1
|
Peña-Corona SI, Chávez-Corona JI, Pérez-Caltzontzin LE, Vargas-Estrada D, Mendoza-Rodríguez CA, Ramos-Martínez E, Cerbón-Gutiérrez JL, Herrera-Barragán JA, Quintanar-Guerrero D, Leyva-Gómez G. Melatonin and Vitamins as Protectors against the Reproductive Toxicity of Bisphenols: Which Is the Most Effective? A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:14930. [PMID: 37834378 PMCID: PMC10573514 DOI: 10.3390/ijms241914930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.
Collapse
Affiliation(s)
- Sheila I. Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Juan I. Chávez-Corona
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Luis E. Pérez-Caltzontzin
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - C. Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
| | - Edgar Ramos-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 04510, Mexico
| | - Jose L. Cerbón-Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José A. Herrera-Barragán
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| |
Collapse
|
2
|
Zhang L, Song Z, Zhou Y, Zhong S, Yu Y, Liu T, Gao X, Li L, Kong C, Wang X, He L, Gan J. The Accumulation of Toxic Elements (Pb, Hg, Cd, As, and Cu) in Red Swamp Crayfish ( Procambarus clarkii) in Qianjiang and the Associated Risks to Human Health. TOXICS 2023; 11:635. [PMID: 37505600 PMCID: PMC10384343 DOI: 10.3390/toxics11070635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Due to rapidly expanding crayfish consumption worldwide, the food safety of red swamp crayfish (Procambarus clarkii) is of great concern. China is the largest consumer and producer of crayfish globally. As of yet, it is unknown whether the main crayfish production cities in China are within safe levels of toxic heavy metals and metalloids. For 16 consecutive years, Qianjiang city ranked first in China in processing export volumes of red swamp crayfish. This study presents a comprehensive analysis of the enrichment levels and associated health risks of the species in Qianjiang. In our research, samples of four crayfish tissues, including the head, hepatopancreas, gills, and muscles, were collected from 38 sampling sites distributed in Qianjiang to evaluate the concentration levels of five heavy metals (Pb, Hg, Cd, As, and Cu). The concentration levels of all five metals in muscle did not surpass the national standard. Furthermore, eight significant correlations have been found. For further in-depth assess risk of crayfish in Qianjiang, estimated daily intake (EDI), target hazard quotient (THQ), carcinogenic risk (CR), and estimated maximum allowable consumption rates (CRmm) were evaluated in the abdomen muscle and hepatopancreas. The THQ values for each metal were found to be less than 1, while the CR values were below 10-6. Additionally, the CRmm for adults was determined to be 17.2 meals per month. These findings, based on the analysis of five metallic elements included in this study, suggest that the consumption of crayfish abdomen muscle in Qianjiang does not pose any significant health risks. However, it is noteworthy that certain regions exhibit elevated levels of arsenic in the hepatopancreas, surpassing the national standard, thereby rendering them unsuitable for excessive consumption. In general, the findings can be used to provide guidance for safe dietary practices in China.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ziwei Song
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yuntao Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoping Gao
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Lekang Li
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Chiping Kong
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Xinna Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| |
Collapse
|
3
|
Gerzen OP, Nabiev SR, Klinova SV, Minigalieva IA, Sutunkova MP, Katsnelson BA, Nikitina LV. Molecular mechanisms of mechanical function changes of the rat myocardium under subchronic lead exposure. Food Chem Toxicol 2022; 169:113444. [PMID: 36179994 DOI: 10.1016/j.fct.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
A moderate degree of lead intoxication was observed in male rats after repeated intraperitoneal injections with two doses of lead acetate three times a week during 5 (12.5 mg of Pb per kg body mass) and 6 (6.01 mg of Pb per kg body mass) weeks. Using an in vitro motility assay, we investigated the impact of this intoxication on the characteristics of actin-myosin interaction and its regulation in the atria, right, and left ventricles. Both lead doses exposure decreased the maximum sliding velocity of reconstituted thin filaments over myosin and fraction of motile filaments in all heart chambers, caused the myosin isoforms shift towards slower β-myosin heavy chains in ventricles and decreased regulatory light chain phosphorylation in atria. No statistically significant difference was found in force and calcium regulation of actin-myosin interaction. A dose-dependent effect of lead on myosin functional characteristics was found in all heart chambers, but the degree of this effect varied depending on the heart chamber.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
4
|
Klinova SV, Minigalieva IA, Protsenko YL, Sutunkova MP, Gurvich VB, Ryabova JV, Valamina IE, Gerzen OP, Nabiev SR, Balakin AA, Lookin ON, Lisin RV, Kuznetsov DA, Privalova LI, Panov VG, Katsnelson LB, Nikitina LV, Katsnelson BA. Changes in the Cardiotoxic Effects of Lead Intoxication in Rats Induced by Muscular Exercise. Int J Mol Sci 2022; 23:ijms23084417. [PMID: 35457235 PMCID: PMC9029617 DOI: 10.3390/ijms23084417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to lead is associated with an increased risk of cardiovascular diseases. Outbred white male rats were injected with lead acetate intraperitoneally three times a week and/or were forced to run at a speed of 25 m/min for 10 min 5 days a week. We performed noninvasive recording of arterial pressure, electrocardiogram and breathing parameters, and assessed some biochemical characteristics. Electrophoresis in polyacrylamide gel was used to determine the ratio of myosin heavy chains. An in vitro motility assay was employed to measure the sliding velocity of regulated thin filaments on myosin. Isolated multicellular preparations of the right ventricle myocardium were used to study contractility in isometric and physiological modes of contraction. Exercise under lead intoxication normalized the level of calcium and activity of the angiotensin-converting enzyme in the blood serum, normalized the isoelectric line voltage and T-wave amplitude on the electrocardiogram, increased the level of creatine kinase-MB and reduced the inspiratory rate. Additionally, the maximum sliding velocity and the myosin heavy chain ratio were partly normalized. The effect of exercise under lead intoxication on myocardial contractility was found to be variable. In toto, muscular loading was found to attenuate the effects of lead intoxication, as judged by the indicators of the cardiovascular system.
Collapse
Affiliation(s)
- Svetlana V. Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Ilzira A. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Yuri L. Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Marina P. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Vladimir B. Gurvich
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Julia V. Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Irene E. Valamina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Oksana P. Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Salavat R. Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Alexander A. Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Oleg N. Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Ruslan V. Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Daniil A. Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Larisa I. Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Vladimir G. Panov
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Leonid B. Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Larisa V. Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Boris A. Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
- Correspondence: ; Tel.: +7-343-253-04-21 or +7-922-126-30-90; Fax: +7-343-3717-740
| |
Collapse
|
5
|
Gerzen OP, Nabiev SR, Nikitina LV. Influence of Chronic Lead Intoxication on Functional Characteristics and Isoform Composition of Left Ventricular Myosin in the Rat Heart. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302104013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Klinova SV, Katsnelson BA, Minigalieva IA, Gerzen OP, Balakin AA, Lisin RV, Butova KA, Nabiev SR, Lookin ON, Katsnelson LB, Privalova LI, Kuznetsov DA, Shur VY, Shishkina EV, Makeev OH, Valamina IE, Panov VG, Sutunkova MP, Nikitina LV, Protsenko YL. Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. Int J Mol Sci 2021; 22:ijms22073466. [PMID: 33801669 PMCID: PMC8036427 DOI: 10.3390/ijms22073466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023] Open
Abstract
Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO–NP and PbO–NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling β–MHC. The type of CdO–NP + PbO–NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb–NP and CdO–NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.
Collapse
Affiliation(s)
- Svetlana V. Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Boris A. Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-3717-740; Cell: +7-922-126-30-90
| | - Ilzira A. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Oksana P. Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Alexander A. Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Ruslan V. Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Ksenia A. Butova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Salavat R. Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Oleg N. Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Leonid B. Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Larisa I. Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Daniil A. Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Vladimir Ya. Shur
- School of Natural Sciences and Mathematics, The Ural Federal University, 620002 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.)
| | - Ekaterina V. Shishkina
- School of Natural Sciences and Mathematics, The Ural Federal University, 620002 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.)
| | - Oleg H. Makeev
- The Central Research Laboratory, The Ural State Medical University, 620014 Yekaterinburg, Russia; (O.H.M.); (I.E.V.)
| | - Irene E. Valamina
- The Central Research Laboratory, The Ural State Medical University, 620014 Yekaterinburg, Russia; (O.H.M.); (I.E.V.)
| | - Vladimir G. Panov
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Marina P. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Larisa V. Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Yuri L. Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| |
Collapse
|
7
|
Bushueva TV, Minigalieva IA, Panov VG, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Naumova AS, Artemenko EP, Katsnelson BA. Comparative and Combined In Vitro Vasotoxicity of Nanoparticles Containing Lead and Cadmium. Dose Response 2021; 19:1559325820982163. [PMID: 33628148 PMCID: PMC7882761 DOI: 10.1177/1559325820982163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 01/15/2023] Open
Abstract
In vitro toxicological experiments were performed on an endothelial cell line exposed to different doses of spherical nanoparticles of cadmium and/or of lead sulfides with mean diameter 37 ± 5 nm and 24 ± 4 nm, respectively. Toxic effects were estimated by Luminescent Cell Viability Assay, endothelin-1 concentration and cell size determination. Some dose-response relationships were typically monotonic (well approximated with hyperbolic function) while others were bi- or even 3-phasic and could be described within the expanded hormesis paradigm. The combined toxicity type variated depending on the effect it was assessed by.
Collapse
Affiliation(s)
- Tatiana V Bushueva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.,Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir B Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Ekaterina V Shishkina
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Anna S Naumova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Elizaveta P Artemenko
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
8
|
Sutunkova MP, Minigalieva IA, Klinova SV, Panov VG, Gurvich VB, Privalova LI, Sakhautdinova RR, Shur VY, Shishkina EV, Shtin TN, Riabova JV, Katsnelson BA. Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Nanotoxicology 2020; 15:205-222. [PMID: 33186499 DOI: 10.1080/17435390.2020.1845410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moderate subchronic intoxication was induced in rats by repeated intraperitoneal injections of PbO (49.6 ± 16.0 nm) and/or CdO (57.0 ± 13.0 nm) nanoparticles (NP) three times a week during 6 weeks. In particular, there was a reduction in arterial blood pressure and in blood concentrations of a number of factors controlling vasoconstriction and vasodilation, particularly of endothelin 1 (ET-1). This toxic effect was attenuated with a bioprotective complex administered in the background. The study confirmed as well that the combined binary action typology varies depending on which effect it is estimated by.
Collapse
Affiliation(s)
- Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.,Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Renata R Sakhautdinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Ekaterina V Shishkina
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Tatiana N Shtin
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Julia V Riabova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
9
|
Minigalieva IA, Shtin TN, Makeyev OH, Panov VG, Privalova LI, Gurvic VB, Sutunkova MP, Bushueva TV, Sakhautdinova RR, Klinova SV, Solovyeva SN, Chernyshov IN, Shuman EA, Korotkov AA, Katsnelson BA. Some outcomes and a hypothetical mechanism of combined lead and benzo(a)pyrene intoxication, and its alleviation with a complex of bioprotectors. Toxicol Rep 2020; 7:986-994. [PMID: 32874921 PMCID: PMC7451791 DOI: 10.1016/j.toxrep.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022] Open
Abstract
Rats were injected repeatedly intraperitoneally with lead acetate and/or benzo(а)pyrene solutions in various dose ratios. Under combined exposure the organism load with benzo(а)pyrene was increased while that with its metabolites reduced. The genotoxic effect of the combined exposure was higher than that of benzo(a)pyrene alone. This effect was inhibited by a complex of antitoxic bioprotectors.
Rats were exposed 3 times a week during 6 weeks to repeated intraperitoneal injections of lead acetate solution in water (Pb) and/or benzo(а)pyrene solution in petrolatum oil (B(а)P) in various dose ratios. Towards the end of the period, the animals developed a moderate subchronic intoxication having some features characteristic of lead effects. The type of combined toxicity estimated with the help of isoboles constructed by the Response Surface Methodology was found to be varied depending on a particular effect, its level, and dose ratio. However, Pb and B(a)P in combination often displayed an additive or even superadditive action. In the group exposed to this combination compared with the group of rats exposed to B(a)P alone, its concentration in the organism was increased while the concentration of some B(a)P oxidative metabolism products was reduced. Such inhibition of B(a)P biotransformation, assumingly associated with impaired heme and, thus, cytochrome P450 synthesis induced by lead intoxication, can serve as an explanation for certain enhancement of the genotoxic effect of B(a)P. This effect was not present in the same combined intoxication if a complex of antitoxic bioprotectors was being administered in the background.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Tatiana N Shtin
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Ural State Medical University, 620109 Ekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia.,The Institute of Industrial Ecology UB of RAS, 620990 Ekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Vladimir B Gurvic
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Tatiana V Bushueva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Renata R Sakhautdinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Ivan N Chernyshov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Eugene A Shuman
- The Ural State Medical University, 620109 Ekaterinburg, Russia
| | | | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| |
Collapse
|
10
|
Katsnelson BA, Klinova SV, Gerzen OP, Balakin AA, Lookin ON, Lisin RV, Nabiev SR, Privalova LI, Minigalieva IA, Panov VG, Katsnelson LB, Nikitina LV, Kuznetsov DA, Protsenko YL. Force-velocity characteristics of isolated myocardium preparations from rats exposed to subchronic intoxication with lead and cadmium acting separately or in combination. Food Chem Toxicol 2020; 144:111641. [PMID: 32758638 DOI: 10.1016/j.fct.2020.111641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023]
Abstract
This investigation continues our study of the effects of Pb-Cd poisoning on the heart, extending the enquiry from isometric to auxotonic contractions, thereby examining the effect on the ability of myocardial tissues to perform mechanical work. Different shifts were revealed in myocardial force-velocity relations following subchronic exposure of rats to lead acetate and cadmium chloride acting separately, in combination, or in combination with a bioprotective complex (BPC). The experiments were conducted on isolated preparations of trabecules and papillary muscles of the right ventricle in physiological loading conditions and on isolated heart muscle contractile proteins examined by the in vitro motility assay. The results of the latter correlate with the shifts in the ratio of cardiac myosin isoforms. The amount of work performed by the myocardium was calculated on the basis of the tension-shortening loop area and was found to be similar in the preparations from all experimental groups. This fact presumably reflects adaptive capacity of the myocardial function even when contractility is damaged due to the metallic intoxication of a moderate severity. Some characteristics of rat myocardium altered by the impact of lead-cadmium intoxication became fully or partly normalized if intoxication developed against background administration of a bioprotective complex (BPC). Together with previously reported results obtained in the isometric mode of contractility, all these results strengthen the scientific foundations of risk assessment and risk management projects in the occupational and environmental conditions characterized by human exposure to lead and/or cadmium.
Collapse
Affiliation(s)
- Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ruslan V Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia; The Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
11
|
Minigaliyeva IA, Sutunkova MP, Gurvich VB, Bushueva TV, Klinova SV, Solovyeva SN, Chernyshov IN, Valamina IE, Shur VY, Shishkina EV, Makeyev OH, Panov VG, Privalova LI, Katsnelson BA. An overview of experiments with lead-containing nanoparticles performed by the Ekaterinburg nanotoxicological research team. Nanotoxicology 2020; 14:788-806. [PMID: 32396411 DOI: 10.1080/17435390.2020.1762132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Over the past few years, the Ekaterinburg (Russia) interdisciplinary nanotoxicological research team has carried out a series of investigations using different in vivo and in vitro experimental models in order to elucidate the cytotoxicity and organ-systemic and organism-level toxicity of lead-containing nanoparticles (NP) acting separately or in combinations with some other metallic NPs. The authors claim that their many-sided experience in this field is unique and that some of their important results have been obtained for the first time. This paper is an overview of the team's previous publications in different journals. It is suggested to be used as a compact scientific base for assessing health risks associated not only with the production and usage of engineered lead-containing NPs but also with their inevitable by-production as toxic air pollutants in the metallurgy of lead, copper or their alloys and in soldering operations.
Collapse
Affiliation(s)
- Ilzira A Minigaliyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana V Bushueva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana V Klinova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ivan N Chernyshov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| | | | - Oleg H Makeyev
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir G Panov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.,The Institute of Industrial Ecology, Russian Academy of Sciences - Urals Branch, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
12
|
Panov V, Minigalieva I, Bushueva T, Fröhlich E, Meindl C, Absenger-Novak M, Shur V, Shishkina E, Gurvich V, Privalova L, Katsnelson BA. Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Dose Response 2020; 18:1559325820914180. [PMID: 32231470 PMCID: PMC7088228 DOI: 10.1177/1559325820914180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Spherical nanoparticles (NPs) of cadmium and lead sulfides (diameter 37 ± 5 and 24 ± 4 nm, respectively) have been found to be cytotoxic for HL-1 cardiomyocytes as evidenced by decrease in adenosine triphosphate-dependent luminescence. Cadmium sulfide (CdS)-NPs were discovered to produce a much greater cytotoxic impact than lead sulphide (PbS)-NP. Given the same dose range, CdS-NP reduced the number of calcium spikes. A similar effect was observed for small doses of PbS-NP. In addition to cell hypertrophy under the impact of certain doses of CdS-NP and PbS-NP, doses causing cardiomyocyte size reduction were identified. For these 3 outcomes, we obtained both monotonic "dose-response" functions (well approximated by the hyperbolic function) and different variants of non-monotonic ones for which we found adequate mathematical expressions by modifying certain models of hormesis available in the literature. Data analysis using a response surface linear model with a cross-term provided new support to the previously established postulate that a diversity of types of joint action characteristic of one and the same pair of damaging agents is one of the important assertions of the general theory of combined toxicity.
Collapse
Affiliation(s)
- Vladimir Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira Minigalieva
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana Bushueva
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Eleonore Fröhlich
- Center for Medical Research of the Medical University of Graz, Austria
| | - Claudia Meindl
- Center for Medical Research of the Medical University of Graz, Austria
| | | | - Vladimir Shur
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina Shishkina
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Vladimir Gurvich
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa Privalova
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
13
|
Protsenko YL, Klinova SV, Gerzen OP, Privalova LI, Minigalieva IA, Balakin AA, Lookin ON, Lisin RV, Butova KA, Nabiev SR, Katsnelson LB, Nikitina LV, Katsnelson BA. Changes in rat myocardium contractility under subchronic intoxication with lead and cadmium salts administered alone or in combination. Toxicol Rep 2020; 7:433-442. [PMID: 32181144 PMCID: PMC7063142 DOI: 10.1016/j.toxrep.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
Subchronic intoxications induced in male rats by repeated intraperitoneal injections of lead acetate and cadmium chloride, administered either alone or in combination, are shown to affect the biochemical, cytological and morphometric parameters of blood, liver, heart and kidneys. The single twitch parameters of myocardial trabecular and papillary muscle preparations were measured in the isometric regime to identify changes in the heterometric (length-force) and chronoinotropic (frequency-force) contractility regulation systems. Differences in the responses of these systems in trabecules and papillary muscles to the above intoxications are shown. A number of myocardium mechanical characteristics changing in rats under the effect of a combined lead-cadmium intoxication and increased proportion of α-myosin heavy chains were observed to normalize fully or partially if such intoxication was induced against background administration of a proposed bioprotective complex. Based on the experimental results and literature data, some assumptions are suggested concerning the mechanisms of the cardiotoxic effects produced by lead and cadmium.
Collapse
Affiliation(s)
- Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa I Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | - Ruslan V Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ksenya A Butova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
14
|
Sutunkova MP, Solovyeva SN, Chernyshov IN, Klinova SV, Gurvich VB, Shur VY, Shishkina EV, Zubarev IV, Privalova LI, Katsnelson BA. Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. Int J Mol Sci 2020; 21:ijms21030690. [PMID: 31973040 PMCID: PMC7038071 DOI: 10.3390/ijms21030690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m3 during 5 days for 4 h a day in a nose-only setup. A control group of rats were sham-exposed in parallel under similar conditions. Even this short-time exposure of a relatively low level was associated with nanoparticles retention demonstrable by transmission electron microscopy in the lungs and the olfactory brain. Some impairments were found in the organism’s status in the exposed group, some of which might be considered lead-specific toxicological outcomes (in particular, increase in reticulocytes proportion, in δ-aminolevulinic acid (δ-ALA) urine excretion, and the arterial hypertension’s development).
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana N. Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Ivan N. Chernyshov
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana V. Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir B. Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir Ya. Shur
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ekaterina V. Shishkina
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ilya V. Zubarev
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Larisa I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Boris A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-371-77-40
| |
Collapse
|