1
|
Wang S, Chen J, Feng C, Lan H, Xu J, Yang R, Li C, Li W. Effects of simulated digestion on the structural characteristics and dendritic cell activation of longan polysaccharides. Int J Biol Macromol 2023; 238:124114. [PMID: 36963540 DOI: 10.1016/j.ijbiomac.2023.124114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
An active polysaccharide (LP) from longan was purified and characterized. LP consisted of galactose and glucose in a molar ratio of 1.5: 98.5, with a molecular weight of 4.67 × 107 g/mol. The main backbone of LP was T-α-D-Glcp-[(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp]n. After simulated gastrointestinal digestion, the molecular weight distribution, monosaccharide composition, and major glycosidic bonds of LP were not significantly changed. LP and digested LP (DLP) reduced phagocytosis and promoted IL-10 and IL-12 secretion of dendritic cells. In addition, the effects of LP and DLP on activating dendritic cells showed no significant difference. This study helps to illuminate the potential mode of immunomodulatory action of longan polysaccharides in vivo.
Collapse
Affiliation(s)
- Shengwei Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Juncheng Chen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| | - Chao Feng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Haibo Lan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wu Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
2
|
Chen A, Liu Y, Zhang T, Xiao Y, Xu X, Xu Z, Xu H. Chain conformation, mucoadhesive properties of fucoidan in the gastrointestinal tract and its effects on the gut microbiota. Carbohydr Polym 2023; 304:120460. [PMID: 36641186 DOI: 10.1016/j.carbpol.2022.120460] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Fucoidans are valuable marine polysaccharides with various bioactivities and physicochemical properties. However, its digestive properties, mucoadhesive properties, and bioactivity in the gastrointestinal tract are still unclear. In this study, simulated digestion, fecal fermentation in vitro, and rheology models were utilized to investigate the chain conformation, influence on gut microbiota, and mucin adhesive properties of fucoidan from the sea cucumber Thelenota ananas (Ta-FUC). The results showed that Ta-FUC was nondigestible with a temporary decrease in molecular weight in gastric conditions, accompanied by the chain conformation becoming more flexible. Moreover, Ta-FUC exhibited strong mucin adhesive function in the simulated intestinal environment, with supramolecular disulfide, hydrogen, and hydrophobic interactions in order of intensity. During fermentation, Ta-FUC was degraded by the intestinal flora to produce various short-chain fatty acids and promoted the relative abundance of Bacteroidota and Firmicutes, reducing the proportion of Proteobacteria. Therefore, these results indicate that Ta-FUC could be a potential prebiotic and ingredient for developing targeted delivery systems in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Aijun Chen
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Yatong Liu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Tao Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| | - Yu Xiao
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China; Baolingbao Biology Co. Ltd., Dezhou 251200, PR China.
| | - Zheng Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Hong Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
3
|
Pan L, Wang L, Zhang F, Zhang Y, Zheng B. Structural characterization and bifidogenic activity of polysaccharide from Dictyophora indusiata. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Structural characterization and bioactivities of a novel polysaccharide obtained from Lachnum YM38 together with its zinc and selenium derivatives. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Lin Y, Yang J, Luo L, Zhang X, Deng S, Chen X, Li Y, Bekhit AEDA, Xu B, Huang R. Ferroptosis Related Immunomodulatory Effect of a Novel Extracellular Polysaccharides from Marine Fungus Aureobasidium melanogenum. Mar Drugs 2022; 20:332. [PMID: 35621983 PMCID: PMC9144548 DOI: 10.3390/md20050332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Marine fungi represent an important and sustainable resource, from which the search for novel biological substances for application in the pharmacy or food industry offers great potential. In our research, novel polysaccharide (AUM-1) was obtained from marine Aureobasidium melanogenum SCAU-266 were obtained and the molecular weight of AUM-1 was determined to be 8000 Da with 97.30% of glucose, 1.9% of mannose, and 0.08% galactose, owing to a potential backbone of α-D-Glcp-(1→2)-α-D-Manp-(1→4)-α-D-Glcp-(1→6)-(SO3-)-4-α-D-Glcp-(1→6)-1-β-D-Glcp-1→2)-α-D-Glcp-(1→6)-β-D-Glcp-1→6)-α-D-Glcp-1→4)-α-D-Glcp-6→1)-[α-D-Glcp-4]26→1)-α-D-Glcp and two side chains that consisted of α-D-Glcp-1 and α-D-Glcp-(1→6)-α-D-Glcp residues. The immunomodulatory effect of AUM-1 was identified. Then, the potential molecular mechanism by which AUM-1 may be connected to ferroptosis was indicated by metabonomics, and the expression of COX2, SLC7A11, GPX4, ACSL4, FTH1, and ROS were further verified. Thus, we first speculated that AUM-1 has a potential effect on the ferroptosis-related immunomodulatory property in RAW 264.7 cells by adjusting the expression of GPX4, regulated glutathione (oxidative), directly causing lipid peroxidation owing to the higher ROS level through the glutamate metabolism and TCA cycle. Thus, the ferroptosis related immunomodulatory effect of AUM-1 was obtained.
Collapse
Affiliation(s)
- Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.L.)
| | - Shengyu Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Yiyang Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.L.)
| | - Alaa El-Din A. Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University−Hong Kong Baptist University−United International College, Zhuhai 519087, China;
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| |
Collapse
|
6
|
Chen P, Lei S, Tong M, Chang Q, Zheng B, Zhang Y, Zeng H. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Chen P, Xu Y, Yang S, Chang Q, Zheng B, Zhang Y, Hu X, Zeng H. Application of X-ray diffraction and energy dispersive spectroscopy in the isolation of sulfated polysaccharide from Porphyra haitanensis and its antioxidant capacity under in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6452-6462. [PMID: 33997981 DOI: 10.1002/jsfa.11316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The separation and purification of Porphyra haitanensis polysaccharide (PHP), and the determination of changes in molecular weight (Mw) and antioxidant capacity after in vitro digestion, were undertaken. RESULTS Analysis of two polysaccharide fractions (PHP0.5-1-UF and PHP1.0-1-UF) by various techniques showed that they were very pure sulfated polysaccharides without pigment or protein. PHP0.5-1-UF was filamentous or 'tape-like' sheets, whereas PHP1.0-1-UF had some filaments and large numbers of rounded aggregates. The Mw of PHP, PHP0.5-1-UF and PHP1.0-1-UF was 2.06 × 106 (±2.02%), 6.68 × 106 (±3.17%), and 1.14 × 106 (±3.44%) (g mol-1 ), respectively. After in vitro digestion, the Mw of PHP, PHP0.5-1-UF, and PHP1.0-1-UF decreased. Their antioxidant capacities were markedly higher than before digestion, especially PHP0.5-1-UF and its digestion products, which might be related to the reductions in Mw. CONCLUSION These findings provide a greater understanding of the separation and purification of sulfated polysaccharides and the influence of digestion on biological activity. They also contribute to the practical application of sulfated polysaccharides in functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhong Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Chang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Structural characterization of a novel galactoglucan from Fortunella margarita and its molecular structural change following simulated digestion in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
9
|
Cespedes-Acuña CL, Wei ZJ. X th International Symposium on Natural Products Chemistry and Applications (2019 X ISNPCA Chillan Chile). Food Chem Toxicol 2020; 140:111316. [PMID: 32246955 DOI: 10.1016/j.fct.2020.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello, Avenue, Chillan, Chile.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
10
|
Liu Y, Duan X, Duan S, Li C, Hu B, Liu A, Wu Y, Wu H, Chen H, Wu W. Effects of in vitro digestion and fecal fermentation on the stability and metabolic behavior of polysaccharides from Craterellus cornucopioides. Food Funct 2020; 11:6899-6910. [DOI: 10.1039/d0fo01430c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this paper is to better clarify the stability and metabolic behavior of CCPs from the perspective of digestion and metabolism, and provide research guidance for other polysaccharides with a similar structure.
Collapse
Affiliation(s)
- Yuntao Liu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
- Institute of Food Processing and Safety
| | - Xiaoyu Duan
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Songqi Duan
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Cheng Li
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Bin Hu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Aiping Liu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Yinglong Wu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Hejun Wu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Hong Chen
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Wenjuan Wu
- College of Science
- Sichuan Agricultural University
- Yaan 625014
- China
| |
Collapse
|