1
|
Zhou H, Ren S, Yang Y, Qin Y, Guo T, Zhou Y, Zhang Y, Ma L. Transgenerational toxicity induced by maternal AFB 1 exposure in Caenorhabditis elegans associated with underlying epigenetic regulations. Food Chem Toxicol 2024; 187:114599. [PMID: 38490352 DOI: 10.1016/j.fct.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Aflatoxin B1 (AFB1), usually seriously contaminates in grain and oil foods or feed, displayed significant acute and chronic toxic effects in human and animal populations. However, little is known about the transgenerational toxic effects induced by a maternal AFB1 intake at a lower dose on offspring. In our study, only parental wild-type Caenorhabditis elegans was exposed to AFB1 (0-8 μg/ml) and the following three filial generations were grown on AFB1-free NGM. Results showed that the toxic effects of AFB1 on the growth (body length) and reproduction (brood size, generation time and morphology of gonad arm) can be transmitted through generations. Moreover, the levels of MMP and ATP were irreversibly inhibited in the filial generations. By using RNomics and molecular biology techniques, we found that steroid biosynthesis, phagosome, valine/leucine/isoleucine biosynthesis and oxidative phosphorylation (p < 0.05) were the core signaling pathways to exert the transgenerational toxic effects on nematodes. Also, notably increased histone methylation level at H3K36me3 was observed in the first generation. Taken together, our study demonstrated that AFB1 has notable transgenerational toxic effects, which were resulted from the complex regulatory network of various miRNAs, mRNAs and epigenetic modification in C. elegans.
Collapse
Affiliation(s)
- Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China.
| | - Sirui Ren
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yulian Yang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuxian Qin
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing, 401121, China.
| |
Collapse
|
2
|
Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 2022; 39:1261-1276. [PMID: 35501415 DOI: 10.1007/s10815-022-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Collapse
|
3
|
Qi Z, Liu Y, Yang H, Yang X, Wang H, Liu B, Yuan Y, Wang G, Xu B, Liu W, Xu Z, Deng Y. Protective role of m 6A binding protein YTHDC2 on CCNB2 in manganese-induced spermatogenesis dysfunction. Chem Biol Interact 2022; 351:109754. [PMID: 34822792 DOI: 10.1016/j.cbi.2021.109754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Human infertility has become the third largest serious disease in the world, seriously affecting the quality of human fertility. Studies have shown that manganese (Mn) can accumulate in the testis through the blood-testicular barrier and damage the male reproductive system. However, the mechanism has not been explored clearly. Recent studies have reported that YTH domain-containing 2 (YTHDC2) can regulate reproductive function. However, none has explored the role of YTHDC2 in Mn-induced reproductive toxicity. The present study investigated whether YTHDC2/CyclinB2 (CCNB2) pathway participates in Mn-induced reproductive toxicity using Kunming mice, spermatogonia, and the seminal plasma of male workers. The mice were received intraperitoneal (i.p.) injections of 0, 12.5, 25, and 50 mg/kg MnCl2 once daily for 2 weeks. The cells were treated with 0, 100, 200 and 400 μM MnCl2 for 24 h. Here, we found that occupational Mn exposure significantly increased Mn levels in the seminal plasma of male workers, while decreased sperm density, semen quality, and the levels of YTHDC2, CCNB1, and CCNB2. We found that Mn can inhibit the YTHDC2/CCNB2 signaling pathway and block the G2/M phase of the cell cycle. Moreover, the morphology of cells and the histomorphology of mice testis were injured. Notably, over-expression (OE) of YTHDC2 increased CCNB2 levels, reduced cell cycle arrest, and improved reproductive toxicity after Mn exposure. These findings suggest that the YTHDC2/CCNB2 signaling pathway participates in Mn-induced reproductive toxicity, and OE of YTHDC2 can mitigate the toxicity of Mn.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Preventive Health, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China.
| | - Haibo Yang
- Department of Occupational Diseases, Linyi People's Hospital, Shandong, People's Republic of China.
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Haiying Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Bingchen Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yuan Yuan
- Center of Experiment, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Gang Wang
- Center of Experiment, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Leão-Buchir J, Folle NMT, Lima de Souza T, Brito PM, de Oliveira EC, de Almeida Roque A, Ramsdorf WA, Fávaro LF, Garcia JRE, Esquivel L, Filipak Neto F, de Oliveira Ribeiro CA, Mela Prodocimo M. Effects of trophic 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) exposure in Oreochromis niloticus: A multiple biomarkers analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103693. [PMID: 34166789 DOI: 10.1016/j.etap.2021.103693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl esters are emerging environmental contaminants with few toxicological data, being a concern for the scientific community. This study evaluated the effects of BDE-47 on the health of Oreochromis niloticus fish. The animals were exposed to three doses of BDE-47 (0, 0.253, 2.53, 25.3 ng g-1) every 10 days, for 80 days. The BDE-47 affected the hepatosomatic and gonadosomatic index in female and the condition factor by intermediate dose in both sexes. The levels of estradiol decreased and the T4 are increased, but the vitellogenin production was not modulated in male individuals. Changes in AChE, GST, LPO and histopathology were observed while the integrated biomarker response index suggests that the lowest dose of BDE-47 compromised the activity of antioxidant enzymes. The oral exposure to BDE-47 in environmental concentrations is toxic to O. niloticus and the use of multiple biomarkers is an attribution in ecotoxicology studies and biomonitoring programs.
Collapse
Affiliation(s)
- Joelma Leão-Buchir
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil; Departamento de Toxicologia Molecular e Ambiente, Centro de Biotecnologia, Universidade Eduardo Mondlane (CB-UEM), Maputo, Mozambique
| | - Nilce Mary Turcatti Folle
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Tugstênio Lima de Souza
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Patricia Manuitt Brito
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Elton Celton de Oliveira
- Programa de Pós-graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos, CEP 82660-000, Dois Vizinhos, PR, Brazil
| | - Aliciane de Almeida Roque
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Wanessa Algarte Ramsdorf
- Programa de Pós-graduação em Ecotoxicologia, Universidade Tecnológica Federal do Paraná, Campus Curitiba, CEP 81280-340, Curitiba, PR, Brazil
| | - Luis Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, Paulo Lopes, SC, CEP 88490-000, Brazil
| | - Francisco Filipak Neto
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Batschauer AR, Souza TL, Manuitt Brito PE, Neto FF, Oliveira Ribeiro CA, Ortolani-Machado CF. Behavioral and neurochemical effects in mice after one-generation exposure to low doses of manganese: Focus on offspring development. Chem Biol Interact 2021; 345:109532. [PMID: 34058180 DOI: 10.1016/j.cbi.2021.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
The risk of exposure to toxic metals is a known concern to human populations. The overexposure to Mn can lead to a pathological condition, with symptoms similar to Parkinson's disease. Although toxicity of Mn has been reported, studies in neonates are scarce but necessary, as Mn can cross biological barriers. The present study evaluated if chronic perinatal exposure to Mn at low doses lead to neurotoxic effects in mice, after direct and indirect exposure. Couples of mice were exposed to Mn (0.013, 0.13, and 1.3 mg kg-1.day-1) for 60 days prior to mating, as well as during gestation and lactation. The offspring was distributed into two groups: animals that were not exposed after weaning - parental exposure only (PE); and animals subject to additional 60-day exposure through gavages after weaning - parental and direct exposure (PDE). Neurological effects were evaluated by Mn quantification, behavior tests and biochemical markers in the brain. PDE animals had alterations in short/long-term memory and increased anxiety-like behavior. Exposure to Mn triggered a decrease of glutathione-s-transferase and increase of cholinesterase activity in different regions of the brain. These findings highlight the risk of exposure to low doses of Mn over a generation and at early stages of development.
Collapse
Affiliation(s)
- Amândia R Batschauer
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tugstênio L Souza
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Patrícia E Manuitt Brito
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ciro A Oliveira Ribeiro
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Claudia F Ortolani-Machado
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Souza TL, Batschauer AR, Brito PM, Martino-Andrade AJ, Ortolani-Machado CF. Evaluation of testicular structure in mice after exposure to environmentally relevant doses of manganese during critical windows of development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111537. [PMID: 33254399 DOI: 10.1016/j.ecoenv.2020.111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Despite being an essential trace element with great importance for vital metabolic activities, the manganese (Mn) can also cause damage to organ systems. However, data on the effect of this metal on the male reproductive system are limited, especially using relevant doses to human exposure. The present study aimed to evaluate and compare the effects of Mn exposure on the testicular structure of mice. Three experiments were conducted: (I) direct exposure to realistic doses (0.013, 0.13, and 1.3 mg/kg/day of MnCl2); (II) parental and direct exposure to realistic doses (as in experiment I), where the animals were exposed during intrauterine development and from lactation until reproductive maturity; (III) direct exposure to high doses (15, 30, and 60 mg/kg/day of MnCl2). Biometric, histopathological, histomorphometric and stereological parameters of the testis were evaluated, in addition to sperm morphology. Bioinformatic analyses were performed to identify potential Mn binding sites in 3β-HSD and P450ssc, as well as their protein-protein interaction network. The results obtained were compared using the integrated biomarker response index (IBR). There was an increase of seminiferous tubules pathologies in all experimental conditions tested, with effects on tubular volume, as well as a reduction in tubular diameter. The IBR analyses showed that parental and direct exposure had a significant negative effect on the testicular structure due to the exposure of this metal to sensitive periods of animal development. This study suggests that Mn has the potential to alter the morphological parameters of the testes, affecting the spermatogenesis in mice.
Collapse
Affiliation(s)
- Tugstênio L Souza
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Amândia R Batschauer
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Patricia M Brito
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Anderson J Martino-Andrade
- Laboratory of Endocrine Physiology and Animal Reproduction, Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Claudia F Ortolani-Machado
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Souza TL, Batschauer AR, Brito PM, Leão-Buchir J, Spercoski KM, Neto FF, Martino-Andrade AJ, Ortolani-Machado CF. Evaluation of Mn exposure in the male reproductive system and its relationship with reproductive dysfunction in mice. Toxicology 2020; 441:152504. [DOI: 10.1016/j.tox.2020.152504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
|
8
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Kos Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Sanz Y, Villa RE, Woutersen R, Cubadda F, Flachowsky G, Mantovani A, López‐Gálvez G, Ramos F. Safety and efficacy of Manganese chelates of lysine and glutamic acid as feed additive for all animal species. EFSA J 2020; 18:e06001. [PMID: 32874216 PMCID: PMC7447900 DOI: 10.2903/j.efsa.2020.6001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of manganese chelates of lysine and glutamic acid (Manganese-LG) as nutritional feed additive for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) Panel was assigned to this mandate. The Panel concluded that, owing to safety considerations, the simultaneous use of both feed and water supplemented with Manganese-LG should be avoided. Manganese-LG showed to be safe for chickens for fattening up to the maximum authorised levels in the EU for manganese in feed (150 mg/kg); however, since a margin of safety could not be derived, the conclusions could not be extrapolated/extended to other categories/species. The data showed that Manganese-LG does not increase nor change the patterns of manganese tissue deposition when administered up to the maximum level allowed in the EU; therefore, the Panel concluded that the additive is safe for consumers of tissues and products from animals fed the additive up to the total manganese content in feed authorised in the EU. Owing to the manganese and nickel content of Manganese-LG, the Panel concluded that the handling of the additive poses a risk to users by inhalation and shall be considered as a skin and respiratory sensitiser; the data showed that the additive is irritant to eye and non-irritant to skin. Manganese-LG, intended to substitute other authorised manganese additives, will not further increase the environmental burden of manganese; the Panel considered that the use of the additive in animal nutrition would not pose an additional risk for the environment. The Panel concluded that the additive is efficacious in chickens for fattening; this conclusion can be extrapolated/extended to other categories/species. The FEEDAP Panel posed a recommendation concerning the description of the additive.
Collapse
|