1
|
Arrigoni R, Jirillo E, Caiati C. Pathophysiology of Doxorubicin-Mediated Cardiotoxicity. TOXICS 2025; 13:277. [PMID: 40278593 PMCID: PMC12031459 DOI: 10.3390/toxics13040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Doxorubicin (DOX) is used for the treatment of various malignancies, including leukemias, lymphomas, sarcomas, and bladder, breast, and gynecological cancers in adults, adolescents, and children. However, DOX causes severe side effects in patients, such as cardiotoxicity, which encompasses heart failure, arrhythmia, and myocardial infarction. DOX-induced cardiotoxicity (DIC) is based on the combination of nuclear-mediated cardiomyocyte death and mitochondrial-mediated death. Oxidative stress, altered autophagy, inflammation, and apoptosis/ferroptosis represent the main pathogenetic mechanisms responsible for DIC. In addition, in vitro and in vivo models of DIC sirtuins (SIRT), and especially, SIRT 1 are reduced, and this event contributes to cardiac damage. In fact, SIRT 1 inhibits reactive oxygen species and NF-kB activation, thus improving myocardial oxidative stress and cardiac remodeling. Therefore, the recovery of SIRT 1 during DIC may represent a therapeutic strategy to limit DIC progression. Natural products, i.e., polyphenols, as well as nano formulations of DOX and iron chelators, are other potential compounds experimented with in models of DIC. At present, few clinical trials are available to confirm the efficacy of these products in DIC. The aim of this review is the description of the pathophysiology of DIC as well as potential drug targets to alleviate DIC.
Collapse
Affiliation(s)
- Roberto Arrigoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, 70124 Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
2
|
Elkotamy MS, Elgohary MK, Alkabbani MA, Binjubair FA, Alanazi MM, Alsulaimany M, Al-Rashood ST, Ghabbour HA, Abdel-Aziz HA. Design, synthesis and biological evaluation of pyrazolo[3,4- b]pyridine derivatives as dual CDK2/PIM1 inhibitors with potent anti-cancer activity and selectivity. J Biomol Struct Dyn 2025:1-25. [PMID: 40079180 DOI: 10.1080/07391102.2025.2475233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
The discovery of novel, selective inhibitors targeting CDK2 and PIM1 kinases, which regulate cell survival, proliferation, and treatment resistance, is crucial for advancing cancer therapy. This study reports the design, synthesis, and biological evaluation of three novel pyrazolo[3,4-b]pyridine derivatives (6a-c), confirmed via spectral analyses. These compounds were assessed for anti-cancer activity against breast, colon, liver, and cervical cancers using the MTT assay. Among the tested compounds, 6b exhibited superior efficacy, with higher selectivity indices for HCT-116 (15.05) and HepG2 (9.88) compared to the reference drug staurosporine. Mechanistic studies revealed that 6b induced apoptosis (63.04-fold increase) and arrested the cell cycle at the G0-G1 phase, highlighting its anti-proliferative effects. In an in-vivo solid Ehrlich carcinoma (SEC) mouse model, compound 6b significantly reduced tumor weight and volume, exceeding the efficacy of doxorubicin. Additionally, 6b potently inhibited CDK2 and PIM1 kinases (IC50: 0.27 and 0.67 µM, respectively) and reduced tumor-promoting TNF-alpha expression, as confirmed by histopathological and immunohistochemical studies. Computational analyses, including molecular docking, molecular dynamics simulations, and DFT calculations, provided insights into the binding stability and interaction mechanisms of 6b with CDK2 and PIM1, while in-silico pharmacokinetic and toxicity evaluations confirmed its favorable drug-like profile and safety. This study highlights compound 6b as a promising dual CDK2/PIM1 inhibitor with potent anti-cancer activity and selectivity, paving the way for its further optimization and development as a lead molecule in cancer therapy.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Egypt
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Egypt
| | | | - Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Marwa Alsulaimany
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazem A Ghabbour
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
3
|
de Freitas KS, Squarisi IS, de Souza LTM, Ozelin SD, de Souza Oliveira LT, Ribeiro VP, Bastos JK, Tavares DC. Evaluation of safety and efficacy of Brazilian brown propolis from Araucaria sp. in preventing colon cancer. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:196-208. [PMID: 39609034 DOI: 10.1080/15287394.2024.2431921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Brazilian propolis produced by honeybees have been widely studied, but few data exist regarding the safety and pharmacological potential of this natural product. The aim of the present study was to examine the toxicity, genotoxicity, and chemoprevention effects attributed to exposure to the brown propolis hydroalcoholic extract (BPHE) of Araucaria sp. Acute oral toxicity test was conducted using Wistar Hannover rats, demonstrating that the highest dose tested (2,000 mg/kg b.w.) produced no apparent adverse effects or lethality. The micronucleus (MN) genotoxicity test was conducted using peripheral blood from Swiss mice, which also noted that BPHE did not induce significant chromosomal damage. It is of interest that BPHE at a dose of 12 mg/kg b.w. exhibited antigenotoxic effects against the doxorubicin (DXR)-induced damage. However, BPHE did not influence the depletion of reduced glutathione induced by DXR in mice. It is noteworthy that BPHE exerted chemopreventive effects at doses 6, 12, and 24 mg/kg b.w. The determination of this effect of BPHE on colon carcinogenesis was examined using aberrant crypt foci (ACF) as evidenced by histological analysis. The colons of animals treated with BPHE (12 mg/kg b.w.) exhibited a significant reduction in staining for proliferating cell nuclear antigen (PCNA) and cyclooxygenase-2 (COX-2) protein following 1,2-dimethylhydrazine (DMH)-and BPHE combined treatments. Hence, it is conceivable that the anti-inflammatory activity of the chemical constituents of BPHE are involved in its chemopreventive action against colon carcinogenesis as evidenced from ACF assay. Therefore, BHPE was found to be a safe product, without any apparent significant acute adverse risk. Further, the extract exhibited antigenotoxic and anticarcinogenic activities which may be considered for beneficial uses in colon carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
4
|
Rodrigues-Santos P, Almeida JS, Sousa LM, Couceiro P, Martinho A, Rodrigues J, Fonseca R, Santos-Rosa M, Freitas-Tavares P, Casanova JM. Immune monitoring of trabectedin therapy in refractory soft tissue sarcoma patients - the IMMUNYON study. Front Immunol 2025; 16:1516793. [PMID: 40007535 PMCID: PMC11850243 DOI: 10.3389/fimmu.2025.1516793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025] Open
Abstract
Soft tissue sarcomas (STS) encompass over 50 histologic subtypes, representing more than 1% of solid tumors. Standard treatments include surgical resection and therapies such as anthracyclines or trabectedin for advanced cases, though challenges persist due to the tumor microenvironment's complexity and limited immune profiling data. This study evaluates Trabectedin therapy in 22 refractory STS patients, analyzing progression-free survival (PFS) and immune responses. Immune monitoring included deep immunophenotyping (200+ parameters), gene expression profiling (103 genes), and soluble proteome analysis (99 analytes). Using RECIST1.1 criteria, 68.2% of patients achieved stable disease (SD), while 31.8% exhibited progression disease (PD). Therapy duration revealed 59.1% treated for less than 12 months (<12M) and 40.9% for 12 or more months (≥12M). A significant PFS improvement was observed in SD versus PD patients (p=0.0154), while therapy duration showed no effect (p=0.5433). PD patients showed reduced eosinophils (p<0.05) and Th2 cells (p<0.05). Gene expression analysis identified changes in BTRC (decreased), IFNA1 (increased), and IL9 (increased) in PD versus SD patients (p<0.05). Patients treated ≥12M exhibited increased activated HLA-DR Th2 cells (p<0.05) and decreased exhausted B cells and NK cell subsets (p<0.05). Principal component and hierarchical clustering analyses identified distinct immune profiles associated with RECIST1.1 and therapy duration, underscoring immune profiling's role in understanding treatment responses. These findings support further research into immune monitoring for future clinical trials.
Collapse
Affiliation(s)
- Paulo Rodrigues-Santos
- Laboratory of Immunology and Oncology, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Jani Sofia Almeida
- Laboratory of Immunology and Oncology, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Luana Madalena Sousa
- Laboratory of Immunology and Oncology, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Patrícia Couceiro
- Laboratory of Immunology and Oncology, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - António Martinho
- Blood and Transplantation Center of Coimbra, Portuguese Institute for Blood and Transplantation (IPST), Coimbra, Portugal
| | - Joana Rodrigues
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Local Health Unit (ULSC), Coimbra, Portugal
| | - Ruben Fonseca
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Local Health Unit (ULSC), Coimbra, Portugal
| | - Manuel Santos-Rosa
- Institute of Immunology, University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Local Health Unit (ULSC), Coimbra, Portugal
| | - José Manuel Casanova
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Local Health Unit (ULSC), Coimbra, Portugal
| |
Collapse
|
5
|
Tan N, Luo H, Li W, Ling G, Wei Y, Wang W, Wang Y. The dual function of autophagy in doxorubicin-induced cardiotoxicity: Mechanism and natural products. Semin Cancer Biol 2025; 109:83-90. [PMID: 39827930 DOI: 10.1016/j.semcancer.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Doxorubicin (DOX) is an anthracycline antitumor drug discovered in 1969, which can care for leukemia, breast cancer, lymphoma, and sarcoma. However, cardiotoxicity induced by DOX seriously limits its clinical value. The etiopathogenesis and therapeutic strategies are not unified. Autophagy is a critical mechanism in the progression of DOX-induced cardiotoxicity (DIC), autophagy intervention is a potential therapeutic strategy for DIC. Natural product has been considered as a complementary and alternative approach to treat cardiovascular disease. In this review, we summarize the pathology of autophagy in DIC and the natural products for DIC therapy.
Collapse
Affiliation(s)
- Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Anhui university of Chinese medicine, Hefei 230012, China
| | - Hanwen Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China.
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
6
|
Yin B, Ren J, Liu X, Zhang Y, Zuo J, Wen R, Pei H, Lu M, Zhu S, Zhang Z, Wang Z, Zhai Y, Ma Y. Astaxanthin mitigates doxorubicin-induced cardiotoxicity via inhibiting ferroptosis and autophagy: a study based on bioinformatic analysis and in vivo/ vitro experiments. Front Pharmacol 2025; 16:1524448. [PMID: 39906141 PMCID: PMC11790656 DOI: 10.3389/fphar.2025.1524448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Background Doxorubicin (DOX), a widely employed chemotherapeutic agent in cancer treatment, has seen restricted use in recent years owing to its associated cardiotoxicity. Current reports indicate that doxorubicin-induced cardiotoxicity (DIC) is a complex phenomenon involving various modes of cell death. Astaxanthin (ASX), a natural carotenoid pigment, has garnered significant attention for its numerous health benefits. Recent studies have shown that ASX has a broad and effective cardiovascular protective effect. Our study aims to investigate the protective effects of ASX against DIC and elucidate its underlying mechanisms. This has substantial practical significance for the clinical application of DOX. Methods Bioinformatic analyses were conducted using transcriptomic data from the gene expression omnibus (GEO) database to identify key mechanisms underlying DIC. Network pharmacology was employed to predict the potential pathways and targets through which ASX exerts its effects on DIC. In vitro experiments, following pretreatment with ASX, H9C2 cells were exposed to DOX. Cell viability, injury and the protein expression levels associated with ferroptosis and autophagy were assessed. In the animal experiments, rats underwent 4 weeks of gavage treatment with various doses of ASX, followed by intraperitoneal injections of DOX every 2 days during the final week. Histological, serum, and protein analyses were conducted to evaluate the effects of ASX on DIC. Results The bioinformatics analysis revealed that ferroptosis and autophagy are closely associated with the development of DIC. ASX may exert an anti-DIC effect by modulating ferroptosis and autophagy. The experimental results show that ASX significantly mitigates DOX-induced myocardial tissue damage, inflammatory response, oxidative stress, and damage to H9C2 cells. Mechanistically, ASX markedly ameliorates levels of ferroptosis and autophagy both in vitro and in vivo. Specifically, ASX upregulates solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), while downregulating the expression of transferrin receptor 1 (TFRC), ferritin heavy chain (FTH1) and ferritin light chain (FTL). Additionally, ASX enhances the expression of P62 and decreases levels of Beclin1 and microtubule-associated proteins light chain 3 (LC3). Conclusion Our results indicate that ferroptosis and autophagy are critical factors influencing the occurrence and progression of DOX-induced cardiotoxicity. ASX can alleviate DIC by inhibiting ferroptosis and autophagy.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Miaomiao Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Siqi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yanyi Zhai
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
7
|
Miatmoko A, Christy PK, Isnaini A, Hariawan BS, Cahyani DM, Ahmad M, Diyah NW, Adrianto MF, Deevi RK, Hamid IS, Ekowati J. Characterization and in vitro anticancer study of PEGylated liposome dually loaded with ferulic acid and doxorubicin. Sci Rep 2025; 15:1236. [PMID: 39775017 PMCID: PMC11707226 DOI: 10.1038/s41598-024-82228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Doxorubicin is an anthracycline antibiotic widely used in cancer therapy. However, its cytotoxic properties affect both cancerous and healthy cells. Combining doxorubicin with antioxidants such as ferulic acid reduces its side effects, while simultaneously enhancing therapeutic effectiveness. The low bioavailability of these drugs demonstrate that drug delivery carriers are required to enable the target site to be accessed. The doxorubicin and ferulic acid-loaded liposome composed of HSPC, Cholesterol, and DSPE-mPEG2000 (55:40:5 molar ratio) was prepared by thin film hydration method. The findings indicate that the encapsulation of ferulic acid had an impact on liposome characteristics, i.e., increasing the particle size of Lipo-DOX from 134.5 ± 4.8 nm to 154.1 ± 5.2 nm for Lipo DOX-FA, increasing the zeta potential of Lipo-DOX from - 16.04 ± 2.59 to 0.2 ± 0.0 mV for Lipo DOX-FA, and reducing the entrapment efficiency percentage of Lipo-DOX from 88.30 ± 1.89% to 85.99 ± 3.02% for Lipo DOX-FA. The infrared spectra of Lipo DOX-FA exhibited shifted absorption bands, indicating the interaction between the carboxyl group of ferulic acid and the choline polar head of phospholipid. Moreover, changes to the DSC thermogram were observed following the incorporation of ferulic acid into the liposome, while the Lipo DOX-FA exhibited a relatively rapid drug release compared to Lipo DOX suggesting a slightly shorter period necessary to attain both therapeutic efficacy and the maintenance of a stable drug encapsulation in the systemic circulation. An in vitro study of LLC and HeLa cells showed that the IC50 values of Lipo DOX-FA were 0.70 µg/mL and 1.56 µg/mL, while the CC50 value in normal HEK cells was 6.50 µg/mL. This study suggested that while co-loading FA into Lipo DOX reduced the IC50 value, indicating enhanced cytotoxicity in cancer cells, it had no effect on DOX liposome cytotoxicity in normal HEK cells.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, Campus C UNAIR, Surabaya, 60115, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics, and Nanomedicine Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Patricia Kinanti Christy
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Alfionita Isnaini
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Berlian Sarasitha Hariawan
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Devy Maulidya Cahyani
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Margaret Ahmad
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, Paris, 75005, France
| | - Nuzul Wahyuning Diyah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- Drug Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mohamad Faris Adrianto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Pharmacy, Queen's University Belfast, , Belfast, Northern Ireland, UK
| | - Ravi Kiran Deevi
- School of Pharmacy, Queen's University Belfast, , Belfast, Northern Ireland, UK
| | - Iwan Sahrial Hamid
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Juni Ekowati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia.
- Drug Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia.
| |
Collapse
|
8
|
Zhang Y, Hao F, Liu Y, Yang M, Zhang B, Bai Z, Zhao B, Li X. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf B Biointerfaces 2024; 244:114163. [PMID: 39154599 DOI: 10.1016/j.colsurfb.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Metal-phenolic Networks (MPNs) are a novel class of nanomaterial developed gradually in recent years which are self-assembled by metal ions and polyphenolic ligands. Due to their environmental protection, good adhesion, and biocompatibility with green phenolic ligands, MPNs can be used as a new type of nanomaterial. They show excellent properties such as anti-inflammatory, antioxidant, antibacterial, and anticancer, and have been widely studied in the biomedical field. As one of the most common subclasses of the MPNs family, copper-based MPNs have been widely studied for drug delivery, Photodynamic Therapy (PDT), Chemo dynamic Therapy (CDT), antibacterial and anti-inflammatory, bone tissue regeneration, skin regeneration wound repair, and metal ion imaging. In this paper, the preparation strategies of different types of copper-based MPNs are reviewed. Then, the application status of copper-based MPNs in the biomedical field under different polyphenol ligands is introduced in detail. Finally, the existing problems and challenges of copper-based MPNs are discussed, as well as their future application prospects in the biomedical field.
Collapse
Affiliation(s)
- Ying Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengxiang Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Mengqi Yang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bo Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| | - Xia Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
9
|
Cabral RP, Ribeiro APD, Monte MG, Fujimori ASS, Tonon CR, Ferreira NF, Zanatti SG, Minicucci MF, Zornoff LAM, Paiva SARD, Polegato BF. Pera orange juice ( Citrus sinensis L. Osbeck) alters lipid metabolism and attenuates oxidative stress in the heart and liver of rats treated with doxorubicin. Heliyon 2024; 10:e36834. [PMID: 39263053 PMCID: PMC11388782 DOI: 10.1016/j.heliyon.2024.e36834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Background Doxorubicin (DOX) is a highly effective chemotherapy drug widely used to treat cancer, but its use is limited due to multisystemic toxicity. Lipid metabolism is also affected by doxorubicin. Orange juice can reduce dyslipidemia in other clinical situations and has already been shown to attenuate cardiotoxicity. Our aim is to evaluate the effects of Pera orange juice (Citrus sinensis L. Osbeck) on mitigating lipid metabolism imbalance, metabolic pathways, and DOX induced cytotoxic effects in the heart and liver. Methods Twenty-four male Wistar rats were allocated into 3 groups: Control (C); DOX (D); and DOX plus Pera orange juice (DOJ). DOJ received orange juice for 4 weeks, while C and D received water. At the end of each week, D and DOJ groups received 4 mg/kg/week DOX, intraperitoneal. At the end of 4 weeks animals were submitted to echocardiography and euthanasia. Results Animals treated with DOX decreased water intake and lost weight over time. At echocardiography, DOX treated rats presented morphologic alterations in the heart. DOX increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol, high density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides. It also reduced superoxide dismutase (SOD) activity, increased protein carbonylation in the heart and dihydroethidium (DHE) expression in the liver, decreased glucose transporter type 4 (GLUT4) and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ1) in the heart, and reduced carnitine palmitoyltransferase I (CPT1) in the liver. Conclusion DOX caused dyslipidemia, liver and cardiac toxicity by increasing oxidative stress, and altered energy metabolic parameters in both organs. Despite not improving changes in left ventricular morphology, orange juice did attenuate oxidative stress and mitigate the metabolic effects of DOX.
Collapse
|
10
|
Matsuta K, Kamiyama K, Imamoto T, Takeda I, Masunaga S, Kobayashi M, Takahashi N, Kasuno K, Hara M, Iwano M, Toyama T, Kimura H. PPAR-α Insufficiency Enhances Doxorubicin-Induced Nephropathy in PPAR-α Knockout Mice and a Murine Podocyte Cell Line. Cells 2024; 13:1446. [PMID: 39273018 PMCID: PMC11394432 DOI: 10.3390/cells13171446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Peroxisome proliferator-activated receptor-alpha (PPAR-α) and its exogenous activators (fibrates) promote autophagy. However, whether the deleterious effects of PPAR-α deficiency on doxorubicin (DOX)-induced podocytopathy are associated with reduced autophagy remains to be clarified. We investigated the mechanisms of PPAR-α in DOX-induced podocytopathy and tubular injury in PPAR-α knockout (PAKO) mice and in a murine podocyte cell line. DOX-treated PAKO mice showed higher serum levels of triglycerides and non-esterified fatty acids and more severe podocytopathy than DOX-treated wild-type mice, as evidenced by higher urinary levels of proteins and podocalyxin at 3 days to 2 weeks and higher blood urea nitrogen and serum creatinine levels at 4 weeks. Additionally, there was an increased accumulation of p62, a negative autophagy marker, in the glomerular and tubular regions in DOX-treated PAKO mice at Day 9. Moreover, DOX-treated PAKO mice showed more severe glomerulosclerosis and tubular damage and lower podocalyxin expression in the kidneys than DOX-treated control mice at 4 weeks. Furthermore, DOX treatment increased p-p53, an apoptosis marker, and cleaved the caspase-3 levels and induced apoptosis, which was ameliorated by fenofibrate, a PPAR-α activator. Fenofibrate further enhanced AMPK activation and autophagy under fed and fasting conditions. Conclusively, PPAR-α deficiency enhances DOX-induced podocytopathy, glomerulosclerosis, and tubular injury, possibly by reducing autophagic activity in mouse kidneys.
Collapse
Affiliation(s)
- Kohei Matsuta
- Department of Clinical Laboratory, University of Fukui Hospital, Fukui 910-1193, Japan; (K.M.); (K.K.); (T.I.); (I.T.); (S.M.); (T.T.)
| | - Kazuko Kamiyama
- Department of Clinical Laboratory, University of Fukui Hospital, Fukui 910-1193, Japan; (K.M.); (K.K.); (T.I.); (I.T.); (S.M.); (T.T.)
| | - Toru Imamoto
- Department of Clinical Laboratory, University of Fukui Hospital, Fukui 910-1193, Japan; (K.M.); (K.K.); (T.I.); (I.T.); (S.M.); (T.T.)
| | - Izumi Takeda
- Department of Clinical Laboratory, University of Fukui Hospital, Fukui 910-1193, Japan; (K.M.); (K.K.); (T.I.); (I.T.); (S.M.); (T.T.)
| | - Shinya Masunaga
- Department of Clinical Laboratory, University of Fukui Hospital, Fukui 910-1193, Japan; (K.M.); (K.K.); (T.I.); (I.T.); (S.M.); (T.T.)
| | - Mamiko Kobayashi
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (M.K.); (N.T.); (K.K.); (M.I.)
| | - Naoki Takahashi
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (M.K.); (N.T.); (K.K.); (M.I.)
| | - Kenji Kasuno
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (M.K.); (N.T.); (K.K.); (M.I.)
| | - Masanori Hara
- Iwamuro Health Promotion Center, Niigata 953-0104, Japan;
| | - Masayuki Iwano
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (M.K.); (N.T.); (K.K.); (M.I.)
| | - Tadashi Toyama
- Department of Clinical Laboratory, University of Fukui Hospital, Fukui 910-1193, Japan; (K.M.); (K.K.); (T.I.); (I.T.); (S.M.); (T.T.)
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (M.K.); (N.T.); (K.K.); (M.I.)
| | - Hideki Kimura
- Department of Clinical Laboratory, University of Fukui Hospital, Fukui 910-1193, Japan; (K.M.); (K.K.); (T.I.); (I.T.); (S.M.); (T.T.)
- Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (M.K.); (N.T.); (K.K.); (M.I.)
| |
Collapse
|
11
|
Radicchi MA, Farias GR, Mello da Silva VC, Machado VP, de Souza DG, Figueiró Longo JP, Báo SN. Prevention of chemotherapy-related bone loss with doxorubicin-loaded solid lipid nanoparticles. Nanomedicine (Lond) 2024; 19:1895-1911. [PMID: 39109488 PMCID: PMC11457634 DOI: 10.1080/17435889.2024.2382083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 10/05/2024] Open
Abstract
Aim: Breast cancer and its metastases involve high mortality even with advances in chemotherapy. Solid lipid nanoparticles provide a platform for drug delivery, reducing side effects and treatment-induced bone loss. A solid nanoparticle containing doxorubicin was evaluated for its ability to prevent bone loss in a pre-clinical breast cancer model.Methods: We investigated the effects of SLNDox in an aggressive metastatic stage IV breast cancer model, which has some important features that are interesting for bone loss investigation. This study evaluates bone loss prevention potential from solid lipid nanoparticles containing doxorubicin breast cancer treatment, an evaluation of the attenuation of morphological changes in bone tissue caused by the treatment and the disease and an assessment of bone loss imaging using computed tomography and electron microscopy.Results: Chemotherapy-induced bone loss was also observed in tumor-free animals; a solid lipid nanoparticle containing doxorubicin prevented damage to the growth plate and to compact and cancellous bones in the femur of tumor-bearing and healthy animals.Conclusion: The association of solid lipid nanoparticles with chemotherapeutic drugs with proven efficacy promotes the prevention of serious consequences of chemotherapy, reducing tumor progression, increasing quality of life and improving prognosis and survival.
Collapse
Affiliation(s)
- Marina Arantes Radicchi
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Victor Carlos Mello da Silva
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Victória Paz Machado
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Danielle Galdino de Souza
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - João Paulo Figueiró Longo
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Sônia Nair Báo
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
12
|
Xu X, Liu Y, Liu Y, Yu Y, Yang M, Lu L, Chan L, Liu B. Functional hydrogels for hepatocellular carcinoma: therapy, imaging, and in vitro model. J Nanobiotechnology 2024; 22:381. [PMID: 38951911 PMCID: PMC11218144 DOI: 10.1186/s12951-024-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies worldwide and is characterized by high rates of morbidity and mortality, posing a serious threat to human health. Interventional embolization therapy is the main treatment against middle- and late-stage liver cancer, but its efficacy is limited by the performance of embolism, hence the new embolic materials have provided hope to the inoperable patients. Especially, hydrogel materials with high embolization strength, appropriate viscosity, reliable security and multifunctionality are widely used as embolic materials, and can improve the efficacy of interventional therapy. In this review, we have described the status of research on hydrogels and challenges in the field of HCC therapy. First, various preparation methods of hydrogels through different cross-linking methods are introduced, then the functions of hydrogels related to HCC are summarized, including different HCC therapies, various imaging techniques, in vitro 3D models, and the shortcomings and prospects of the proposed applications are discussed in relation to HCC. We hope that this review is informative for readers interested in multifunctional hydrogels and will help researchers develop more novel embolic materials for interventional therapy of HCC.
Collapse
Affiliation(s)
- Xiaoying Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006, Guangzhou, China.
| |
Collapse
|
13
|
Arab HH, Eid AH, Alsufyani SE, Ashour AM, Alnefaie AM, Alsharif NM, Alshehri AM, Almalawi AA, Alsowat AA, Abd El Aal HA, Hassan ESG, Elesawy WH, Elhemiely AA. Activation of AMPK/mTOR-Driven Autophagy and Suppression of the HMGB1/TLR4 Pathway with Pentoxifylline Attenuates Doxorubicin-Induced Hepatic Injury in Rats. Pharmaceuticals (Basel) 2024; 17:681. [PMID: 38931349 PMCID: PMC11206793 DOI: 10.3390/ph17060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Despite being an effective chemotherapeutic agent, the clinical use of doxorubicin (DOX) is limited by several organ toxicities including hepatic injury. Pentoxifylline (PTX) is a methylxanthine derivative with marked anti-inflammatory and anti-apoptotic features. It is unknown, however, whether PTX can mitigate DOX-evoked hepatotoxicity. This study aims to explore the potential hepatoprotective impact of PTX in DOX-induced hepatic injury and the underlying molecular mechanisms. Histopathology, immunohistochemistry, and ELISA were used to examine liver tissues. The current findings revealed that PTX administration to DOX-intoxicated rats mitigated the pathological manifestations of hepatic injury, reduced microscopical damage scores, and improved serum ALT and AST markers, revealing restored hepatic cellular integrity. These favorable effects were attributed to PTX's ability to mitigate inflammation by reducing hepatic IL-1β and TNF-α levels and suppressing the pro-inflammatory HMGB1/TLR4/NF-κB axis. Moreover, PTX curtailed the hepatic apoptotic abnormalities by suppressing caspase 3 activity and lowering the Bax/Bcl-2 ratio. In tandem, PTX improved the defective autophagy events by lowering hepatic SQSTM-1/p62 accumulation and enhancing the AMPK/mTOR pathway, favoring autophagy and hepatic cell preservation. Together, for the first time, our findings demonstrate the ameliorative effect of PTX against DOX-evoked hepatotoxicity by dampening the hepatic HMGB1/TLR4/NF-κB pro-inflammatory axis and augmenting hepatic AMPK/mTOR-driven autophagy. Thus, PTX could be utilized as an adjunct agent with DOX regimens to mitigate DOX-induced hepatic injury.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | | | - Nasser M. Alsharif
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | | | | | - Hayat A. Abd El Aal
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| | - Eman S. G. Hassan
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| | - Wessam H. Elesawy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12568, Egypt
| | - Alzahraa A. Elhemiely
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
14
|
Shen M, Cao S, Long X, Xiao L, Yang L, Zhang P, Li L, Chen F, Lei T, Gao H, Ye F, Bu H. DNAJC12 causes breast cancer chemotherapy resistance by repressing doxorubicin-induced ferroptosis and apoptosis via activation of AKT. Redox Biol 2024; 70:103035. [PMID: 38306757 PMCID: PMC10847378 DOI: 10.1016/j.redox.2024.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Chemotherapy is a primary treatment for breast cancer (BC), yet many patients develop resistance over time. This study aims to identify critical factors contributing to chemoresistance and their underlying molecular mechanisms, with a focus on reversing this resistance. METHODS We utilized samples from the Gene Expression Omnibus (GEO) and West China Hospital to identify and validate genes associated with chemoresistance. Functional studies were conducted using MDA-MB-231 and MCF-7 cell lines, involving gain-of-function and loss-of-function approaches. RNA sequencing (RNA-seq) identified potential mechanisms. We examined interactions between DNAJC12, HSP70, and AKT using co-immunoprecipitation (Co-IP) assays and established cell line-derived xenograft (CDX) models for in vivo validations. RESULTS Boruta analysis of four GEO datasets identified DNAJC12 as highly significant. Patients with high DNAJC12 expression showed an 8 % pathological complete response (pCR) rate, compared to 38 % in the low expression group. DNAJC12 inhibited doxorubicin (DOX)-induced cell death through both ferroptosis and apoptosis. Combining apoptosis and ferroptosis inhibitors completely reversed DOX resistance caused by DNAJC12 overexpression. RNA-seq suggested that DNAJC12 overexpression activated the PI3K-AKT pathway. Inhibition of AKT reversed the DOX resistance induced by DNAJC12, including reduced apoptosis and ferroptosis, restoration of cleaved caspase 3, and decreased GPX4 and SLC7A11 levels. Additionally, DNAJC12 was found to increase AKT phosphorylation in an HSP70-dependent manner, and inhibiting HSP70 also reversed the DOX resistance. In vivo studies confirmed that AKT inhibition reversed DNAJC12-induced DOX resistance in the CDX model. CONCLUSION DNAJC12 expression is closely linked to chemoresistance in BC. The DNAJC12-HSP70-AKT signaling axis is crucial in mediating resistance to chemotherapy by suppressing DOX-induced ferroptosis and apoptosis. Our findings suggest that targeting AKT and HSP70 activities may offer new therapeutic strategies to overcome chemoresistance in BC.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiyu Cao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyi Long
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Xiao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peichuan Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Lei
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongwei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Saber MM, Radi MH, El-Shiekh RA, Abdel-Sattar E, El-Halawany AM. Euphorbia grantii Oliv. standardized extract and its fraction ameliorate doxorubicin-induced cardiomyopathy in Ehrlich carcinoma bearing mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117566. [PMID: 38081395 DOI: 10.1016/j.jep.2023.117566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia plants have long been used as traditional medicine in China, Europe, America, Turkey, India, Africa, Iran, and Pakistan because of its high medicinal value and health advantages especially as a remedy for several types of cancer. AIM OF THE STUDY Doxorubicin (DOX) is one of the most frequently prescribed drugs in cancer chemotherapy, with dose-limiting cardiotoxicity. The development of medicinal approaches to attenuate drug's toxicity represents an area of great concern in cancer research. Because research on this topic is still disputed and limited, we aim to investigate the potential of supplementation with Euphorbia grantii Oliv. on DOX-induced cardiomyopathy in Ehrlich carcinoma bearing mice. MATERIALS AND METHODS The high-performance thin layer chromatography (HPTLC) analysis of total methanolic extract (TE), and its bioactive dichloromethane fraction (DCMF) was applied for the determination of friedelin. Male BALB/c mice were used to keep the Ehrlich ascites tumor cells. The experiment was performed for a 2-weeks period. RESULTS A good linearity relationship was found to be with correlation coefficient (r2) value of 0.9924 for the isolated friedelin. Limit of detection (LOD) and limit of quantitation (LOQ) was found to be 0.00179, and 0.000537 ng/band respectively for friedelin. The amount of friedelin in the TE and DCMF were determined by using calibration curve of standard as 106.32 ± 5.69 μg, and 159.2 ± 4.24 μg friedelin/mg extract, respectively. DOX-induced cardiomyopathy by decreasing the ejection fraction (EF) compared to the Ehrlich and negative control groups. It resulted in a decrease in the EF by 30 and 39% compared to the other groups. High and low doses of the TE and DCMF did not result in significantly different ejection fractions compared to the Ehrlich group. Co-administration of DCMF with DOX ameliorated the alteration in the serum CKMB and LDH levels. As revealed from histopathological study, DOX impairs viability of cardiac myocytes and DCMF could effectively and extensively counteract this action of DOX and potentially protect the heart from severe toxicity of DOX. CONCLUSIONS Finally, our results indicated that Euphorbia grantii Oliv. would be the best option to reduce DOX adverse effects.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | | | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
16
|
Wongsawatkul O, Buachan P, Jaisin Y, Busarakumtragul P, Chainakul S, Watanapokasin R, Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Effects of barakol from Cassia siamea on neuroblastoma SH-SY5Y cell line: A potential combined therapy with doxorubicin. Heliyon 2024; 10:e24694. [PMID: 38318050 PMCID: PMC10839565 DOI: 10.1016/j.heliyon.2024.e24694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Management of neuroblastoma is challenging because of poor response to drugs, chemotherapy resistance, high relapse, and treatment failures. Doxorubicin is a potent anticancer drug commonly used for neuroblastoma treatment. However, doxorubicin induces considerable toxicities, particularly those caused by oxidative-related damage. To minimize drug-induced adverse effects, the combined use of anticancer drugs with natural-derived compounds possessing antioxidant properties has become an interesting treatment strategy. Barakol is a major compound found in Cassia siamea, an edible plant with antioxidant and anticancer properties. Therefore, barakol could potentially be used in combination with doxorubicin to synergize the anticancer effect, while minimizing the oxidative-related toxicities. Herein, the potential of barakol (0.0043-43.0 μM) to synergize the anticancer effect of low-dose doxorubicin (0.5 and 1.0 μM) was investigated. Results indicated that barakol could enhance the cytotoxic effect of low-dose doxorubicin by affecting the cell viability of the treated cells. Furthermore, the co-treatment with barakol and low-dose doxorubicin decreased the levels of intracellular ROS when compared with the control. Moreover, the antimetastatic effect of the barakol itself was studied through its ability to inhibit metalloproteinase-3 (MMP-3) activity and prevent cell migration. Results revealed that the barakol inhibited MMP-3 activity and prevented cell migration in time- and dose-dependent manners. Additionally, barakol was a non-cytotoxic agent against the normal tested cell line (MRC-5), which suggested its selectivity and safety. Taken together, barakol could be a promising compound to be further developed for combination treatment with low-dose doxorubicin to improve therapeutic effectiveness but decrease drug-induced toxicities. The inhibitory effects of barakol on MMP-3 activity and cancer cell migration also supported its potential to be developed as an antimetastatic agent.
Collapse
Affiliation(s)
- Orapin Wongsawatkul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Paiwan Buachan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Yamaratee Jaisin
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Panaree Busarakumtragul
- Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sunan Chainakul
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education, Ministry of Education, Bangkok, 10400, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
17
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
18
|
Kalampounias G, Gardeli C, Alexis S, Anagnostopoulou E, Androutsopoulou T, Dritsas P, Aggelis G, Papanikolaou S, Katsoris P. Poly-Unsaturated Fatty Acids (PUFAs) from Cunninghamella elegans Grown on Glycerol Induce Cell Death and Increase Intracellular Reactive Oxygen Species. J Fungi (Basel) 2024; 10:130. [PMID: 38392802 PMCID: PMC10890652 DOI: 10.3390/jof10020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Cunninghamella elegans NRRL-1393 is an oleaginous fungus able to synthesize and accumulate unsaturated fatty acids, amongst which the bioactive gamma-linolenic acid (GLA) has potential anti-cancer activities. C. elegans was cultured in shake-flask nitrogen-limited media with either glycerol or glucose (both at ≈60 g/L) employed as the sole substrate. The assimilation rate of both substrates was similar, as the total biomass production reached 13.0-13.5 g/L, c. 350 h after inoculation (for both instances, c. 27-29 g/L of substrate were consumed). Lipid production was slightly higher on glycerol-based media, compared to the growth on glucose (≈8.4 g/L vs. ≈7.0 g/L). Lipids from C. elegans grown on glycerol, containing c. 9.5% w/w of GLA, were transformed into fatty acid lithium salts (FALS), and their effects were assessed on both human normal and cancerous cell lines. The FALS exhibited cytotoxic effects within a 48 h interval with an IC50 of about 60 μg/mL. Additionally, a suppression of migration was shown, as a significant elevation of oxidative stress levels, and the induction of cell death. Elementary differences between normal and cancer cells were not shown, indicating a generic mode of action; however, oxidative stress level augmentation may increase susceptibility to anticancer drugs, improving chemotherapy effectiveness.
Collapse
Affiliation(s)
- Georgios Kalampounias
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Chrysavgi Gardeli
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Spyridon Alexis
- Hematology Division, Faculty of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Elena Anagnostopoulou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Theodosia Androutsopoulou
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Panagiotis Dritsas
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Panagiotis Katsoris
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
19
|
Ma B, Li Q, Mi Y, Zhang J, Tan W, Guo Z. pH-responsive nanogels with enhanced antioxidant and antitumor activities on drug delivery and smart drug release. Int J Biol Macromol 2024; 257:128590. [PMID: 38056756 DOI: 10.1016/j.ijbiomac.2023.128590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
pH-responsive nanogels have played an increasingly momentous role in tumor treatment. The focus of this study is to design and develop pH-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for the controlled release of doxorubicin hydrochloride (DOX) while enhancing its hydrophilicity. BIMIXHAC is crosslinked with carboxymethyl chitosan (CMC), hyaluronic acid sodium salt (HA), and sodium alginates (SA) using an ion crosslinking method. The chemical structure of chitosan derivatives was verified by 1H NMR and FT-IR techniques. Compared to hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-based nanogels, BIMIXHAC-based nanogels exhibit better drug encapsulation efficiency and loading capacity (BIMIXHAC-D-HA 91.76 %, and 32.23 %), with pH-responsive release profiles and accelerated release in vitro. The series of nanogels formed by crosslinking with three different polyanionic crosslinkers have different particle size potentials and antioxidant properties. BIMIXHAC-HA, BIMIXHAC-SA and BIMIXHAC-CMC demonstrate favorable antioxidant capability. In addition, cytotoxicity tests showed that BIMIXHAC-based nanogels have high biocompatibility. BIMIXHAC-based nanogels exhibit preferable anticancer effects on MCF-7 and A549 cells. Furthermore, the BIMIXHAC-D-HA nanogel was 2.62 times less toxic than DOX to L929 cells. These results suggest that BIMIXHAC-based nanogels can serve as pH-responsive nanoplatforms for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Bing Ma
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
20
|
Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular Mechanisms of Oxidative Stress in Acute Kidney Injury: Targeting the Loci by Resveratrol. Int J Mol Sci 2023; 25:3. [PMID: 38203174 PMCID: PMC10779152 DOI: 10.3390/ijms25010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Reactive oxygen species are a group of cellular molecules that stand as double-edged swords, their good and bad being discriminated by a precise balance. Several metabolic reactions in the biological system generate these molecules that interact with cellular atoms to regulate functions ranging from cell homeostasis to cell death. A prooxidative state of the cell concomitant with decreased clearance of such molecules leads to oxidative stress, which contributes as a prime pathophysiological mechanism in various diseases including renal disorders, such as acute kidney injury. However, targeting the generation of oxidative stress in renal disorders by an antioxidant, resveratrol, is gaining considerable therapeutic importance and is known to improve the condition in preclinical studies. This review aims to discuss molecular mechanisms of oxidative stress in acute kidney injury and its amelioration by resveratrol. The major sources of data were PubMed and Google Scholar, with studies from the last five years primarily included, with significant earlier data also considered. Mitochondrial dysfunction, various enzymatic reactions, and protein misfolding are the major sources of reactive oxygen species in acute kidney injury, and interrupting these loci of generation or intersection with other cellular components by resveratrol can mitigate the severity of the condition.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jizan 45142, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65711, Saudi Arabia
| |
Collapse
|
21
|
Zhang T, Li N, Wang R, Sun Y, He X, Lu X, Chu L, Sun K. Enhanced therapeutic efficacy of doxorubicin against multidrug-resistant breast cancer with reduced cardiotoxicity. Drug Deliv 2023; 30:2189118. [PMID: 36919676 PMCID: PMC10026743 DOI: 10.1080/10717544.2023.2189118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX), a commonly used anti-cancer drug, is limited by its cardiotoxicity and multidrug resistance (MDR) of tumor cells. Epigallocatechin gallate (EGCG), a natural antioxidant component, can effectively reduce the cardiotoxicity of DOX. Meanwhile, EGCG can inhibit the expression of P-glycoprotein (P-gp) and reverse the MDR of tumor cells. In this study, DOX is connected with low molecular weight polyethyleneimine (PEI) via hydrazone bond to get the pH-sensitive PEI-DOX, which is then combined with EGCG to prevent the cardiotoxicity of DOX and reverse the MDR of cancer cells. In addition, folic acid (FA) modified polyethylene glycol (PEG) (PEG-FA) is added to get the targeted system PEI-DOX/EGCG/FA. The MDR reversal and targeting ability of PEI-DOX/EGCG/FA is performed by cytotoxicity and in vivo anti-tumor activity on multidrug resistant MCF-7 cells (MCF-7/ADR). Additionally, we investigate the anti-drug resistant mechanism by Western Blot. The ability of EGCG to reduce DOX cardiotoxicity is confirmed by cardiotoxicity assay. In conclusion, PEI-DOX/EGCG/FA can inhibit the expression of P-gp and reverse the MDR in tumor cells. It also shows the ability of remove oxygen free radicals effectively to prevent the cardiotoxicity of DOX.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Ru Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, China
| | - Xiaoyan He
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Xiaoyan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Liuxiang Chu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
22
|
Ibrahim MA, Khalifa AM, Abd El-Fadeal NM, Abdel-Karim RI, Elsharawy AF, Ellawindy A, Galal HM, Nadwa EH, Abdel-Shafee MA, Galhom RA. Alleviation of doxorubicin-induced cardiotoxicity in rat by mesenchymal stem cells and olive leaf extract via MAPK/ TNF-α pathway: Preclinical, experimental and bioinformatics enrichment study. Tissue Cell 2023; 85:102239. [PMID: 37865037 DOI: 10.1016/j.tice.2023.102239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Toxic cardiomyopathies were a potentially fatal adverse effect of anthracycline therapy. AIM This study was conducted to demonstrate the pathogenetic, morphologic, and toxicologic effects of doxorubicin on the heart and to investigate how the MAPK /TNF-α pathway can be modulated to improve doxorubicin-Induced cardiac lesions using bone marrow-derived mesenchymal stem cells (BM-MSCs) and olive leaf extract (OLE). METHODS During the study, 40 adult male rats were used. Ten were used to donate MSCs, and the other 30 were split into 5 equal groups: Group I was the negative control, Group II obtained oral OLE, Group III obtained an intraperitoneal cumulative dose of DOX (12 mg/kg) in 6 equal doses of 2 mg/kg every 48 h for 12 days, Group IV obtained intraperitoneal DOX and oral OLE at the same time, and Group V obtained intraperitoneal DOX and BM-MSCs through the tail vein at the same time for 12 days. Four weeks after their last dose of DOX, the rats were euthanized. By checking the bioinformatic databases, a molecularly targeted path was selected. Then the histological, immunohistochemistry, and gene expression of ERK, JNK, NF-κB, IL-6, and TNF-α were done. RESULTS Myocardial immunohistochemistry revealed severe fibrosis, cell degeneration, increased vimentin, and decreased CD-31 expression in the DOX-treated group, along with a marked shift in morphometric measurements, a disordered ultrastructure, and overexpression of inflammatory genes (ERK, NF-κB, IL-6, and TNF-α), oxidative stress markers, and cardiac biomarkers. Both groups IV and V displayed reduced cardiac fibrosis or inflammation, restoration of the microstructure and ultrastructure of the myocardium, downregulation of inflammatory genes, markers of oxidative stress, and cardiac biomarkers, a notable decline in vimentin, and an uptick in CD-31 expression. In contrast to group IV, group V showed a considerable beneficial effect. CONCLUSION Both OLE and BM-MSCs showed an ameliorating effect in rat models of DOX-induced cardiotoxicity, with BM-MSCs showing a greater influence than OLE.
Collapse
Affiliation(s)
- Mahrous A Ibrahim
- Department of Internal Medicine (Forensic Medicine and Clinical Toxicology division), College of Medicine, Jouf University, Aljouf 72341, Saudi Arabia.
| | - Athar M Khalifa
- Pathology Department, College of Medicine, Jouf University, Aljouf, Saudi Arabia
| | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rehab I Abdel-Karim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ayman F Elsharawy
- Histology Department, Faculty of Medicine Al-Azhar University, Cairo, Egypt; Histology Department, College of Medicine, Shaqra University, Shaqra, Saudi Arabia
| | - Alia Ellawindy
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M Galal
- Department of Medical Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman H Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72345, Saudi Arabia; Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Mohamed A Abdel-Shafee
- Department of Cardiovascular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rania A Galhom
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| |
Collapse
|
23
|
Xu SY, Wang WW, Qu ZH, Zhang XK, Chen M, Zhang XY, Xing NN, Su H, Wang XY, Cui MY, Yan XY, Ma W. Long-circulating doxorubicin and Schizandrin A liposome with drug-resistant liver cancer activity: in vitro and in vivo evaluation. J Liposome Res 2023; 33:338-352. [PMID: 36974767 DOI: 10.1080/08982104.2023.2190810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 03/29/2023]
Abstract
Co-loading doxorubicin (DOX) and Schizandrin A (SchA) long-circulating liposome (SchA-DOX-Lip) have been confirmed to have good antitumor activity in vitro. However, in vivo pharmacodynamics, targeting, safety, and mechanism of action of SchA-DOX-Lip still need to be further verified. We investigated the tumor inhibition effect, targeting, safety evaluation, and regulation of tumor apoptosis-related proteins of the SchA-DOX-Lip. MTT assay was used to investigate the inhibitory effect of SchA-DOX-Lip on CBRH7919 cells. The drug uptake of CBRH7919 cells was observed by inverted fluorescence microscope. The tumor-bearing nude mice models of CBRH7919 were established, and the anti-tumor effect of SchA-DOX-Lip in vivo was evaluated by tumor biological observation, H&E staining, and TUNEL staining. The distribution and targeting of SchA-DOX-Lip in nude mice models were investigated by small animal imaging and tissue distribution experiment of CBRH7919. The biosafety of SchA-DOX-Lip was evaluated by blood routine parameters, biochemical indexes, and H&E staining. The expression of tumor-associated apoptotic proteins (Bcl-2, Bax, and Caspase-3) was detected by immunohistochemistry anvd western blotting. The results showed that SchA-DOX-Lip had cytotoxicity to CBRH7919 cells which effectively inhibited the proliferation of CBRH7919 cells, improved the uptake of drugs by CBRH7919 cells and the targeting effect of drugs on tumor site. H&E staining and biochemical detection results showed that SchA-DOX-Lip had high biosafety and did not cause serious damage to normal tissues. Western-blotting and TUNEL staining results showed that SchA-DOX-Lip could improve the regulatory effect of drugs on tumor apoptosis proteins. It was demonstrated that SchA-DOX-Lip had high safety and strong tumor inhibition effects, providing a new method for the clinical treatment of hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Wei-Wei Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Zi-Hui Qu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Xiang-Ke Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Ming Chen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Xin-Yu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Nan-Nan Xing
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Hui Su
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Xue-Ying Wang
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Ming-Yu Cui
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| |
Collapse
|
24
|
Wang Q, Li J, Chu X, Jiang X, Zhang C, Liu F, Zhang X, Li Y, Shen Q, Pang B. Potential chemoprotective effects of active ingredients in Salvia miltiorrhiza on doxorubicin-induced cardiotoxicity: a systematic review of in vitro and in vivo studies. Front Cardiovasc Med 2023; 10:1267525. [PMID: 37915739 PMCID: PMC10616797 DOI: 10.3389/fcvm.2023.1267525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Background Recently, attention has been paid to the protective properties of active ingredients in Salvia miltiorrhiza (AISM) against organ toxicity induced by chemotherapy drugs. Purpose of the present systematic review is to evaluate the chemoprotective effects and mechanisms of AISM on in vitro and in vivo models of doxorubicin-induced cardiotoxicity (DIC). Methods According to the PRISMA guideline, the current systematic review was conducted in the Web of Science, PubMed, Embase, and the Cochrane Library to collect all relevant in vitro and in vivo studies on "the role of AISM on DIC" published up until May 2023. The SYRCLE's tool was used to identify potential risk of bias. Results Twenty-two eligible articles were included in this systematic review. Eleven types of active ingredients in Salvia miltiorrhiza were used for DIC, which have the following effects: improvement of physical signs and biochemical indicators, reduction of cardiac function damage caused by DIC, protection of heart tissue structure, enhancement of myocardial cell viability, prevention of cardiomyocyte apoptosis, increase of the chemosensitivity of cancer cells to Doxorubicin, etc. The cardioprotective mechanism of AISM involves inhibiting apoptosis, attenuating oxidative stress, suppressing endoplasmic reticulum (ER) stress, decreasing inflammation, improving mitochondrial structure and function, affecting cellular autophagy and calcium homeostasis. The quality scores of included studies ranged from 4 to 7 points (a total of 10 points), according to SYRCLE's risk of bias tool. Conclusion This systematic review demonstrated that AISM have chemoprotective effects on DIC in vivo and in vitro models through several main mechanisms such as anti-apoptosis, antioxidant effects, anti-ER stress, and anti-inflammatory.
Collapse
Affiliation(s)
- Qingqing Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing Association of the Integrating of Traditional and Westem Medicine, Beijing, China
| | - Jiaxian Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuelei Chu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Wang J, Rani N, Jakhar S, Redhu R, Kumar S, Kumar S, Kumar S, Devi B, Simal-Gandara J, Shen B, Singla RK. Opuntia ficus-indica (L.) Mill. - anticancer properties and phytochemicals: current trends and future perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1236123. [PMID: 37860248 PMCID: PMC10582960 DOI: 10.3389/fpls.2023.1236123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Cancer is a leading cause of mortality worldwide, and conventional cancer therapies such as chemotherapy and radiotherapy often result in undesirable and adverse effects. Natural products have emerged as a promising alternative for cancer treatment, with comparatively fewer side effects reported. Opuntia ficus-indica (L.) Mill., a member of the Cactaceae family, contains a diverse array of phytochemicals, including flavonoids, polyphenols, betalains, and tannins, which have been shown to exhibit potent anticancer properties. Various parts of the Opuntia plant, including the fruits, stems/cladodes, and roots, have demonstrated cytotoxic effects against malignant cell lines in numerous studies. This review comprehensively summarizes the anticancer attributes of the phytochemicals found in Opuntia ficus-indica (L.) Mill., highlighting their potential as natural cancer prevention and treatment agents. Bibliometric metric analysis of PubMed and Scopus-retrieved data using VOSviewer as well as QDA analysis provide further insights and niche to be explored. Most anticancer studies on Opuntia ficus-indica and its purified metabolites are related to colorectal/colon cancer, followed by melanoma and breast cancer. Very little attention has been paid to leukemia, thyroid, endometrial, liver, and prostate cancer, and it could be considered an opportunity for researchers to explore O. ficus-indica and its metabolites against these cancers. The most notable mechanisms expressed and validated in those studies are apoptosis, cell cycle arrest (G0/G1 and G2/M), Bcl-2 modulation, antiproliferative, oxidative stress-mediated mechanisms, and cytochrome c. We have also observed that cladodes and fruits of O. ficus-indica have been more studied than other plant parts, which again opens the opportunity for the researchers to explore. Further, cell line-based studies dominated, and very few studies were related to animal-based experiments. The Zebrafish model is another platform to explore. However, it seems like more in-depth studies are required to ascertain clinical utility of this biosustainable resource O. ficus-indica.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Neeraj Rani
- Shri Baba Mastnath Institute of Pharmaceutical Science and Research, Baba Mastnath University, Asthal Bohar Rohtak, Haryana, India
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Seema Jakhar
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Rakesh Redhu
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sachin Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Bhagwati Devi
- Shri Baba Mastnath Institute of Pharmaceutical Science and Research, Baba Mastnath University, Asthal Bohar Rohtak, Haryana, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
26
|
Duarte PRA, Franco RR, Vilela DD, Caixeta DC, de Souza AV, Deconte SR, Mendes-Rodrigues C, Fidale TM, Espindola FS, Teixeira RR, Resende ES. Effects of an L-Leucine-Rich Diet on Liver and Kidneys in a Doxorubicin Toxicity Model. Life (Basel) 2023; 13:1823. [PMID: 37763227 PMCID: PMC10532802 DOI: 10.3390/life13091823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023] Open
Abstract
Supplements and diets containing L-leucine, a branched-chain amino acid, have been considered beneficial for controlling oxidative stress and maintaining cardiac tissue in toxicity models using doxorubicin, a drug widely used in cancer treatment. However, there is a lack of studies in the literature that assess the effects of this diet on other organs and tissues, such as the liver and kidneys. Therefore, this study aimed to evaluate the effects of a leucine-rich diet on the liver and kidneys of healthy rats submitted to the doxorubicin toxicity model by analyzing biomarkers of oxidative stress and histological parameters. The animals were divided into four groups: naive, doxorubicin, L-leucine, and doxorubicin + L-leucine, and the diet was standardized with 5% L-leucine and a dose of 7.5 mg/kg of doxorubicin. We evaluated tissue injury parameters and biomarkers of oxidative stress, including enzymes, antioxidant profile, and oxidized molecules, in the liver and kidneys. Although some studies have indicated benefits of a diet rich in L-leucine for the muscle tissue of animals that received doxorubicin, our results showed that the liver was the most affected organ by the L-leucine-rich diet since the diet reduced its antioxidant defenses and increased the deposit of collagen and fat in the hepatic tissue. In the kidneys, the main alteration was the reduction in the number of glomeruli. These results contribute to the scientific literature and encourage further studies to evaluate the effects of an L-leucine-rich diet or its supplementation, alone or combined with doxorubicin using an animal model of cancer. Therefore, our study concludes that the leucine-rich diet itself was harmful and, when co-administered with doxorubicin, was not able to maintain the antioxidant defenses and tissue structure of the evaluated organs.
Collapse
Affiliation(s)
- Poliana Rodrigues Alves Duarte
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
| | - Rodrigo Rodrigues Franco
- Departamento de Medicina, Universidade Federal de Catalão, Catalão 75706-881, GO, Brazil;
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Danielle Diniz Vilela
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Douglas Carvalho Caixeta
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Adriele Vieira de Souza
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Simone Ramos Deconte
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
| | - Clesnan Mendes-Rodrigues
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
| | - Thiago Montes Fidale
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
- Departamento de Medicina, Universidade Federal de Catalão, Catalão 75706-881, GO, Brazil;
| | - Foued Salmen Espindola
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Renata Roland Teixeira
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (D.D.V.); (D.C.C.); (A.V.d.S.)
| | - Elmiro Santos Resende
- Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (P.R.A.D.); (S.R.D.); (C.M.-R.); (T.M.F.)
| |
Collapse
|
27
|
Luca A, Nacu I, Tanasache S, Peptu CA, Butnaru M, Verestiuc L. New Methacrylated Biopolymer-Based Hydrogels as Localized Drug Delivery Systems in Skin Cancer Therapy. Gels 2023; 9:gels9050371. [PMID: 37232963 DOI: 10.3390/gels9050371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The aim of the present work was to obtain drug-loaded hydrogels based on combinations of dextran, chitosan/gelatin/xanthan, and poly (acrylamide) as a sustained and controlled release vehicle of Doxorubicin, a drug used in skin cancer therapy that is associated with severe side effects. Hydrogels for use as 3D hydrophilic networks with good manipulation characteristics were produced using methacrylated biopolymer derivatives and the methacrylate group's polymerization with synthetic monomers in the presence of a photo-initiator, under UV light stimulation (365 nm). Transformed infrared spectroscopy analysis (FT-IR) confirmed the hydrogels' network structure (natural-synthetic composition and photocrosslinking), while scanning electron microscopy (SEM) analysis confirmed the microporous morphology. The hydrogels are swellable in simulated biological fluids and the material's morphology regulates the swelling properties: the maximum swelling degree was obtained for dextran-chitosan-based hydrogels because of their higher porosity and pore distribution. The hydrogels are bioadhesive on a biological simulating membrane, and values for the force of detachment and work of adhesion are recommended for applications on skin tissue. The Doxorubicin was loaded into the hydrogels and the drug was released by diffusion for all the resulting hydrogels, with small contributions from the hydrogel networks' relaxation. Doxorubicin-loaded hydrogels are efficient on keratinocytes tumor cells, the sustained released drug interrupting the cells' division and inducing cell apoptosis; we recommend the obtained materials for the topical treatment of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Andreea Luca
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Sabina Tanasache
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cătălina Anişoara Peptu
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iaşi, 700050 Iasi, Romania
| | - Maria Butnaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
28
|
Espírito Santo SG, Monte MG, Polegato BF, Barbisan LF, Romualdo GR. Protective Effects of Omega-3 Supplementation against Doxorubicin-Induced Deleterious Effects on the Liver and Kidneys of Rats. Molecules 2023; 28:molecules28073004. [PMID: 37049766 PMCID: PMC10096317 DOI: 10.3390/molecules28073004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Anthracycline doxorubicin (DOX) is still widely used as a chemotherapeutic drug for some solid tumors. Although DOX is highly effective, its side effects are limiting factors, such as cardio, nephro and hepatotoxicity. As such, approaches used to mitigate these adverse effects are highly encouraged. Omega 3 (ω-3), which is a class of long-chain polyunsaturated fatty acids, has been shown to have anti-inflammatory and antioxidant effects in preclinical bioassays. Thus, we evaluated the protective effects of ω-3 supplementation on hepatotoxicity and nephrotoxicity induced by multiple DOX administrations in rodents. Male Wistar rats (10 rats/group) were treated daily with ω-3 (400 mg/kg/day) by gavage for six weeks. Two weeks after the first ω-3 administration, the rats received DOX (3.5 mg/kg, intraperitoneal, 1×/week) for four weeks. DOX treatment reduced body weight gain increased systemic genotoxicity and caused liver-related (increase in serum ALT levels, thickness of the Glisson’s capsule, compensatory proliferation and p65 levels) and kidney-related (increase in serum urea and creatinine levels, and incidence of tubular dilatation) deleterious outcomes. In contrast, ω-3 supplementation was safe and abrogated the DOX-related enhancement of systemic genotoxicity, serum urea and creatinine levels. Furthermore, ω-3 intervention reduced by 50% the incidence of kidney histological lesions while reducing by 40–50% the p65 protein level, and the proliferative response in the liver induced by DOX. Our findings indicate that ω-3 intervention attenuated the DOX-induced deleterious effects in the liver and kidney. Therefore, our findings may inspire future mechanistical investigations and clinical interventions with ω-3 on the reported outcomes.
Collapse
|
29
|
Zhang Y, Yang X, Xu S, Jiang W, Gu Z, Guo M, Wei J. Multifunctional Dendritic Au@SPP@DOX Nanoparticles Integrating Chemotherapy and Low-Dose Radiotherapy for Enhanced Anticancer Activity. Mol Pharm 2023; 20:1519-1530. [PMID: 36702154 DOI: 10.1021/acs.molpharmaceut.2c00754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Combined chemoradiotherapy can improve antitumor efficiency and reduce the side effects of monotherapy. In this study, we aimed to construct dendritic peptide-based multifunctional nanoparticles (Au@SPP@DOX) for a prolonged circulation time, enhanced cellular uptake, and targeted cancer therapy. Amphiphilic micelle PEG-polylysine-SA (SPP) is composed of polylysine combined with hydrophilic poly(ethylene glycol) (PEG) and hydrophobic stearic acid (SA). Doxorubicin (DOX) is loaded via the hydrophilic-hydrophobic interaction of SPP, and gold nanoparticles (AuNPs) are loaded via the electrostatic interaction with SPP. Au@SPP@DOX showed good biocompatibility and could be successfully accumulated at tumor sites through the enhanced permeability and retention (EPR) effect. Then, lysosomes could be ruptured due to the proton sponge effect. DOX became protonated in response to tumor extracellular acidity and was then released from SPP. Under the action of low-dose radiation, Au@SPP@DOX could promote the production of reactive oxygen species (ROS), increase mitochondrial dysfunction, block cell division, and ultimately promote tumor cell apoptosis to achieve a better antitumor effect. This study highlighted the benefit of chemoradiotherapy and suggested that Au@SPP@DOX might serve as a high-efficiency codelivery system for cancer combination therapy in the future.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Xingang Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Shengnan Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Wenjia Jiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Miao Guo
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Jifu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| |
Collapse
|
30
|
Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R. Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023; 12:659. [PMID: 36831326 PMCID: PMC9954613 DOI: 10.3390/cells12040659] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Doxorubicin (DOX) constitutes the major constituent of anti-cancer treatment regimens currently in clinical use. However, the precise mechanisms of DOX's action are not fully understood. Emerging evidence points to the pleiotropic anticancer activity of DOX, including its contribution to DNA damage, reactive oxygen species (ROS) production, apoptosis, senescence, autophagy, ferroptosis, and pyroptosis induction, as well as its immunomodulatory role. This review aims to collect information on the anticancer mechanisms of DOX as well as its influence on anti-tumor immune response, providing a rationale behind the importance of DOX in modern cancer therapy.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, 90-136 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
31
|
de Oliveira VA, Monteiro Fernandes ANR, Dos Santos Leal LM, Ferreira Lima PA, Silva Pereira AR, Pereira IC, Negreiros HA, Pereira-Freire JA, da Silva FCC, de Carvalho Melo Cavalcante AA, Torres-Leal FL, Azevedo AP, de Castro E Sousa JM. α-tocopherol as a selective modulator of toxicogenic damage induced by antineoplastic agents cyclophosphamide and doxorubicin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:87-102. [PMID: 36756732 DOI: 10.1080/15287394.2023.2168224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aim of this study was to determine the oxidative/antioxidative effects, modulatory and selective potential of α-tocopherol (vitamin E) on antineoplastic drug-induced toxicogenetic damage. The toxicity, cytotoxicity and genotoxicity induced by antineoplastic agents cyclophosphamide (CPA) and doxorubicin (DOX) was examined utilizing as models Saccharomyces cerevisiae, Allium cepa, Artemia salina and human peripheral blood mononuclear cells (PBMCs) in the presence of α-tocopherol. For these tests, concentrations of α- tocopherol 100 IU/ml (67mg/ml), CPA 20 µg/ml, DOX 2 µg/ml were used. The selectivity of α-tocopherol was assessed by the MTT test using human mammary gland non-tumor (MCF10A) and tumor (MCF-7) cell lines. Data showed cytoplasmic and mitochondrial oxidative damage induced by CPA or DOX was significantly diminished by α-tocopherol in S. cerevisiae. In addition, the toxic effects on A. salina and cytotoxic and mutagenic effects on A. cepa were significantly reduced by α-tocopherol. In PBMCs, α-tocopherol alone did not markedly affect these cells, and when treated in conjunction with CPA or DOX, α-tocopherol reduced the toxicogenetic effects noted after antineoplastic drug administration as evidenced by decreased chromosomal alterations and lowered cell death rate. In human mammary gland non-tumor and tumor cell lines, α-tocopherol produced selective cytotoxicity with 2-fold higher effect in tumor cells. Evidence indicates that vitamin E (1) produced anti-cytotoxic and anti-mutagenic effects against CPA and DOX (2) increased higher selectivity toward tumor cells, and (3) presented chemoprotective activity in PBMCs.
Collapse
Affiliation(s)
- Victor Alves de Oliveira
- Department of Nutrition, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | | | - Lauana Maria Dos Santos Leal
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Paloma Alves Ferreira Lima
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Ana Rafaela Silva Pereira
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Irislene Costa Pereira
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Helber Alves Negreiros
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Joilane Alves Pereira-Freire
- Department of Nutrition, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | | | - Ana Amélia de Carvalho Melo Cavalcante
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Francisco Leonardo Torres-Leal
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Adriana Paiva Azevedo
- Post-graduate program of Food and Nutrition, Federal University of Piauí - UFPI, Picos, Brazil
| | - João Marcelo de Castro E Sousa
- Post-graduate program of Biotechnology (RENORBIO), Federal University of Piauí - UFPI, Picos, Brazil
- Department of Biochemistry and Pharmacology, Post-graduate program of Pharmaceutical sciences, Federal University of Piauí - UFPI, Picos, Brazil
| |
Collapse
|
32
|
Radu ER, Semenescu A, Voicu SI. Recent Advances in Stimuli-Responsive Doxorubicin Delivery Systems for Liver Cancer Therapy. Polymers (Basel) 2022; 14:5249. [PMID: 36501642 PMCID: PMC9738136 DOI: 10.3390/polym14235249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Doxorubicin (DOX) is one of the most commonly used drugs in liver cancer. Unfortunately, the traditional chemotherapy with DOX presents many limitations, such as a systematic release of DOX, affecting both tumor tissue and healthy tissue, leading to the apparition of many side effects, multidrug resistance (MDR), and poor water solubility. Furthermore, drug delivery systems' responsiveness has been intensively studied according to the influence of different internal and external stimuli on the efficiency of therapeutic drugs. In this review, we discuss both internal stimuli-responsive drug-delivery systems, such as redox, pH and temperature variation, and external stimuli-responsive drug-delivery systems, such as the application of magnetic, photo-thermal, and electrical stimuli, for the controlled release of Doxorubicin in liver cancer therapy, along with the future perspectives of these smart delivery systems in liver cancer therapy.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 030167 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
33
|
Ma P, Jiang L, Luo X, Chen J, Wang Q, Chen Y, Ye E, Loh XJ, Wu C, Wu YL, Li Z. Hybrid Polydimethylsiloxane (PDMS) Incorporated Thermogelling System for Effective Liver Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14122623. [PMID: 36559118 PMCID: PMC9781567 DOI: 10.3390/pharmaceutics14122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
For the delivery of anticancer drugs, an injectable in situ hydrogel with thermal responsiveness and prolonged drug release capabilities shows considerable potential. Here, we present a series of thermosensitive in situ hydrogels that serve as drug delivery systems for the treatment of liver cancer. These hydrogels were created by utilizing the polydimethylsiloxane (PDMS) oligomer, polyethylene glycol (PEG) and polypropylene glycol (PPG)'s chemical cross-linking capabilities. Doxorubicin (DOX) was encapsulated in a hydrogel with a hydrophobic core and hydrophilic shell to enhance DOX solubility. Studies into the behavior of in situ produced hydrogels at the microscopic and macroscopic levels revealed that the copolymer solution exhibits a progressive shift from sol to gel as the temperature rises. The hydrogels' chemical composition, thermal properties, rheological characteristics, gelation period, and DOX release behavior were all reported. Subcutaneous injection in mice was used to confirm the injectability. Through the in vitro release of DOX in a PBS solution that mimics the tumor microenvironment, the hydrogel's sustained drug release behavior was confirmed. Additionally, using human hepatocellular hepatoma, the anticancer efficacy of thermogel (DEP-2@DOX) was assessed (HepG2). The carrier polymer material DEP-2 was tested for cytotoxicity using HepG2 cells and its excellent cytocompatibility was confirmed. In conclusion, these thermally responsive injectable hydrogels are prominent potential candidates as drug delivery vehicles for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Lu Jiang
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xi Luo
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Jiayun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Enyi Ye
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (C.W.); (Y.-L.W.); (Z.L.)
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (C.W.); (Y.-L.W.); (Z.L.)
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
- Correspondence: (C.W.); (Y.-L.W.); (Z.L.)
| |
Collapse
|
34
|
Wu Y, Sun Z, Song J, Mo L, Wang X, Liu H, Ma Y. Preparation of multifunctional mesoporous SiO 2nanoparticles and anti-tumor action. NANOTECHNOLOGY 2022; 34:055101. [PMID: 36317264 DOI: 10.1088/1361-6528/ac9e5f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
A targeted drug delivery system was developed to accumulate specific drugs around tumor cells based on the redox, temperature, and enzyme synergistic responses of mesoporous silica nanoparticles. Mesoporous silica nanoparticles (MSN-NH2) and Doxorubicin (DOX) for tumor therapy were prepared and loaded into the pores of MSN- NH2 to obtain DOX@MSN(DM NPs). Hyaluronic acid (HA) was used as the backbone and disulfide bond was used as the linker arm to graft carboxylated poly (N-isopropylacrylamide)(PNIPAAm-COOH) to synthesize the macromolecular copolymer (HA-SS-PNIPAAm), which was modified to DM NPs with capped ends to obtain the nano-delivery system DOX@MSN@HA-SS-PNIPAAm(DMHSP NPs), and a control formulation was prepared in a similar way. DMHSP NPs specifically entered tumor cells via CD44 receptor-mediated endocytosis; the high GSH concentration (10 mM) of cells severed the disulfide bonds, the hyaluronidase sheared the capped HA to open the pores, and increased tumor microenvironment temperature due to immune response can trigger the release of encapsulated drugs in thermosensitive materials.In vitroandin vivoantitumor and hemolysis assays showed that DMHSP NPs can accurately target hepatocellular carcinoma cells with a good safety profile and have synergistic effects, which meant DMHSP NPs had great potential for tumor therapy.
Collapse
Affiliation(s)
- Yijun Wu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Zhiqiang Sun
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Jinfeng Song
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Liufang Mo
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Xiaochen Wang
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Hanhan Liu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, People's Republic of China
| |
Collapse
|
35
|
Zhou J, Lu Y, Li Z, Wang Z, Kong W, Zhao J. Sphingosylphosphorylcholine ameliorates doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by reducing excessive mitophagy and mitochondrial dysfunction. Toxicol Appl Pharmacol 2022; 452:116207. [PMID: 35995203 DOI: 10.1016/j.taap.2022.116207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Doxorubicin (DOX, C27H29NO11), is an anthracycline tumor chemotherapy drug, which has significant side effects on many organs including the heart. In recent years, mitochondrial dysfunction caused by DOX was identified as an important reason for cardiotoxic injury. Sphingosylphosphorylcholine (SPC) is essential for mitochondrial homeostasis in our previous report, however, its role in DOX-caused cardiomyopathy has remained elusive. Herein, DOX treated zebrafish embryos (90 μM) and adult fish (2.5 μM/g) were used to simulate DOX-induced cardiotoxic damage. Histopathological and ultrastructural observations showed that SPC (2.5 μM) significantly ameliorated DOX-induced pericardial edema, myocardial vacuolization and apoptosis. Furthermore, SPC (2.5 μM) can significantly inhibit DOX-induced apoptosis and promote cell proliferation in DOX treated H9c2 cells (1 μM), which is dependent on the restoration of mitochondrial homeostasis, including restored mitochondrial membrane potential, mitochondrial superoxide and ATP levels. We finally confirmed that SPC restored mitochondrial homeostasis through ameliorating DOX-induced excessive mitophagy. Mechanistically, SPC reduced calmodulin (CaM) levels and thus inhibiting Parkin activation and Parkin-dependent mitophagy. These results suggest that reducing the cardiotoxicity of chemotherapeutic drugs by targeting SPC may be a new solution to rescue chemotherapy injury.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Zhiliang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Zhaohui Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Weihua Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
36
|
Miguel RDA, Hirata AS, Jimenez PC, Lopes LB, Costa-Lotufo LV. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022; 14:1722. [PMID: 36015347 PMCID: PMC9415580 DOI: 10.3390/pharmaceutics14081722] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.
Collapse
Affiliation(s)
- Rodrigo dos A. Miguel
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda S. Hirata
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Paula C. Jimenez
- Institute of the Sea, Federal University of Sao Paulo, Santos 11070-100, Brazil
| | - Luciana B. Lopes
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Leticia V. Costa-Lotufo
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
37
|
Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, Sharma A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23147972. [PMID: 35887320 PMCID: PMC9323677 DOI: 10.3390/ijms23147972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Devnah Trivedi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Shobha D. Potlakayala
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Sairam V. Rudrabhatla
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
38
|
Zaher S, Soliman ME, Elsabahy M, Hathout RM. Sesamol Loaded Albumin Nanoparticles: A Boosted Protective Property in Animal Models of Oxidative Stress. Pharmaceuticals (Basel) 2022; 15:ph15060733. [PMID: 35745652 PMCID: PMC9228363 DOI: 10.3390/ph15060733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
The current study evaluated the ability of sesamol-loaded albumin nanoparticles to impart protection against oxidative stress induced by anthracyclines in comparison to the free drug. Albumin nanoparticles were prepared via the desolvation technique and then freeze-dried with the cryoprotectant, trehalose. Albumin concentration, pH, and type of desolvating agent were assessed as determining factors for successful albumin nanoparticle fabrication. The optimal nanoparticles were spherical in shape, and they had an average particle diameter of 127.24 ± 2.12 nm with a sesamol payload of 96.89 ± 2.4 μg/mg. The drug cellular protection was tested on rat hepatocytes pretreated with 1 µM doxorubicin, which showed a 1.2-fold higher protective activity than the free sesamol. In a pharmacokinetic study, the loading of a drug onto nanoparticles resulted in a longer half-life and mean residence time, as compared to the free drug. Furthermore, in vivo efficacy and biochemical assessment of lipid peroxidation, cardiac biomarkers, and liver enzymes were significantly ameliorated after administration of the sesamol-loaded albumin nanoparticles. The biochemical assessments were also corroborated with the histopathological examination data. Sesamol-loaded albumin nanoparticles, prepared under controlled conditions, may provide an enhanced protective effect against off-target doxorubicin toxicity.
Collapse
Affiliation(s)
- Sara Zaher
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt;
| | - Mahmoud E. Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Pharm D Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Correspondence:
| |
Collapse
|
39
|
Kim AJ, Hong DS, George GC. Dietary Influences On Symptomatic And Non-Symptomatic Toxicities During Cancer Treatment: A Narrative Review. Cancer Treat Rev 2022; 108:102408. [DOI: 10.1016/j.ctrv.2022.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
40
|
PEGylated and zwitterated silica nanoparticles as doxorubicin carriers applied in a breast cancer cell line: Effects on protein corona formation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Nicoletto RE, Ofner CM. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol 2022; 89:285-311. [PMID: 35150291 DOI: 10.1007/s00280-022-04400-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent frequently used for the treatment of a variety of tumor types, such as breast cancer. Despite the long history of DOX, the mechanistic details of its cytotoxic action remain controversial. Rather than one key mechanism of cytotoxic action, DOX is characterized by multiple mechanisms, such as (1) DNA intercalation and adduct formation, (2) topoisomerase II (TopII) poisoning, (3) the generation of free radicals and oxidative stress, and (4) membrane damage through altered sphingolipid metabolism. Many past reviews of DOX cytotoxicity are based on supraclinical concentrations, and several have addressed the concentration dependence of these mechanisms. In addition, most reviews lack a focus on the time dependence of these processes. We aim to update the concentration and time-dependent trends of DOX mechanisms at representative clinical concentrations. Furthermore, attention is placed on DOX behavior in breast cancer cells due to the frequent use of DOX to treat this disease. This review provides insight into the mechanistic pathway(s) of DOX at levels found within patients and establishes the magnitude of effect for each mechanism.
Collapse
Affiliation(s)
- Rachel E Nicoletto
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19101-4495, USA
| | - Clyde M Ofner
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19101-4495, USA.
| |
Collapse
|
42
|
Huang G, Zhu Y, Yong C, Tian F, Liu L, Wu Q, Shu Y, Yao M, Tang C, Wang X, Chen W, Zhou E. Artemisia capillaris Thunb. water extract attenuates adriamycin-induced renal injury by regulating apoptosis through the ROS/MAPK axis. J Food Biochem 2022; 46:e14065. [PMID: 34984698 DOI: 10.1111/jfbc.14065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Artemisia capillaris Thunb. is widely used in the treatment of kidney diseases, but the underlying mechanism remain elusive. Therefore, this study aimed to elucidate the mechanism of Artemisia capillaris Thunb. in alleviating renal injury. And renoprotective effects of freeze-dried powder of Artemisia capillaris Thunb. water extract (WAC) were assessed using adriamycin (ADR)-induced renal injury to the NRK-52E cells and ADR-induced renal injury Sprague-Dawley rats (SD rats) models. The results show that WAC could alleviate ADR-induced renal injury in SD rats and the NRK-52E cell line, improved renal function (BUN 9.73 ± 0.35 vs 7.13 ± 0.15, SCR 80.60 ± 1.68 vs 60.50 ± 1.42, ACR 11.50 ± 0.50 vs 8.526 ± 0.15) or cell viability (IC50 = 1.08 µg/ml (ADR), cell viability increase 36.38% ± 6.74% (added 4 mg/ml WAC)), and reduced the apoptosis. Moreover, WAC inhibited the MAPK signal transduction, increased the expression of superoxide dismutase 1 (SOD1), and decreased the production of ROS. The treatment of N-acetylcysteine (NAC, antioxidant) in vitro showed that NAC inhibited apoptosis and alleviated renal injury by inhibiting oxidative stress and reducing the phosphorylation of proteins related to the MAPK signaling pathway. Therefore, these results suggested that WAC can alleviate ADR-induced renal injury and apoptosis by regulating the ROS/MAPK axis and has potential to be used as a renoprotective drug. PRACTICAL APPLICATIONS: Artemisia capillaris Thunb., which is a medicinal and edible plant, is widely used to treat kidney diseases in traditional Chinese medicine. The present research examined the renal protective effect of Artemisia capillaris Thunb. The results show that Artemisia capillaris Thunb. can effectively reduce renal tubular cell apoptosis through the ROS/MAPK axis in vivo and in vitro. In general, Artemisia capillaris Thunb. can be used as a potential herb to attenuate renal injury and further research can be conducted to explore its renoprotective mechanisms.
Collapse
Affiliation(s)
- Guoshun Huang
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiye Zhu
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Yong
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Research Center of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Liu
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qijing Wu
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Shu
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Yao
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenquan Tang
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaofang Wang
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Chen
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Division of Nephrology, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
43
|
Potential Protective Effect of Coenzyme Q10 on Doxorubicin-Induced Neurotoxicity and Behavioral Disturbances in Rats. Neurochem Res 2022; 47:1280-1289. [PMID: 34978671 DOI: 10.1007/s11064-021-03522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the potential neuroprotective efficacy of coenzyme Q10 (CoQ10) against doxorubicin (DOX) -induced behavioral disturbances in rats. Female rats were randomly assigned into 4 groups as control, CoQ10, DOX, and DOX plus CoQ10. The CoQ10 groups received CoQ10 (200 mg kg-1) for 21 days, and the DOX groups received DOX (4 mg kg-1) on days 7 and 14 of the study. The open field (OF) and elevated plus maze (EPM) tests were performed to assess locomotor activity and anxiety levels. Additionally, malondialdehyde (MDA), and protein carbonyl (PC) levels and acetylcholinesterase (AChE), and glutathione peroxidase (GPx) activities and total antioxidant capacity (TAC) were quantified in brain tissue. DOX administration caused alterations in locomotor activity, and anxiety-like behaviors. Moreover, DOX produced significant elevation in AChE activity . PC level and GPx activity tended to alter with DOX administration. Co-treatment with CoQ10 significantly attenuated DOX-induced behavioral alterations via improving AChE activity in the brain tissue of rats. CoQ10 treatment may be potential for the alleviation of DOX-induced behavioral disturbances. This improvement might be due to the inhibition of AChE activity.
Collapse
|
44
|
Romero-Márquez JM, Badillo-Carrasco A, Navarro-Hortal MD, Rivas-García L, Jiménez-Trigo V, Varela-López A. Nutritional interventions based on dietary restriction and nutrient reductions for the prevention of doxorubicin chemotherapy side effects. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-210020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Doxorubicin (DOX) is one of most used chemotherapeutic drugs, but it has important adverse effects. Nutrition has a critical role to prevent or minimize chemotherapy side effects. Caloric and nutrient restriction has been widely studied in different health fields showing extensive beneficial effects. Given the importance of these interventions, it is expected that some of them have benefits in patients under DOX chemotherapy. OBJECTIVE: This review aimed to compile published studies evaluating the effects of different dietary intetrventions based on restriction of calories or certain nutrients against DOX-induced damage and toxicity. RESULTS: Caloric restriction and partial reduction of fat have shown to reduce DOX cardiotoxicity correlating with a reduction of oxidative stress. Reduction of dietary fat was proved to act in the same sense at liver and kidney. Studies in relation to protein reduction is more elevated has focused only on kidneys and bone, and under certain circumstances, these interventions could increase susceptibility to DOX toxicity. CONCLUSIONS: The promising effects of restriction of dietary fat, protein and sodium on differerent organs have been supported by a greater number of studies among all the dietary interventions evaluated. Still, clinical studies are necessary to confirm the potential usefulness of these interventions.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain
| | - Alberto Badillo-Carrasco
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain
| | - María D. Navarro-Hortal
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain
| | - Lorenzo Rivas-García
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain
| | - Alfonso Varela-López
- Institute of Nutrition and Food Technology “José Mataix Verdú”, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Granada, Spain
| |
Collapse
|
45
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
46
|
He H, Wang L, Qiao Y, Yang B, Yin D, He M. Epigallocatechin-3-gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKα2 and activating adaptive autophagy. Redox Biol 2021; 48:102185. [PMID: 34775319 PMCID: PMC8600154 DOI: 10.1016/j.redox.2021.102185] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/11/2023] Open
Abstract
Reports indicate that the mechanism of doxorubicin (Dox)-induced cardiotoxicity is very complex, involving multiple regulatory cell death forms. Furthermore, the clinical intervention effect is not ideal. Iron dependence, abnormal lipid metabolism, and excess reactive oxygen species generation, three characteristics of ferroptosis, are potential therapeutic intervention targets. Here, we confirmed in vitro and in vivo that at least autophagy, apoptosis, and ferroptosis are involved in Dox cardiotoxicity-induced damage. When the neonatal rat cardiomyocytes and H9C2 cells or C57BL/6 mice were subjected to Dox-induced cardiotoxicity, epigallocatechin-3-gallate pretreatment could effectively decrease iron accumulation, inhibit oxidative stress and abnormal lipid metabolism, and thereby alleviate Dox cardiotoxicity-induced ferroptosis and protect the myocardium according to multiple functional, enzymatic, and morphological indices. The underlying mechanism was verified to involve the upregulation and activation of AMP-activated protein kinase α2, which promoted adaptive autophagy, increased energy supply, and maintained mitochondrial function. We believe that epigallocatechin-3-gallate is a candidate phytochemical against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Huan He
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Liang Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yang Qiao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Bin Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China.
| | - Ming He
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China.
| |
Collapse
|
47
|
Kara H, Orem A, Yulug E, Balaban Yucesan F, Kerimoglu G, Vanizor Kural B, Ozer Yaman S, Bodur A, Turedi S, Alasalvar C. Effects of hazelnut supplemented diet on doxorubicin-induced damage of reproductive system in male rats. J Food Biochem 2021; 45:e13973. [PMID: 34664725 DOI: 10.1111/jfbc.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
The present study was objected to investigate the effect of hazelnut supplemented diet on the levels of oxidative stress and fertility parameters against doxorubicin-induced testicular and epididymal tissue damage of male rats. Rats were randomly divided into four groups (each n = 8), namely control group (CG), doxorubicin group (DG), doxorubicin + hazelnut group (DHG), and doxorubicin + vitamin E group (DEG). This is the first study designed using DHG. Doxorubicin was intraperitoneally injected into all diet groups except CG at a dose of 3 mg/kg body weight on days 1, 7, 14, 21, and 28. In addition, DHG was supplemented with a hazelnut diet at a dose of 3 g/kg body weight/day and vitamin E was added to the drinking water of DEG at a dose of 50 mg/kg body weight/day. DHG reversed the side effects of doxorubicin and positively improved the epididymis sperm quality, testicular and epididymal tissue injury, testosterone level, epididymis oxidative stress index, and lipid peroxidation in male rats. These findings suggest that hazelnut has positive effects against doxorubicin dependent damage on male rats and it may be a promising supplement for amelioration of testicular toxicity. PRACTICAL APPLICATIONS: Hazelnut has numerous positive health effects due to its macronutrients, micronutrients, lipid-soluble compounds and bioactive phenolics. Studies have shown that regular consumption of hazelnut may have a positive effect on lipid parameters, oxidative stress, inflammation markers, and endothelial dysfunction in both healthy people and patients with chronic diseases. Although doxorubicin (Adriamycin, DOX) is an antibiotic that has been widely used in cancer treatment for nearly 30 years, it causes organ toxicity including testicular tissue. Hazelnut may have positive effects on the damage caused by DOX in the reproductive system. However, studies on the effect of hazelnut on male reproductive health are scarce. Therefore, this study provided a basis for the clinical evaluation of the effects of hazelnut on the reproductive system.
Collapse
Affiliation(s)
- Hanife Kara
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Amasya University, Amasya, Turkey.,Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Asım Orem
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Esin Yulug
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Fulya Balaban Yucesan
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gokcen Kerimoglu
- Faculty of Medicine, Department of Histology and Embryology, Karadeniz Technical University, Trabzon, Turkey
| | - Birgul Vanizor Kural
- Faculty of Medicine, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Akın Bodur
- Graduate School of Health Sciences, Department of Medical Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Sibel Turedi
- Faculty of Medicine, Department of Histology and Embryology, Harran University, Sanlıurfa, Turkey
| | | |
Collapse
|
48
|
Ferreira NH, Cunha NL, de Melo MRS, Fernandes FS, de Freitas KS, do Nascimento S, Ribeiro AB, de A E Silva ML, Cunha WR, Tavares DC. Betulinic acid exerts antigenotoxic and anticarcinogenic activities via inhibition of COX-2 and PCNA in rodents. J Biochem Mol Toxicol 2021; 35:e22917. [PMID: 34541749 DOI: 10.1002/jbt.22917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
Phytochemicals have been suggested as an effective strategy for cancer prevention. Within this context, triterpene betulinic acid (BA) exhibits several biological properties but its chemopreventive effect has not been fully demonstrated. The present study investigated the antigenotoxic potential of BA against doxorubicin (DXR)-induced genotoxicity using the mouse peripheral blood micronucleus assay, as well as its anticarcinogenic activity against 1,2dimethylhydrazine (DMH)-induced colorectal lesions in rats. Micronuclei (MN) assay and aberrant crypt foci assay were used to assess the antigenotoxic and the anticarcinogenic potential, respectively. The molecular mechanisms underlying the anticarcinogenic activity of BA were evaluated by assessing anti-inflammatory (COX-2) and antiproliferative (PCNA) pathways. The results demonstrated that BA at the dose of 0.5 mg/kg bodyweight exerted antigenotoxic effects against DXR, with a reduction of 70.2% in the frequencies of chromosomal damage. Animals treated with BA showed a 64% reduction in the number of preneoplastic lesions when compared to those treated with the carcinogen alone. The levels of COX-2 and PCNA expression in the colon were significantly lower in animals treated with BA and DMH compared to those treated with the carcinogen alone. The chemopreventive effect of BA is related, at least in part, to its antiproliferative and anti-inflammatory activity, indicating a promising potential of this triterpene in anticancer therapies, especially for colorectal cancer.
Collapse
Affiliation(s)
- Natália H Ferreira
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Nayanne L Cunha
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Matheus R S de Melo
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Fernanda S Fernandes
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Karoline S de Freitas
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Samuel do Nascimento
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Arthur B Ribeiro
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Márcio L de A E Silva
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Wilson R Cunha
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Denise C Tavares
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
49
|
Sacks B, Onal H, Martorana R, Sehgal A, Harvey A, Wastella C, Ahmad H, Ross E, Pjetergjoka A, Prasad S, Barsotti R, Young LH, Chen Q. Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. BMC Pharmacol Toxicol 2021; 22:49. [PMID: 34530934 PMCID: PMC8447656 DOI: 10.1186/s40360-021-00518-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Preconditioning of the heart ameliorates doxorubicin (Dox)-induced cardiotoxicity. We tested whether pretreating cardiomyocytes by mitochondrial-targeted antioxidants, mitoquinone (MitoQ) or SKQ1, would provide better protection against Dox than co-treatment. METHODS We investigated the dose-response relationship of MitoQ, SKQ1, and vitamin C on Dox-induced damage on H9c2 cardiomyoblasts when drugs were given concurrently with Dox (e.g., co-treatment) or 24 h prior to Dox (e.g., pretreatment). Moreover, their effects on intracellular and mitochondrial oxidative stress were evaluated by 2,7-dichlorofluorescin diacetate and MitoSOX, respectively. RESULTS Dox (0.5-50 μM, n = 6) dose-dependently reduced cell viability. By contrast, co-treatment of MitoQ (0.05-10 μM, n = 6) and SKQ1 (0.05-10 μM, n = 6), but not vitamin C (1-2000 μM, n = 3), significantly improved cell viability only at intermediate doses (0.5-1 μM). MitoQ (1 μM) and SKQ1 (1 μM) significantly increased cell viability to 1.79 ± 0.12 and 1.59 ± 0.08 relative to Dox alone, respectively (both p < 0.05). Interestingly, when given as pretreatment, only higher doses of MitoQ (2.5 μM, n = 9) and SKQ1 (5 μM, n = 7) showed maximal protection and improved cell viability to 2.19 ± 0.13 and 1.65 ± 0.07 relative to Dox alone, respectively (both p < 0.01), which was better than that of co-treatment. Moreover, the protective effects were attributed to the significant reduction in Dox-induced intracellular and mitochondrial oxidative stress. CONCLUSION The data suggest that MitoQ and SKQ1, but not vitamin C, mitigated DOX-induced damage. Moreover, MitoQ pretreatment showed significantly higher cardioprotection than its co-treatment and SKQ1, which may be due to its better antioxidant effects.
Collapse
Affiliation(s)
- Brian Sacks
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Halil Onal
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Rose Martorana
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Amogh Sehgal
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Amanda Harvey
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Catherine Wastella
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Hafsa Ahmad
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Erin Ross
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Adona Pjetergjoka
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Sachin Prasad
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Robert Barsotti
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Lindon H Young
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Qian Chen
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
50
|
Shoham Y, Sabbag I, Singer AJ. Development of a porcine hard-to-heal wound model: evaluation of a bromelain-based enzymatic debriding agent. J Wound Care 2021; 30:VIi-VIx. [PMID: 34597174 DOI: 10.12968/jowc.2021.30.sup9a.vi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIMS We describe the development of a novel porcine eschar model and compare the debridement efficacy of various concentrations of a novel bromelain-based enzymatic agent with collagenase. METHODS Full thickness excisional wounds were created on pigs and injected intradermally with various doses of doxorubicin. Wounds were monitored for a period of 46 days for the development of eschar and wound closure. After determining the optimal concentration and dose of doxorubicin resulting in non-healing eschars, these conditions were used to create additional wounds on another set of animals. The resulting eschars were treated with various concentrations of a novel bromelain-based enzymatic agent (EscharEx-02) or collagenase. The primary endpoint was greater than 95% removal of the central eschar. RESULTS Consistent eschars composed of two distinct areas (a central area of exudate and slough representing the hard-to-heal wound bed, and a peripheral area of full-thickness mummified necrosis) were seen after injection of doxorubicin (0.5 ml/cm2 of stock solution 0.75mg/ml) at one and six days after wound creation. Complete removal of the central eschar was achieved in all wounds after five and eight treatments with 5% and 2% EscharEx-02 respectively. Complete removal of the central eschar with collagenase was achieved in 0% and 82% of the wounds after 10 and 16 treatments respectively. CONCLUSIONS We describe a porcine model for creating eschars similar to hard-to-heal wounds in humans. A novel bromelain-based enzymatic debridement agent was more effective than a commercially available collagenase in removing eschars in this wound model.
Collapse
Affiliation(s)
- Yaron Shoham
- Department of Plastic and Reconstructive Surgery, Soroka Medical Center, Ben-Gurion University, Beer-Sheba, Israel
| | - Itai Sabbag
- Lahav Research Institute, Kibbutz Lahav, Israel
| | - Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, US
| |
Collapse
|