fatty acids. For checking this hypothesis, two extracts were obtained by two different methods using 50% ethyl alcohol solvent, namely through maceration–recirculation (E-SBM) and through ultrasound extraction (E-SBUS), followed by concentration. Next, sea-buckthorn waste (SB sample), extracts (E-SBM and E-SBUS samples) and the residues obtained from the extractions (R-SBM and R-SBUS samples) were characterized for the total polyphenols, flavonoid content, antioxidant capacity, mineral contents, and fatty acids profile. The results show that polyphenols and flavonoids were extracted better by the ultrasound process than the other methods. Additionally, the antioxidant activity of the E-SBUS sample was 91% higher (expressed in Trolox equivalents) and approximately 45% higher (expressed in Fe2+ equivalents) than that of the E-SBM sample. Regarding the extraction of minerals, it was found that both concentrated extracts had almost 25% of the RDI value of K and Mg, and also that the content of Zn, Mn, and Fe is significant. Additionally, it was found that the residues (R-SBM and R-SBUS) contain important quantities of Zn, Cu, Mn, Ca, and Fe. The general conclusion is that using the ultrasound extraction method, followed by a process of concentrating the extract, a superior recovery of sea-buckthorn by-product resulting from the juice extraction can be achieved.
Collapse
Affiliation(s)
- Cristina Mihaela Luntraru
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Livia Apostol
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
- Correspondence: (L.A.); (O.B.O.); Tel.: +40-740-001-473 (L.A.); Tel.: +40-727-171-083 (O.B.O.)
| | - Oana Bianca Oprea
- Faculty of Food and Tourism, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania;
- Correspondence: (L.A.); (O.B.O.); Tel.: +40-740-001-473 (L.A.); Tel.: +40-727-171-083 (O.B.O.)
| | - Mihaela Neagu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Adriana Florina Popescu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Justinian Andrei Tomescu
- Hofigal Export Import S.A., Research Development Patents Department, No. 2 Intrarea Serelor Street, District 4, 042124 Bucharest, Romania; (C.M.L.); (M.N.); (A.F.P.); (J.A.T.)
| | - Mihaela Mulțescu
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
| | - Iulia Elena Susman
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintila St., 0211202 Bucharest, Romania; (M.M.); (I.E.S.)
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania;
- CSCBAS &CE-MONT Centre/INCE-Romanian Academy, 010071 Bucharest, Romania
- Assoc. m. Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
17
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
18
|
Iqbal A, Schulz P, Rizvi SS. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Antonio A, Wiedemann L, Galante E, Guimarães A, Matharu A, Veiga-Junior V. Efficacy and sustainability of natural products in COVID-19 treatment development: opportunities and challenges in using agro-industrial waste from Citrus and apple. Heliyon 2021; 7:e07816. [PMID: 34423146 PMCID: PMC8366044 DOI: 10.1016/j.heliyon.2021.e07816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Natural products have been used in the treatment of illnesses throughout the history of humankind. Exploitation of bioactive compounds from natural sources can aid in the discovery of new drugs, provide the scaffold of new medicines. In the face of challenging diseases, such as the COVID-19 pandemic, for which there was no effective treatment, nature could offer insights as to novel therapeutic options for control measures. However, the environmental impact and supply chain of bioactive production must be carefully evaluated to ensure the detrimental effects will not outweigh the potential benefits gained. History has already proven that highly bioactive compounds can be rare and not suitable for medicinal exploitation; therefore, the sustainability must be accessed before expensive, time-demanding, and large trials can be initialized. A sustainable option to readily produce a phytotherapy with minimal environmental stress is the use of agro-industry wastes, a by-product produced in high quantities. In this review we evaluate the sustainability issues associated with the production of phytotherapy as a readily available tool for pandemic control.
Collapse
Affiliation(s)
- A.S. Antonio
- Chemical Engineering Section, Military Institute of Engineering, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil
- Chemistry Department, Institute of Exact Sciences, Amazonas Federal University, Avenida Rodrigo Otávio, 6200, Coroado, 69077-000, Manaus, AM, Brazil
| | - L.S.M. Wiedemann
- Chemistry Department, Institute of Exact Sciences, Amazonas Federal University, Avenida Rodrigo Otávio, 6200, Coroado, 69077-000, Manaus, AM, Brazil
| | - E.B.F. Galante
- Chemical Engineering Section, Military Institute of Engineering, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil
| | - A.C. Guimarães
- Chemistry Department, Institute of Exact Sciences, Amazonas Federal University, Avenida Rodrigo Otávio, 6200, Coroado, 69077-000, Manaus, AM, Brazil
| | - A.S. Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - V.F. Veiga-Junior
- Chemical Engineering Section, Military Institute of Engineering, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Ohata Y, Tetsumoto Y, Morita S, Mori N, Ishiguri Y, Yoshinaga N. Triterpenes induced by young apple fruits in response to herbivore attack. Biosci Biotechnol Biochem 2021; 85:1594-1601. [PMID: 33942881 DOI: 10.1093/bbb/zbab077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 11/14/2022]
Abstract
Apples Malus domestica, known as a rich source of triterpene acids, induced more variety and quantity of triterpene acids in response to herbivory or mechanical damage. There were 3 major induced compounds: pomaceic acid and euscaphic acid, both of which are known apple triterpene acids, and 2α,19α-dihydroxy-3-oxours-12-en-28-oic acid (named eriobotoric acid), which was first identified in apples. In this study, the 3 compounds' induction curves after damage, varietal differences in induction amounts, and physiological roles against pest insects were further investigated. Eriobotoric acid showed clear antifeedant activity against lepidopteran insect Spodoptera litura but not against apple pests.
Collapse
Affiliation(s)
- Yuto Ohata
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Yuuki Tetsumoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Sayo Morita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Yoichi Ishiguri
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center, Kuroishi, Aomori, Japan
| | - Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
21
|
Variation of Triterpenes in Apples Stored in a Controlled Atmosphere. Molecules 2021; 26:molecules26123639. [PMID: 34198648 PMCID: PMC8232341 DOI: 10.3390/molecules26123639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Apples are seasonal fruits, and thus after harvesting apples of optimal picking maturity, it is important to prepare them properly for storage and to ensure proper storage conditions in order to minimize changes in the chemical composition and commercial quality of the apples. We studied the quantitative composition of triterpenic compounds in the whole apple, apple peel and apple flesh samples before placing them in the controlled atmosphere (CA) chambers, and at the end of the experiment, 8 months later. HPLC analysis showed that highest total amount of triterpenic compounds (1.99 ± 0.01 mg g-1) was found in the whole apple samples of the 'Spartan' cultivar stored under variant VIII (O2-20%, CO2-3%, N2-77%) conditions. Meanwhile, the highest amount of triterpenic compounds (11.66 ± 0.72 mg g-1) was determined in the apple peel samples of the 'Auksis' cultivar stored under variant II (O2-5%, CO2-1%, N2-94%) conditions. In the apple peel samples of the 'Auksis' cultivar stored under variant I (O2-21%, CO2-0.03%, N2-78.97%) conditions, the amount of individual triterpenic compounds (ursolic, oleanolic, corosolic, and betulinic acids) significantly decreased compared with amount determined before the storage. Therefore, in the apple flesh samples determined triterpenic compounds are less stable during the storage under controlled atmosphere conditions compared with triterpenic compounds determined in the whole apple and apple peel samples.
Collapse
|
22
|
Awasthi MK, Ferreira JA, Sirohi R, Sarsaiya S, Khoshnevisan B, Baladi S, Sindhu R, Binod P, Pandey A, Juneja A, Kumar D, Zhang Z, Taherzadeh MJ. A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 143:110972. [DOI: 10.1016/j.rser.2021.110972] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
23
|
Reversed-phase chromatographic separation and downstream precipitation of lupane- and oleanane-type triterpenoids: Experiments and modeling based on the method of moments. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
De la Peña Armada R, Bronze MR, Matias A, Mateos-Aparicio I. Triterpene-Rich Supercritical CO2 Extracts from Apple By-product Protect Human Keratinocytes Against ROS. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02615-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Affiliation(s)
- Shivraj H. Nile
- Laboratory of Medicinal Plant Biotechnology Zhejiang Chinese Medical University, Hangzhou Zhejiang Province 311402, China
| |
Collapse
|
26
|
Song W, Liu LL, Ren YJ, Wei SD, Yang HB. Inhibitory effects and molecular mechanism on mushroom tyrosinase by condensed tannins isolation from the fruit of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow. Int J Biol Macromol 2020; 165:1813-1821. [PMID: 33038405 DOI: 10.1016/j.ijbiomac.2020.09.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The structure of extracted condensed tannin (CT) from the fruit of Sour jujube (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow) and the molecular mechanisms by which CT inhibits the activity of mushroom tyrosinase were investigated. The structure of CT was characterized by high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The kinetic assays were used to detect inhibition effect, type and mechanism. UV scanning, fluorescence quenching, copper interacting, o-quinone interaction and molecular docking assays were also used to reveal the molecular mechanisms by which CT inhibit tyrosinase. The results showed the structural units of CT containing afzelechin/epiafzelechin, catechin/epicatechin, and gallocatechin/epigallocatechin. Kinetic analysis showed that CT inhibits both the monophenolase and diphenolase activities of tyrosinase and exhibits reversible, mixed type mechanism. The fruit CT interacts primarily with the copper ions and specific amino acid residue (Asn191, Thr203, Ala202, Ser206, Met201, His194, His54, Glu182 and Ile42) in the active site of tyrosinase to disturb oxidation of substrates by tyrosinase. These results suggested the sour jujube fruit is a potential natural source of tyrosinase inhibitors, and has a potential to be used in food preservation, whitening cosmetics.
Collapse
Affiliation(s)
- Wei Song
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China.
| | - Lu-Lu Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuan-Jing Ren
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shu-Dong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Hai-Bo Yang
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China; Forestry College, Henan Agricultural University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
27
|
Wang C, Wang X, Zhao S, Zuo G, Xu M, Tong S. Liquid chromatographic and liquid-liquid chromatographic separation of structural isomeric oleanolic acid and ursolic acid using hydroxypropyl-β-cyclodextrin as additive. J Chromatogr A 2020; 1625:461332. [PMID: 32709358 DOI: 10.1016/j.chroma.2020.461332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Two structural isomeric pentacyclic triterpenes, oleanolic acid and ursolic acid, were considered as the models for the quality control of many traditional Chinese herbal medicines and they have been proved to own important pharmacological activities. In the present work, liquid chromatographic and liquid-liquid chromatographic separation with high peak resolution of structural isomeric oleanolic acid and ursolic acid using hydroxypropyl-β-cyclodextrin as mobile phase additive was successfully achieved, respectively. A high peak resolution, RS=8.143, was achieved for the two structural isomeric compounds by conventional reverse phase high performance liquid chromatography, which was greatly improved compared with the published values. Meanwhile, a biphasic solvent system composed of n-hexane-ethyl acetate-0.1 mol/L hydroxypropyl-β-cyclodextrin (9:1:10, v/v) was selected for liquid-liquid chromatography, which provided a high peak resolution, RS = 6.573, for analytical apparatus and Rs = 8.500 for semi-preparative apparatus after optimization by liquid-liquid extractions. Two elution modes including reverse phase mode and normal phase mode were investigated for preparative separation of two acids from crude exact of Eriobotrya japonica Thunb. Furthermore, the inclusion complex between each of the two structural isomers and hydroxypropyl-β-cyclodextrin were also investigated for high performance liquid chromatography and liquid-liquid chromatography, respectively, in which formation constants were determined for oleanolic acid and ursolic acid.
Collapse
Affiliation(s)
- Chaoyue Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China; Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, 24252, Republic of Korea
| | - Xiang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China; Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, 24252, Republic of Korea
| | - Shanshan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, 24252, Republic of Korea
| | - Min Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
28
|
Tlais AZA, Fiorino GM, Polo A, Filannino P, Di Cagno R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020; 25:E2987. [PMID: 32629805 PMCID: PMC7412346 DOI: 10.3390/molecules25132987] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Food waste (FW) represents a global and ever-growing issue that is attracting more attention due to its environmental, ethical, social and economic implications. Although a valuable quantity of bioactive components is still present in the residuals, nowadays most FW is destined for animal feeding, landfill disposal, composting and incineration. Aiming to valorize and recycle food byproducts, the development of novel and sustainable strategies to reduce the annual food loss appears an urgent need. In particular, plant byproducts are a plentiful source of high-value compounds that may be exploited as natural antioxidants, preservatives and supplements in the food industry, pharmaceuticals and cosmetics. In this review, a comprehensive overview of the main bioactive compounds in fruit, vegetable and cereal byproducts is provided. Additionally, the natural and suitable application of tailored enzymatic treatments and fermentation to recover high-value compounds from plant byproducts is discussed. Based on these promising strategies, a future expansion of green biotechnologies to revalorize the high quantity of byproducts is highly encouraging to reduce the food waste/losses and promote benefits on human health.
Collapse
Affiliation(s)
- Ali Zein Alabiden Tlais
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Giuseppina Maria Fiorino
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Andrea Polo
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| |
Collapse
|
29
|
Fierascu RC, Sieniawska E, Ortan A, Fierascu I, Xiao J. Fruits By-Products - A Source of Valuable Active Principles. A Short Review. Front Bioeng Biotechnol 2020; 8:319. [PMID: 32351951 PMCID: PMC7174504 DOI: 10.3389/fbioe.2020.00319] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
The growing demand for more sustainable, alternative processes leading to production of plant-derived preparations imposes the use of plants waste generated mainly by agri-food and pharmaceutical industries. These mostly unexploited but large quantities of plants waste also increase the interest in developing alternative approaches for sustainable production of therapeutic molecules. In order to reduce the amount of plant waste by further processing, different novel extraction techniques can be applied. Fruits and their industrial by-products are rich sources of different classes of compounds with therapeutic properties. The processed fruits waste can be reused and lead to novel pharmaceuticals, food supplements or functional foods. This review intends to briefly summarize recent aspects regarding the production of different active compounds from fruit by-products, and their therapeutic properties. The potential use of fruits by-products in different industries will be also discussed.
Collapse
Affiliation(s)
- Radu C. Fierascu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
- The National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Emerging Nanotechnologies Group, Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Alina Ortan
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
- The National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Emerging Nanotechnologies Group, Bucharest, Romania
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
30
|
Oliveira VC, Naves MPC, de Morais CR, Constante SAR, Orsolin PC, Alves BS, Rinaldi Neto F, da Silva LHD, de Oliveira LTS, Ferreira NH, Esperandim TR, Cunha WR, Tavares DC, Spanó MA. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and Drosophila melanogaster. Food Chem Toxicol 2020; 138:111228. [DOI: 10.1016/j.fct.2020.111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
|
31
|
From Xanthine Oxidase Inhibition to In Vivo Hypouricemic Effect: An Integrated Overview of In Vitro and In Vivo Studies with Focus on Natural Molecules and Analogues. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9531725. [PMID: 32184901 PMCID: PMC7060854 DOI: 10.1155/2020/9531725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Hyperuricemia is characterized by elevated uric acid (UA) levels on blood, which can lead to gout, a common pathology. These high UA levels are associated with increased purine ingestion and metabolization and/or its decreased excretion. In this field, xanthine oxidase (XO), by converting hypoxanthine and xanthine to UA, plays an important role in hyperuricemia control. Based on limitations and adverse effects associated with the use of allopurinol and febuxostat, the most known approved drugs with XO inhibitory effect, the search for new molecules with XO activity is growing. However, despite the high number of studies, it was found that the majority of tested products with relevant XO inhibition were left out, and no further pharmacological evaluation was performed. Thus, in the present review, available information published in the past six years concerning isolated molecules with in vitro XO inhibition complemented with cytotoxicity evaluation as well as other relevant studies, including in vivo hypouricemic effect, and pharmacokinetic/pharmacodynamic profile was compiled. Interestingly, the analysis of data collected demonstrated that molecules from natural sources or their mimetics and semisynthetic derivatives constitute the majority of compounds being explored at the moment by means of in vitro and in vivo animal studies. Therefore, several of these molecules can be useful as lead compounds and some of them can even have the potential to be considered in the future clinical candidates for the treatment of hyperuricemia.
Collapse
|
32
|
Fierascu RC, Fierascu I, Avramescu SM, Sieniawska E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019; 24:E4212. [PMID: 31757027 PMCID: PMC6930540 DOI: 10.3390/molecules24234212] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Large amounts of agro-industrial waste are being generated each year, leading to pollution and economic loss. At the same time, these side streams are rich source of active compounds including antioxidants. Recovered compounds can be re-utilized as food additives, functional foods, nutra-/pharmaceuticals, cosmeceuticals, beauty products, and bio-packaging. Advanced extraction techniques are promising tools to recover target compounds such as antioxidants from agro-industrial side streams. Due to the disadvantages of classical extraction techniques (such as large amounts of solvents, increased time of extraction, large amounts of remaining waste after the extraction procedure, etc.), and advanced techniques emerged, in order to obtain more efficient and sustainable processes. In this review paper aspects regarding different modern extraction techniques related to recovery of antioxidant compounds from wastes generated in different industries and their applications are briefly discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 Mihail Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| |
Collapse
|
33
|
Fidelis M, de Moura C, Kabbas Junior T, Pap N, Mattila P, Mäkinen S, Putnik P, Bursać Kovačević D, Tian Y, Yang B, Granato D. Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy. Molecules 2019; 24:E3854. [PMID: 31731548 PMCID: PMC6864632 DOI: 10.3390/molecules24213854] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US$1 trillion or even $2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.
Collapse
Affiliation(s)
- Marina Fidelis
- MSc in Food Science and Technology, Ponta Grossa 84035010, Brazil;
| | - Cristiane de Moura
- Graduate Program in Chemistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 84030900, Brazil; (C.d.M.); (T.K.J.)
| | - Tufy Kabbas Junior
- Graduate Program in Chemistry, State University of Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Ponta Grossa 84030900, Brazil; (C.d.M.); (T.K.J.)
| | - Nora Pap
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Pirjo Mattila
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Sari Mäkinen
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (D.B.K.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (D.B.K.)
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (Y.T.); (B.Y.)
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (Y.T.); (B.Y.)
| | - Daniel Granato
- Food Processing and Quality, Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland; (N.P.); (P.M.); (S.M.)
| |
Collapse
|