1
|
Tongdee M, Wilairat P, Praditweangkum W, Chantiwas R. Semi-quantitative analysis of formaldehyde in food using calibration chart based on number of colored wells of microwell plate titration. Food Chem X 2024; 23:101617. [PMID: 39071931 PMCID: PMC11280023 DOI: 10.1016/j.fochx.2024.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Microplate titration quantifies sodium hydroxide generated from formaldehyde reacting with excess sulfite in a 96-microwell plate. Phenolphthalein indicators change from red to colorless when all hydroxide ions react. Methodology optimized reagent concentrations, and reaction time and created a Calibration Chart for semi-quantitative determination. The chart shows formaldehyde concentration ranges corresponding to red well counts from 0 to 200 mM in 20 mM increments. Inter-operator repeatability demonstrates precision (3 replicates), correlating red wells with standard formaldehyde concentrations. This instrument-free technique uses readily available commercial plates, eliminating the need for specialized equipment and calibration. The methodology offers simplicity with its reliance on readily available commercial plates and minimal specialized equipment, hence it is cost-effective and easily transportable 96-microwell plates enhancing the methodology's portability, and efficient semi-quantitative analysis of formaldehyde. The analysis of twelve solutions from food samples agrees with the quantitative values using titration.
Collapse
Affiliation(s)
- Mintra Tongdee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | - Prapin Wilairat
- Analytical Sciences and National Doping Test Institute, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Wiboon Praditweangkum
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Rattikan Chantiwas
- Department of Chemistry and Center of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| |
Collapse
|
2
|
Wang H, Jia M, Chang Y, Ling X, Qi W, Chen H, Chen F, Bai H, Jiang Y, Zhou C. Hydrogen sulfide donor NaHS inhibits formaldehyde-induced epithelial-mesenchymal transition in human lung epithelial cells via activating TGF-β1/Smad2/3 and MAPKs signaling pathways. Curr Res Toxicol 2024; 7:100199. [PMID: 39524036 PMCID: PMC11550156 DOI: 10.1016/j.crtox.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Formaldehyde (FA) long term exposure leads to abnormal pulmonary function and small airway obstruction of the patients. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in a wide range of cellular functions. It is unknown the involvement of H2S in FA-induced lung injury. The purpose of this study is to investigate the therapeutic potential and mechanism of H2S on FA-induced epithelial-mesenchymal transition (EMT) of human lung epithelial cells. The cell viability of Beas2B and A549 cells after FA treatment were assessed using MTT assay. The endogenous H2S was visualized by fluorescence microscopy using of the 7-azido-4-methylcoumarin (AzMC). Cell morphology was observed under phase contrast microscope. The mRNAs and proteins level were evaluated by reverse transcription-polymerase chain reaction and western blotting assays. FA treatment downregulated the endogenous H2S levels and the mRNAs and proteins level of H2S synthesizing enzymes, such as cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) in Beas2B and A549 cells. FA treatment changed the cell morphology of Beas2B cells from cuboid to a spindle-shape, while declined the protein level of E-cadherin and increased the protein level of Vimentin. Moreover, FA treatment increased the proteins level of transforming growth factor-β1 (TGF-β1), phosphorylated-Smad2 (p-Smad2), phosphorylated-Smad3 (p-Smad3), phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-c-Jun N-terminal kinase (p-JNK), and phosphorylated-P38 (p-P38). Furthermore, the inhibitors of TGF-β receptor type 1 (TGFβRI) and mitogen-activated protein kinases (MAPKs) signaling pathways reversed FA-induced decrease in E-cadherin expression and increase in Vimentin expression in Beas2B cells. Sodium hydrogen sulfide (NaHS) increased the level of H2S, while reversed FA-induced the low expression of E-cadherin and the high expression of Vimentin, TGF-β1, p-Smad2, p-Smad3, p-ERK, p-JNK, and p-P38. These findings indicates FA treatment downregulating the endogenous H2S in human lung epithelial cells. NaHS may inhibit FA-induced EMT in human lung epithelial cells via modulating TGF-β1/Smad2/3 and MAPKs signaling pathways. Therefore, we demonstrated that supplementation of exogenous H2S may inhibit FA-induced lung injury.
Collapse
Affiliation(s)
| | | | - Yuxin Chang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xingwei Ling
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Wenyan Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Hongtao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Feipeng Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Haiyang Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yuhan Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Chengfan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| |
Collapse
|
3
|
Chothia SY, Emms VL, Thomas LA, Bulman NFA, Monks PS, Cordell RL, Hopkinson RJ. Formaldehyde quantification using gas chromatography-mass spectrometry reveals high background environmental formaldehyde levels. Sci Rep 2024; 14:20621. [PMID: 39232096 PMCID: PMC11375156 DOI: 10.1038/s41598-024-71271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Formaldehyde (HCHO) is a human toxin that is both a pollutant and endogenous metabolite. HCHO concentrations in human biological samples are reported in the micromolar range; however, accurate quantification is compromised by a paucity of sensitive analysis methods. To address this issue, we previously reported a novel SPME-GC-MS-based HCHO detection method using cysteamine as an HCHO scavenger. This method showed cysteamine to be a more efficient scavenger than the widely used O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine, and enabled detection of aqueous HCHO in the nanomolar range and quantification in the micromolar range. However, quantification in this range required immersive extraction of the HCHO-derived thiazolidine, while a high background signal was also observed. Following on from these studies, we now report an optimised head-space extraction SPME-GC-MS method using cysteamine, which provides similarly sensitive HCHO quantification to the immersive method but avoids extensive wash steps and is therefore more amenable to screening applications. However, high background HCHO levels were still observed A Complementary GC-MS analyses using a 2-aza-Cope-based HCHO scavenger also revealed high background HCHO levels; therefore, the combined results suggest that HCHO exists in high (i.e. micromolar) concentration in aqueous samples that precludes accurate quantification below the micromolar range. This observation has important implications for ongoing HCHO quantification studies in water, including in biological samples.
Collapse
Affiliation(s)
- Sara Y Chothia
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Vicki L Emms
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Liam A Thomas
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Natasha F A Bulman
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Paul S Monks
- Space Park Leicester, University of Leicester, 92 Corporation Road, Leicester, LE4 5SP, UK
| | - Rebecca L Cordell
- Space Park Leicester, University of Leicester, 92 Corporation Road, Leicester, LE4 5SP, UK.
| | - Richard J Hopkinson
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
4
|
Chothia SY, Carr M, Monks PS, Cordell RL, Hopkinson RJ. Quantitative detection of formaldehyde using solid phase microextraction gas chromatography-mass spectrometry coupled to cysteamine scavenging. Sci Rep 2023; 13:14642. [PMID: 37670131 PMCID: PMC10480157 DOI: 10.1038/s41598-023-41609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Formaldehyde (HCHO) is a toxic and carcinogenic pollutant and human metabolite that reacts with biomolecules under physiological conditions. Quantifying HCHO is essential for ongoing biological and biomedical research on HCHO; however, its reactivity, small size and volatility make this challenging. Here, we report a novel HCHO detection/quantification method that couples cysteamine-mediated HCHO scavenging with SPME GC-MS analysis. Our NMR studies confirm cysteamine as an efficient and selective HCHO scavenger that out-competes O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine, the most commonly used scavenger, and forms a stable thiazolidine amenable to GC-MS quantification. Validation of our GC-MS method using FDA and EMA guidelines revealed detection and quantification limits in the nanomolar and micromolar ranges respectively, while analysis of bacterial cell lysate confirmed its applicability in biological samples. Overall, our studies confirm that cysteamine scavenging coupled to SPME GC-MS analysis provides a sensitive and chemically robust method to quantify HCHO in biological samples.
Collapse
Affiliation(s)
- Sara Y Chothia
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Matthew Carr
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Paul S Monks
- Space Park Leicester, University of Leicester, 92 Corporation Road, Leicester, LE4 5SP, UK
| | - Rebecca L Cordell
- Space Park Leicester, University of Leicester, 92 Corporation Road, Leicester, LE4 5SP, UK
| | - Richard J Hopkinson
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
5
|
Lin YC, Lin PY, Hsieh SL, Tsai CY, Patel AK, Singhania RR, Kirankumar R, Dong CD, Chen CW, Hsieh S. Quantum dot assisted precise and sensitive fluorescence-based formaldehyde detection in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121729. [PMID: 35985226 DOI: 10.1016/j.saa.2022.121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde has an extremely reactive carbonyl group, commonly used as an antibacterial agent to sterilize and prevent food to spoil. This article describes an efficient and rapid detection method of formaldehyde from an aqueous solution by synthesizing 3-Aminopropyltriethoxysilane (APTES) quantum dots (Nano A) which react with formaldehyde to generate a Schiff base reaction. The photoinduced electron transfer produced by the quantum dots themselves results in fluorescence quenching to detect formaldehyde. The detection limit can reach 10-9 M, and it can further be used to detect formaldehyde content in foods, such as baby vegetables, mushrooms, and vermicelli among other daily foods.
Collapse
Affiliation(s)
- Yu-Ching Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Pei-Ying Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chen-Yu Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | | | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
6
|
Ding N, Li Z, Hao Y, Yang X. A new amine moiety-based near-infrared fluorescence probe for detection of formaldehyde in real food samples and mice. Food Chem 2022; 384:132426. [PMID: 35202988 DOI: 10.1016/j.foodchem.2022.132426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022]
Abstract
A new amine moiety-based near-infrared fluorescent probe (Probe-NH2) is developed for detection of formaldehyde in food samples and mice. Probe-NH2 is constructed and synthesized from the IR-780 via two-step reactions as a hemicyanine skeleton bearing an amino moiety. The response mechanism is based on Schiff base reaction that formaldehyde reacts with amine group to form the corresponding imines. Probe-NH2 for detection of formaldehyde exhibits excellent analytical performance, including near-infrared fluorescence emission at 708 nm, high selectivity and sensitivity, also provides a response time as low as 30 min with a detection limit of 1.87 μmolL-1. Notably, we constructed a simple, rapid and visual formaldehyde detection platform based on paper chips in the near-infrared region for the first time. The accurate detection of formaldehyde in real food samples is of great significance, Probe-NH2 was detected in dried beancurd sticks, endive sprout, frozen shrimp and squid, with good recoveries of 99.60%-112.72%, indicating the reliability of Probe-NH2 for spiked determination of formaldehyde in contaminated foods. More importantly, Probe-NH2 has been successfully applied to the detection of endogenous formaldehyde in mice.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
7
|
Xu D, Zhu R, Xie D, Xie Y, Wu H, Mei Y. Amine-Containing Resin for Coating with Excellent Formaldehyde Removal Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dubing Xu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Rui Zhu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Delong Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuhui Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hua Wu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Yi Mei
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
8
|
Hanekamp JC. A Short Critique on the Stance of the Netherlands Food and Consumer Product Safety Authority on Melamine Polymer Formaldehyde Exposures. Dose Response 2021; 19:15593258211007310. [PMID: 33953648 PMCID: PMC8056618 DOI: 10.1177/15593258211007310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
In February 2021, the Netherlands Food and Consumer Product Safety Authority came out with their risk assessment on formaldehyde exposure from melamine crockery with bamboo fiber to especially young children. In this short commentary, I will critique their assessment of this type of food-contact material (FCM). The main flaws are at least: (i) absence of a proper valuation of the available principal scientific literature yielding a biased risk assessment; (ii) discounting the endogenous formaldehyde formation that outweighs background exposure substantially; (iii) ad hoc positing of an unjustifiable and unfounded low background exposure levels to formaldehyde whereby risks of exposure to melamine formaldehyde is grossly exaggerated. This biased assessment has created societal unrest that is wholly uncalled for. Additionally, it has wide-ranging European consequences for the use of all melamine FCM.
Collapse
Affiliation(s)
- Jaap C Hanekamp
- Science Department, University College Roosevelt, Middelburg, the Netherlands.,Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
9
|
Canellas E, Vera P, Song XC, Nerin C, Goshawk J, Dreolin N. The use of ion mobility time-of-flight mass spectrometry to assess the migration of polyamide 6 and polyamide 66 oligomers from kitchenware utensils to food. Food Chem 2021; 350:129260. [PMID: 33618093 DOI: 10.1016/j.foodchem.2021.129260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Oligomers, are, in general, unknown components of the polymer. These oligomers can migrate from the polymer into the food and become a non-intentionally added substance to the food. In this work, ion mobility time-of-flight mass spectrometry has been used to identify oligomers migrating from kitchenware. The structure elucidation of oligomers from polyamide 6 and polyamide 66 was achieved through the analysis of accurate m/z values of adducts and collision cross section values of precursor ions together with high-energy fragmentation patterns. Additionally, a method to extract oligomers from sunflower oil, cooked beans, soup and whole milk has been developed. Extraction recoveries ranged from 87 to 102% and limits of detection were from 0.03 to 0.11 mg/kg. It was observed that the migration from kitchenware to real food was below the specified migration limit of 5 mg/kg. However, this limit was exceeded for food simulants, which therefore overestimated the oligomer migration.
Collapse
Affiliation(s)
- Elena Canellas
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A María de Luna, 3, 50018 Zaragoza, Spain.
| | - Paula Vera
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A María de Luna, 3, 50018 Zaragoza, Spain.
| | - Xue-Chao Song
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A María de Luna, 3, 50018 Zaragoza, Spain.
| | - Cristina Nerin
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A María de Luna, 3, 50018 Zaragoza, Spain.
| | - Jeff Goshawk
- Waters Corporation, Wilmslow SK9 4AX, United Kingdom
| | | |
Collapse
|
10
|
Kim YH, Park J. Development of a Simple and Powerful Analytical Method for Formaldehyde Detection and Quantitation in Blood Samples. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8810726. [PMID: 33457038 PMCID: PMC7787787 DOI: 10.1155/2020/8810726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Human beings are easily exposed to formaldehyde (FA) in a living environment. Entry of FA into the human body can have adverse effects on human health, depending on the FA concentration. Thus, a quantitative analysis of FA in blood is necessary in order to estimate its effect on the human body. In this study, a simple and rapid analytical method for the quantitation of FA in blood was developed. The total analysis time, including the pretreatment procedure, was less than 20 min. To ensure a stable analysis, blood samples were stabilized using tripotassium ethylenediaminetetraacetic acid solution, and FA was selectively derivatized using 2,4-dinitrophenylhydrazine as pretreatment procedures. The pretreated samples were analyzed using a high-performance liquid chromatography-UV system, which is the most common choice for analyzing small-molecule aldehydes like formaldehyde. Verification of the pretreatment methods (stabilization and derivatization) using FA standards confirmed that the pretreatment methods are highly reliable in the calibration range 0.012-5.761 ng μL-1 (slope = 684,898, R 2 = 0.9998, and limit of detection = 0.251 pg·μL-1). Analysis of FA in the blood samples of a Yucatan minipig using the new method revealed an average FA concentration of 1.98 ± 0.34 ng μL-1 (n = 3). Blood samples spiked with FA standards were analyzed, and the FA concentrations were found to be similar to the theoretical concentrations (2.16 ± 0.81% difference). The method reported herein can quantitatively analyze FA in blood at a sub-nanogram level within a short period of time and is validated for application in blood analysis.
Collapse
Affiliation(s)
- Yong-Hyun Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jeongsik Park
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
| |
Collapse
|