1
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
2
|
Devlin P, Ishrat T, Stanfill AG. A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl Stroke Res 2022; 13:881-897. [PMID: 35260989 DOI: 10.1007/s12975-022-01001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases ("cytokines and subarachnoid hemorrhage," "cytokine levels and subarachnoid hemorrhage," and "cytokine measurement and subarachnoid hemorrhage") were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.
Collapse
Affiliation(s)
- Patrick Devlin
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Ansley Grimes Stanfill
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA.
- Department of Acute and Tertiary Care, College of Nursing, University of Tennessee Health Science Center, 874 Union Ave, Memphis, TN, 38163, USA.
| |
Collapse
|
3
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Wang J, Feng Q, Zhang Y, Qiu W, Gao H. Elevated Glucose-Potassium Ratio Predicts Preoperative Rebleeding in Patients With Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2022; 12:795376. [PMID: 35095738 PMCID: PMC8793357 DOI: 10.3389/fneur.2021.795376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Recent reports revealed that higher serum glucose-potassium ratio (GPR) levels at admission were significantly associated with poor outcomes at 3 months following aneurysmal subarachnoid hemorrhage (aSAH). This study aimed to investigate the association between GPR and the risk of rebleeding following aSAH. Methods: This single-center retrospective study of patients with aSAH was conducted in our hospital between January 2008 and December 2020. Patients meeting the inclusion criteria were divided into the rebleed group and the non-rebleed group. Univariate and multivariate analyses were implemented to assess the association between risk factors of rebleeding and outcomes. Results: A total of 1,367 patients experiencing aSAH, 744 patients who met the entry criteria in the study [mean age (54.89 ± 11.30) years; 60.50% female patients], of whom 45 (6.05%) developed rebleeding. The patients in the rebleed group had significantly higher GPR levels than those of patients without rebleeding [2.13 (1.56-3.20) vs. 1.49 (1.23-1.87); p < 0.001]. Multivariable analysis revealed that higher mFisher grade and GPR were associated with rebleeding [mFisher grade, odds ratios (OR) 0.361, 95% CI 0.166-0.783, p = 0.01; GPR, OR 0.254, 95% CI 0.13-0.495, p < 0.001]. The receiver operating characteristics (ROCs) analysis described that the suitable cut-off value for GPR as a predictor for rebleeding in patients with aSAH was determined as 2.09 (the area under the curve [AUC] was 0.729, 95% CI 0.696-0.761, p < 0.0001; the sensitivity was 53.33%, and the specificity was 83.98%). Pearson correlation analysis showed a significant positive correlation between GPR and mFisher grade, between GPR and Hunt-Hess grade (mFisher grade r = 0.4271, OR 0.1824, 95% CI 0.3665-0.4842, p < 0.001; Hunt-Hess grade r = 0.4248, OR 0.1836, 95% CI 0.3697-0.4854, p < 0.001). The patients in the poor outcome had significantly higher GPR levels than those of patients in the good outcome [1.87 (1.53-2.42) vs. 1.45 (1.20-1.80); p < 0.001]. Multivariable analysis demonstrated that GPR was an independent predictor for poor prognosis. The AUC of GPR was 0.709 (95% CI 0.675-0.741; p < 0.0001) (sensitivity = 77.70%; specificity = 55.54%) for poor prognosis. Conclusion: Higher preoperative serum GPR level was associated with Hunt-Hess grade, mFisher grade, rebleeding, and unfunctional outcome, and that they predicted preoperative rebleeding and the 90-days outcome of non-diabetic patients with aSAH, who had potentially relevant clinical implications in patients with aSAH.
Collapse
Affiliation(s)
- Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Qiangqiang Feng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Yinbin Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weizhi Qiu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| |
Collapse
|
5
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|