1
|
Massaga C, Paul L, Kwiyukwa LP, Vianney JM, Chacha M, Raymond J. Computational analysis of Urolithin A as a potential compound for anti-inflammatory, antioxidant, and neurodegenerative pathways. Free Radic Biol Med 2025; 227:508-520. [PMID: 39643139 DOI: 10.1016/j.freeradbiomed.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/24/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Urolithin A, an active precursor derived from the metabolism of ellagitanins in rats and humans, is known for its potential health benefits, including stimulating mitophagy and promoting muscular skeletal function. While experimental studies have demonstrated Urolithin A's potential to enhance cellular health, the detailed molecular interactions through which Urolithin A exerts its effects are not fully elucidated. In this study, we investigated the anti-inflammatory, antioxidation and neuroprotective abilities of Urolithin A in selected targets using molecular docking and molecular dynamics simulation methods. Molecular docking studies revealed the strong affinity for receptors involved in inflammation activities, including human p38 MAP kinase (4DLI) with -10.1 kcal/mol interacting with SER252, LYS249, and ASP294 residues. The binding energy in the 5KIR target was -8.6 kcal/mol, interacting with GLN203 through hydrogen bond, and lastly, 1A9U with an affinity of -6.8 with no hydrogen bond formed with Urolithin A and interacts with van der Waals interactions. In oxidant targets, the influence of Urolithin was observed in 1OG5 with -7.9 kcal/mol interacting with GLN185, PHE447. For the 1M17 target, the binding affinity was -7.7 kcal/mol interacting with THR95 residue and 1ZXM target at -7.4 kcal/mol interacting with TYR36, TYR216, and LEU234 residues. The neuroprotective ability of urolithin A was observed in selected targets for acetylcholinesterase; the binding energy was -9.7 kcal/mol interacting with van der Waals and π interactions; for the 1GQR target, the binding energy was -9.9 kcal/mol interacting with van der Waals and π interactions and for β-amylase (1iyt) the binding energy was -5.5 forming hydrogen bond with SER8, GLN15 residues. Molecular Dynamics simulations at 100 ns of Urolithin A compared with reference 4DLI. The Urolithin A-4DLI complex exhibited greater stability than the reference receptor, as confirmed by RMSD, RMSF, Radius of Gyration, Hydrogen bond, and SASA analyses.
Collapse
Affiliation(s)
- Caroline Massaga
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Lucas Paul
- Department of Chemistry, Dar es Salaam University College of Education, P.O. Box 2329, Dar es Salaam, Tanzania.
| | - Lucas P Kwiyukwa
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania.
| | - John-Mary Vianney
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Musa Chacha
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| | - Jofrey Raymond
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| |
Collapse
|
2
|
Abd El-Lateef HM, Bafail D, Alhalees NHY, Toson EEM, Abu Almaaty AH, Elsayed EH, Zaki I, Youssef MM. Synthesis, characterization and biological research of novel 2-(quinoline-4-carbonyl)hydrazide-acrylamide hybrids as potential anticancer agents on MCF-7 breast carcinoma cells by targeting EGFR-TK. RSC Adv 2024; 14:23495-23504. [PMID: 39071480 PMCID: PMC11273260 DOI: 10.1039/d4ra03963g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Novel derivatives of the 2-(quinoline-4-carbonyl)hydrazide scaffold carrying the acrylamide moiety were synthesized and tested for their cytotoxic efficacy against the breast carcinoma MCF-7 cell line. The most active members 6a, 6b and 6h revealed significant antiproliferative action with an IC50 value of 3.39, 5.94 and 2.71 μM, respectively, which were more potent than the reference drug Dox (IC50 = 6.18 μM). Aiming to enlighten the antiproliferative activity, compounds 6a and 6h were examined for their inhibitory potential against EGFR kinase. The results demonstrated that compound 6h displayed potent inhibitory activity, as concluded from the IC50 value (IC50 = 0.22 μM) compared to the standard drug Lapatinib (IC50 value of 0.18 μM). Compound 6h was found to induce significant cellular cycle arrest at the G1 phase and provoke apoptosis. Besides, compound 6h triggered apoptosis via upregulating p53 and initiator caspase 9 by 7.4- and 8.7-fold, respectively, compared to DMSO controls.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University Sohag 82524 Egypt
| | - Duaa Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University Jeddah Saudi Arabia
| | | | - Eslam E M Toson
- Chemistry Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Ali H Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Elsherbiny H Elsayed
- Chemistry Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University Port Said Egypt
| | - Magdy M Youssef
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| |
Collapse
|
3
|
Liu Y, Li Y, Jiang Y, Zheng X, Wang T, Li J, Zhang B, Zhu J, Wei X, Huang R, Zhang Y, Jin Q. Quercetin Promotes Apoptosis of Gastric Cancer Cells through the EGFR-ERK Signaling Pathway. J Food Biochem 2024; 2024:1-23. [DOI: 10.1155/2024/9945178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Previous studies have shown that various active components of licorice have anticancer effects. However, few studies have investigated the mechanism of action of licorice in gastric cancer. The effect of active compounds in licorice on the biological activity of gastric cancer cells was investigated in vitro (MKN-45 cells). Network pharmacology and molecular docking were used to predict the potential targets of licorice against gastric cancer and verify the binding stability of target proteins to compounds. In addition, the anticancer effect of licorice was assessed using a mouse model of gastric cancer. The licorice-active component (quercetin) effectively inhibited proliferation, caused cell cycle arrest, and promoted apoptosis in MKN-45 cells, accompanied by increased Cyt-C, decreased BCL-2, and decreased mitochondrial membrane potential and mitochondrial damage. Further research showed that quercetin targeted EGFR, blocked the ERK signaling pathway, and downregulated PTGS2. In the in vivo experiment, quercetin treatment resulted in reduced tumor volume, decreased Ki67 and BCL-2 expression in tumor tissue, increased caspase 3 and BAX levels, and induced mitochondrial damage.
Collapse
Affiliation(s)
- Yali Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yan Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanjun Jiang
- Gansu Jiantou Technology Research and Development Co., Ltd., Lanzhou, China
| | - Xin Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | | | - Jing Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Biyun Zhang
- Tianshui Fourth People’s Hospital, Tianshui, China
| | - Jiarui Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xintong Wei
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ruihua Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qiaoying Jin
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Wang L, Zhang Y, Song Z, Liu Q, Fan D, Song X. Ginsenosides: a potential natural medicine to protect the lungs from lung cancer and inflammatory lung disease. Food Funct 2023; 14:9137-9166. [PMID: 37801293 DOI: 10.1039/d3fo02482b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Lung cancer is the malignancy with the highest morbidity and mortality. Additionally, pulmonary inflammatory diseases, such as pneumonia, acute lung injury, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF), also have high mortality rates and can promote the development and progression of lung cancer. Unfortunately, available treatments for them are limited, so it is critical to search for effective drugs and treatment strategies to protect the lungs. Ginsenosides, the main active components of ginseng, have been shown to have anti-cancer and anti-inflammatory activities. In this paper, we focus on the beneficial effects of ginsenosides on lung diseases and their molecular mechanisms. Firstly, the molecular mechanism of ginsenosides against lung cancer was summarized in detail, mainly from the points of view of proliferation, apoptosis, autophagy, angiogenesis, metastasis, drug resistance and immunity. In in vivo and in vitro lung cancer models, ginsenosides Rg3, Rh2 and CK were reported to have strong anti-lung cancer effects. Then, in the models of pneumonia and acute lung injury, the protective effect of Rb1 was particularly remarkable, followed by Rg3 and Rg1, and its molecular mechanism was mainly associated with targeting NF-κB, Nrf2, MAPK and PI3K/Akt pathways to alleviate inflammation, oxidative stress and apoptosis. Additionally, ginsenosides may also have a potential health-promoting effect in the improvement of COPD, asthma and PF. Furthermore, to overcome the low bioavailability of CK and Rh2, the development of nanoparticles, micelles, liposomes and other nanomedicine delivery systems can significantly improve the efficacy of targeted lung cancer treatment. To conclude, ginsenosides can be used as both anti-lung cancer and lung protective agents or adjuvants and have great potential for future clinical applications.
Collapse
Affiliation(s)
- Lina Wang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Zhimin Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Biotechnology & Biomedicine Research Institute, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
Cao Y, Liu B, Li W, Geng F, Gao X, Yue L, Liu H, Liu C, Su Z, Lü J, Pan X. Protopanaxadiol manipulates gut microbiota to promote bone marrow hematopoiesis and enhance immunity in cyclophosphamide-induced immunosuppression mice. MedComm (Beijing) 2023; 4:e222. [PMID: 36845073 PMCID: PMC9950037 DOI: 10.1002/mco2.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Protopanaxadiol (PPD) has potential immunomodulatory effects, but the underlying mechanism remains unclear. Here, we explored the potential roles of gut microbiota in the immunity regulation mechanisms of PPD using a cyclophosphamide (CTX)-induced immunosuppression mouse model. Our results showed that a medium dose of PPD (PPD-M, 50 mg/kg) effectively ameliorated the immunosuppression induced by CTX treatment by promoting bone marrow hematopoiesis, increasing the number of splenic T lymphocytes and regulating the secretion of serum immunoglobulins and cytokines. Meanwhile, PPD-M protected against CTX-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus, Oscillospirales, Turicibacter, Coldextribacter, Lachnospiraceae, Dubosiella, and Alloprevotella and reducing the relative abundance of Escherichia-Shigella. Importantly, PPD-M lost the ability to promote bone marrow hematopoiesis and enhance immunity when the gut microbiota was depleted by broad-spectrum antibiotics. Moreover, PPD-M promoted the production of microbiota-derived immune-enhancing metabolites including cucurbitacin C, l-gulonolactone, ceramide, DG, prostaglandin E2 ethanolamide, palmitoyl glucuronide, 9R,10S-epoxy-stearic acid, and 9'-carboxy-gamma-chromanol. KEGG topology analysis showed that the PPD-M treatment significantly enriched the sphingolipid metabolic pathway with ceramide as a main metabolite. Our findings reveal that PPD enhances immunity by manipulating gut microbiota and has the potential to be used as an immunomodulator in cancer chemotherapy.
Collapse
Affiliation(s)
- Yuru Cao
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Wenzhen Li
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Huiping Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Congying Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Zhenguo Su
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Junhong Lü
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
6
|
Recent advances in ginsenosides against respiratory diseases: Therapeutic targets and potential mechanisms. Biomed Pharmacother 2023; 158:114096. [PMID: 36502752 DOI: 10.1016/j.biopha.2022.114096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-β/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.
Collapse
|
7
|
Zhuo FF, Guo Q, Zheng YZ, Liu TT, Yang Z, Xu QH, Jiang Y, Liu D, Zeng KW, Tu PF. Photoaffinity Labeling-Based Chemoproteomic Strategy Reveals RBBP4 as a Cellular Target of Protopanaxadiol against Colorectal Cancer Cells. Chembiochem 2022; 23:e202200038. [PMID: 35442561 DOI: 10.1002/cbic.202200038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/19/2022] [Indexed: 12/09/2022]
Abstract
Protopanaxadiol (PPD), a main ginseng metabolite, exerts powerful anticancer effects against multiple types of cancer; however, its cellular targets remain elusive. Here, we synthesized a cell-permeable PPD probe via introducing a bifunctional alkyne-containing diazirine photo-crosslinker and performed a photoaffinity labeling-based chemoproteomic study. We identified retinoblastoma binding protein 4 (RBBP4), a chromatin remodeling factor, as an essential cellular target of PPD in HCT116 colorectal cancer cells. PPD significantly decreased RBBP4-dependent trimethylation at lysine 27 of histone H3 (H3K27me3), a crucial epigenetic marker that correlates with histologic signs of colorectal cancer aggressiveness, and PPD inhibition of proliferation and migration of HCT116 cells was antagonized by RBBP4 RNA silencing. Collectively, our study highlights a previously undisclosed anti-colorectal cancer cellular target of the ginseng metabolite and advances the fundamental understanding of RBBP4 functions via a chemical biology strategy.
Collapse
Affiliation(s)
- Fang-Fang Zhuo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi-He Xu
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, WC2R 2LS, London, UK
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
8
|
Zhang J, Li M, Zhao T, Cao J, Liu Y, Wang Y, Wang Y, Cheng G. E Se tea alleviates acetaminophen-induced liver injury by activating the Nrf2 signaling pathway. Food Funct 2022; 13:7240-7250. [PMID: 35723070 DOI: 10.1039/d1fo02491d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
E Se tea is a traditional herbal tea used in the prevention of liver diseases. However, the hepatoprotective effect of E Se tea has not been investigated. This study aimed to determine the protective effect of E Se tea on acetaminophen (APAP)-induced acute liver injury and its potential mechanism. Hot water extracts and aqueous-ethanol extracts of E Se tea were obtained, which were analyzed to determine the chemical constituents of the tea. Phlorizin and phloretin were found to be the dominant chemical compounds. Histopathological analysis showed that E Se tea extract inhibited APAP-induced inflammatory infiltration, necrosis, and cellular vacuolization of hepatocytes in the liver tissue. The E Se tea extract could significantly ameliorate liver injury, inhibit an inflammatory response, and reduce oxidative stress. Western blot analysis revealed that E Se tea extract upregulated the expressions of nuclear Nrf2, HO-1 and NQO1 proteins and downregulated the expressions of cytoplasmic Nrf2 and Keap1 proteins in the hepatocyte. qPCR results showed that E Se tea extract also increased the expression of antioxidant genes (SOD2, Gpx1, GCLC and GCLM). These findings exhibited that E Se tea, enriched in dihydrochalcones, can be used to effectively prevent and manage liver dysfunction.
Collapse
Affiliation(s)
- Jinke Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Mengcheng Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tianrui Zhao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jianxin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yaping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yongpeng Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
9
|
Li C, Zhan Y, Zhang R, Tao Q, Lang Z, Zheng J. 20(S)- Protopanaxadiol suppresses hepatic stellate cell activation via WIF1 demethylation-mediated inactivation of the Wnt/β-catenin pathway. J Ginseng Res 2022. [DOI: 10.1016/j.jgr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Diao M, Liang Y, Zhao J, Zhang J, Zhang T. Complexation of ellagic acid with α-lactalbumin and its antioxidant property. Food Chem 2022; 372:131307. [PMID: 34634588 DOI: 10.1016/j.foodchem.2021.131307] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/04/2022]
Abstract
Ellagic acid possesses numerous bioactivities such as antioxidant activity and anti-inflammatory effect. In this work, the binding interaction between ellagic acid and α-lactalbumin was investigated by multi-spectroscopy and the results suggested that ellagic acid could change the conformation of α-lactalbumin. Chromatographic analysis proved the interaction of α-lactalbumin with ellagic acid taken place in less than 30 min and this interaction was stable. Computer simulations showed that both aromatic clusters Ⅰ and Ⅱ of α-lactalbumin were active sites for ellagic acid. Interestingly, both the results of molecular docking and molecular dynamics simulations suggested that ellagic acid tended to bind to aromatic cluster Ⅱ rather than aromatic cluster Ⅰ. Moreover, α-lactalbumin could enhance the antioxidant property of ellagic acid, indicating that the solubility of ellagic acid might be improved by combining α-lactalbumin. Overall, this work suggested that α-lactalbumin exhibited binding affinity for ellagic acid and enhanced its antioxidant property.
Collapse
Affiliation(s)
- Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Zhao J, Liang Y, Zhu Z, Wang Y, Guan T, Zhang J, Zhang T. Complexation mechanism between 20(R, S)-ginsenoside Rh1 and serum albumin: Multi-spectroscopy, in vitro cytotoxicity, and in silico investigations. J Food Sci 2022; 87:929-938. [PMID: 35106766 DOI: 10.1111/1750-3841.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
As rare ginsenosides, 20(R, S)-ginsenoside Rh1 [20(R, S)-Rh1] are isomers and have been reported to exhibit multiple biological effects. However, the application of 20(R, S)-Rh1 is still limited due to their poor solubilities and low bioavailabilities. Here, the complexation mechanism between 20(R, S)-Rh1 and serum albumin (SA) was explored by a combination of multi-spectroscopy and in silico investigations. Results of spectra experiments showed that 20(R, S)-Rh1 could form complexes with bovine serum albumin (BSA) and quench its intrinsic fluorescence. In addition, the influence of BSA on the anti-cancer activity of 20(R, S)-Rh1 was also evaluated in A549 cells. The result of the MTT assay indicated that anti-cancer activity of 20(R, S)-Rh1 was enhanced when combined with BSA. The results of molecular docking and dynamics simulation demonstrated that the subtle structural differences of 20(R, S)-Rh1 at the 20-carbon atom may be responsible for their different binding capacities and binding stabilities with human serum albumin. The cytotoxicity assay for 20(R, S)-Rh1 alone and their complexes with BSA demonstrated the enhancement effect of BSA for inhibition of cell proliferation. In conclusion, this work provided insight into the complexation mechanism between 20(R, S)-Rh1 and SA. PRACTICAL APPLICATION: The complexation mechanism between 20(R, S)-ginsenoside Rh1 [20(R, S)-Rh1] and serum albumin (SA) was explored by a combination of multi-spectroscopy and in silico investigations in this work. The cytotoxicity assay for 20(R, S)-Rh1 alone and their complexes with bovine serum albumin (BSA) demonstrates the enhancement effect of BSA for inhibition of cell proliferation. Hence, this work provided insight into the complexation mechanism between 20(R, S)-Rh1 and SA.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ziyi Zhu
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yingyi Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
12
|
Identification of 20(S)-Ginsenoside Rh2 as a Potential EGFR Tyrosine Kinase Inhibitor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6119737. [PMID: 35111279 PMCID: PMC8803441 DOI: 10.1155/2022/6119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
As the main active ingredients of Panax ginseng, ginsenosides possess numerous bioactivities. Epidermal growth factor receptor (EGFR) was widely used as a valid target in anticancer therapy. Herein, the EGFR targeting activities of 20(S)-ginsenoside Rh2 (20(S)-Rh2) and the relationship of their structure-activity were investigated. Homogeneous time-resolved fluorescence assay showed that 20(S)-Rh2 significantly inhibited the activity against EGFR kinase. 20(S)-Rh2 was confirmed to effectively inhibited cell proliferation in a dose-dependent manner by MTT assay. Furthermore, quantitative real-time PCR and western blotting analysis revealed that 20(S)-Rh2 inhibited A549 cells growth via the EGFR-MAPK pathway. Meanwhile, 20(S)-Rh2 could promote cell apoptosis, block cell cycle, and reduce cell migration of A549 cells, respectively. In silico, the result suggested that both hydrophobic interactions and hydrogen-bonding interactions could contribute to stabilize their binding. Molecular dynamics simulation showed that the side chain sugar moiety of 20(S)-Rh2 was too flexible to be fixed at the active site of EGFR. Collectively, these findings suggested that 20(S)-Rh2 might serve as a potential EGFR tyrosine kinase inhibitor.
Collapse
|
13
|
Wang YP, Pan F, Wang YD, Khan A, Liu YP, Yang ML, Cao JX, Zhao TR, Cheng GG. Anti-leukemic effect and molecular mechanism of 11-methoxytabersonine from Melodinus cochinchinensis via network pharmacology, ROS-mediated mitochondrial dysfunction and PI3K/Akt signaling pathway. Bioorg Chem 2022; 120:105607. [PMID: 35033818 DOI: 10.1016/j.bioorg.2022.105607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Melodinus cochinchinensis (Lour.) Merr. is a Yunnan endemic folk medicine. Our previous study showed that 11-methoxytabersonine (11-MT) isolated from M. cochinchinensis has strong cytotoxicity on human T-ALL cells, but its molecular mechanism has not been studied. In current study, the cytotoxicity and possible mechanism of 11-MT on T-cell acute lymphoblastic leukemia was explored using network pharmacology and molecular biology techniques. 11-MT significantly inhibited the cell proliferations on different four human T-ALL cells (MOLT-4, Jurkat, CCRF-CEM, and CEM/C1 cells). 11-MT triggered ROS accumulation, calcium concentration and cell apoptosis, and decreased the mitochondrial membrane potential (MMP) in human T-ALL cells, especially MOLT-4 cells. Western blot analysis showed that it can induce MOLT-4 cell apoptosis by up-regulating PI3K/Akt signaling pathway. Therefore, 11-MT induces human T-ALL cells apoptosis via up-regulation of ROS-mediated mitochondrial dysfunction and down-regulation of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yong-Peng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Yu-Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mei-Lian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
14
|
Liang Y, Zhang T, Zhao J, Li C, Zou H, Li F, Zhang J, Ren L. Glucocorticoid receptor-mediated alleviation of inflammation by berberine: in vitro, in silico and in vivo investigations. Food Funct 2021; 12:11974-11986. [PMID: 34747965 DOI: 10.1039/d1fo01612a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a natural dietary ingredient, berberine possesses multiple biological activities including anti-inflammatory effects. In this work, glucocorticoid receptor (GR)-mediated alleviation of inflammation by berberine was investigated by a combination of in vitro, in silico, and in vivo approaches. The fluorescence polarization assay showed that berberine bound to GR with an IC50 value of 9.14 ± 0.16 pM. Molecular docking and molecular dynamics simulation suggested that berberine bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. Berberine induced GR nuclear translocation but did not activate the glucocorticoid response element in HeLa cells. Furthermore, both gene and protein expressions of PEPCK were significantly attenuated by berberine in HepG2 cells. Interestingly, berberine downregulated CBG mRNA and protein levels without up-regulating TAT mRNA and protein levels in HepG2 cells, demonstrating its dissociated characteristics that could separate transrepression from transactivation. In addition, the in vitro and in vivo anti-inflammatory effects of berberine were confirmed in lipopolysaccharide-induced RAW 264.7 cells and in a mouse model of allergic contact dermatitis, respectively. In conclusion, berberine might serve as a potential selective GR modulator.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chenfei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Fangyu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
15
|
Lv C, Wei Z, Yue B, Xia N, Huang W, Yue Y, Li Z, Li T, Zhang X, Wang Y. Characterization of diphenyl phthalate as an agonist for estrogen receptor: an in vitro and in silico study. Toxicol Mech Methods 2021; 32:280-287. [PMID: 34697989 DOI: 10.1080/15376516.2021.1998276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phthalate esters (PAEs) are important pollutants in the environment, which can interfere with the endocrine system by mimicking estrogen. However, limited information is available on modulating the estrogen receptor (ER) of five PAEs including di (2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), benzyl butyl phthalate (BBP), diphenyl phthalate (DPhP) and dicyclohexyl phthalate (DCHP). This study evaluated the agonistic effects of PAEs on human ER. The cytotoxicity assay showed that there were a significant inhibition of the cell proliferation with treatment of five PAEs. Moreover, DPhP does-dependently enhanced ER-mediated transcriptional activity in the reporter gene assay. The increased expression of estrogen-responsive genes (TFF1, CTSD, and GREB1) was also observed in MCF-7 cells treated with DPhP. The result of molecular docking showed that DPhP tended to bind to the agonist conformation of ER compared with the antagonist conformation of ER, demonstrating its agonist characteristic that has been confirmed in the reporter gene assay. Thus, we found that DPhP may be evaluated as an ER agonist in vitro and it can interfere with the normal function of human ER.
Collapse
Affiliation(s)
- Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhengyi Wei
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Benjie Yue
- College of Foreign Languages, Jilin Agricultural University, Changchun, China
| | - Ning Xia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yulan Yue
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuolin Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tiezhu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiuxia Zhang
- Office of Retirement Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
16
|
Liang Y, Zhao J, Zou H, Zhang J, Zhang T. In vitro and in silico evaluation of EGFR targeting activities of curcumin and its derivatives. Food Funct 2021; 12:10667-10675. [PMID: 34604873 DOI: 10.1039/d1fo02002a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As polyphenols from Curcuma longa, curcumin and its derivatives possess numerous bioactivities. Herein, the epidermal growth factor receptor (EGFR) targeting activities of curcumin and its derivatives, as well as their structure-activity relationship were investigated. All of the tested compounds exhibited significant inhibition activities against EGFR kinase in homogeneous time-resolved fluorescence assay. Then their antiproliferative activities against Caco-2 were confirmed. The expressions of EGFR and phospho-EGFR proteins were regulated by curcumin and its derivatives. The 3,5-dione and methoxyl groups exerted significant influence on their electrostatic interactions with EGFR. Both hydrogen bonds and hydrophobic contacts were crucial for their binding with EGFR. Interestingly, their EGFR targeting activities were structure-dependent. The binding stabilities of curcumin and its derivatives were different from each other due to their structural diversity. This work indicated that curcumin and its derivatives were potential tyrosine kinase inhibitors that target EGFR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
17
|
Zou H, Ye H, Kamaraj R, Zhang T, Zhang J, Pavek P. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153736. [PMID: 34560520 DOI: 10.1016/j.phymed.2021.153736] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Quercetin is a natural flavonoid, which widely exists in nature, such as tea, coffee, apples, and onions. Numerous studies have showed that quercetin has multiple biological activities such as anti-oxidation, anti-inflammatory, and anti-aging. Hence, quercetin has a significant therapeutic effect on cancers, obesity, diabetes, and other diseases. In the past decades, a large number of studies have shown that quercetin combined with other agents can significantly improve the overall therapeutic effect, compared to single use. PURPOSE This work reviews the pharmacological activities of quercetin and its derivatives. In addition, this work also summarizes both in vivo and in vitro experimental evidence for the synergistic effect of quercetin against cancers and metabolic diseases. METHODS An extensive systematic search for pharmacological activities and synergistic effect of quercetin was performed considering all the relevant literatures published until August 2021 through the databases including NCBI PubMed, Scopus, Web of Science, and Google Scholar. The relevant literatures were extracted from the databases with following keyword combinations: "pharmacological activities" OR "biological activities" OR "synergistic effect" OR "combined" OR "combination" AND "quercetin" as well as free-text words. RESULTS Quercetin and its derivatives possess multiple pharmacological activities including anti-cancer, anti-oxidant, anti-inflammatory, anti-cardiovascular, anti-aging, and neuroprotective activities. In addition, the synergistic effect of quercetin with small molecule agents against cancers and metabolic diseases has also been confirmed. CONCLUSION Quercetin cooperates with agents to improve the therapeutic effect by regulating signal molecules and blocking cell cycle. Synergistic therapy can reduce the dose of agents and avoid the possible toxic and side effects in the treatment process. Although quercetin treatment has some potential side effects, it is safe under the expected use conditions. Hence, quercetin has application value and potential strength as a clinical drug. Furthermore, quercetin, as the main effective therapeutic ingredient in traditional Chinese medicine, may effectively treat and prevent coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove CZ500 05, Czech Republic
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove CZ500 05, Czech Republic.
| |
Collapse
|
18
|
Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34698593 DOI: 10.1080/10408398.2021.1995322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
19
|
Guan T, Zhang G, Sun Y, Zhang J, Ren L. Preparation, characterization, and evaluation of HP-β-CD inclusion complex with alcohol extractives from star anise. Food Funct 2021; 12:10008-10022. [PMID: 34505612 DOI: 10.1039/d1fo02097h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The active compounds in star anise alcohol extractives (SAAE) have potent bioactivity. However, their poor solubility and stability limit their applications. In this study, SAAE/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes were prepared as a strategy to overcome the abovementioned disadvantages. The phase solubility results indicated that the solubility of the inclusion complex was enhanced. Complexation was confirmed by complementary methods, including Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, and transmission electron microscopy, which proved to be extremely insightful for studying the inclusion formation phenomenon between SAAE and HP-β-CD. Despite there being no apparent improvements in the antioxidant capacity and antimicrobial activity, the results of the stability studies presented higher thermal, volatile, and photostability after encapsulation. Further, molecular modeling was used to investigate the factors influencing complex formation and provide the most stable molecular conformation. Thus, based on the obtained results, this study strongly demonstrates the potential of the SAAE/HP-β-CD inclusion complex in the food industry.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China. .,School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guangjie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
20
|
Anti-inflammatory action of betulin and its potential as a dissociated glucocorticoid receptor modulator. Food Chem Toxicol 2021; 157:112539. [PMID: 34500009 DOI: 10.1016/j.fct.2021.112539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023]
Abstract
Although the medical application of betulin has been presented in previous studies, the potential mechanism of the anti-inflammatory action of betulin should be further investigated. This work aims to confirm the hypothesis that betulin has dexamethasone-like anti-inflammatory action through glucocorticoid receptor (GR)-mediated pathway. Firstly, the binding ability of betulin with GR was measured by a fluorescence polarization-based competitive binding assay, with the IC50 value of 79.18 ± 0.30 mM. Betulin could bind to GR and then induced GR nuclear translocation, but lacked GR transcriptional activity in HeLa cells. Hence, betulin exhibited the potential to be a dissociated modulator for GR, with the loss of glucocorticoid response element (GRE)-associated side effects. In addition, betulin downregulated GRE-driven protein expression of G6P involved in gluconeogenesis, namely side effect. The results of pro-inflammatory cytokines analysis showed that betulin exerted anti-inflammatory action in vitro. Both of the hydrophobic and hydrogen-bonding interactions stabilized the binding between betulin and GR during the simulation process. In conclusion, betulin might be a potential dissociated GR modulator with a reduced side effect profile yet keeping its anti-inflammatory action.
Collapse
|
21
|
Zhao J, Zhang T, Liang Y, Zou H, Zhang J. Inhibitory activities of 20(R, S)-protopanaxatriol against epidermal growth factor receptor tyrosine kinase. Food Chem Toxicol 2021; 155:112411. [PMID: 34271119 DOI: 10.1016/j.fct.2021.112411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
As major metabolites of protopanaxatriol-type ginsenosides, 20(R, S)-protopanaxatriol [20(R, S)-PPT] display multiple bioactivities. This work aimed to investigate the inhibitory activities of 20(R, S)-PPT against epidermal growth factor receptor tyrosine kinase and the potential mechanism. 20(R, S)-PPT inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked cell cycle progression at G1/G0 phase. Then 20(R, S)-PPT were found to influence the protein expressions involved in epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) signaling pathway. Molecular docking suggested that 20(R, S)-PPT could bind to the active sites of all target proteins in EGFR-MAPK pathway. It is worth noting that 20(R, S)-PPT showed stronger binding capacities with EGFR, compared with other proteins. Hence, this work further investigated the binding interactions and binding stabilities between 20(R, S)-PPT and EGFR. Both hydrophobic interactions and hydrogen bonds contributed to the 20(R, S)-PPT-EGFR binding. In addition, the in vitro inhibitory activities of 20(R, S)-PPT against EGFR tyrosine kinase were observed in a homogeneous time-resolved fluorescence assay, with the IC50 values of 24.10 ± 0.17 and 33.19 ± 0.19 μM respectively. Taken together with the above results, both of 20(R)-PPT and 20(S)-PPT might serve as potential EGFR tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
22
|
Zhang J, Zhao J, Sun Y, Liang Y, Zhao J, Zou H, Zhang T, Ren L. GR-mediated anti-inflammation of α-boswellic acid: Insights from in vitro and in silico studies. Food Chem Toxicol 2021; 155:112379. [PMID: 34197882 DOI: 10.1016/j.fct.2021.112379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Although multiple bioactivities of α-boswellic acid have been reported, the molecular mechanism of its anti-inflammatory action is not yet clear. Hence, glucocorticoid receptor (GR)-mediated anti-inflammation of α-boswellic acid was investigated in this work. Fluorescence polarization assay suggested that α-boswellic acid bound to GR with IC50 value of 658.00 ± 0.21 μM. Upon binding to α-boswellic acid, GR translocated from cytoplasm into nucleus of HeLa cells, facilitating sequential transcriptional regulation of GR-related genes. Luciferase reporter assay suggested that α-boswellic acid lacked GR transcriptional activity, indicating its potential as a dissociative GR ligand. Interestingly, α-boswellic acid selectively modulated the anti-inflammatory gene CBG (marker for GR transrepression), while leaving the "side-effect" gene TAT (marker for GR transactivation) unaffected in HepG2 cells. Furthermore, α-boswellic acid inhibited lipopolysaccharide-stimulated cytokines production in U937 macrophages, confirming its anti-inflammation property in vitro. Molecular docking showed that both hydrogen-bonding and hydrophobic interactions helped to stabilize α-boswellic acid-GR binding. Their binding stability was further confirmed in a 70-ns dynamics simulation. In summary, α-boswellic acid could bind to and translocate GR but did not induce glucocorticoid response element-mediated transcription. Since α-boswellic acid showed the dissociated characteristic that separated transrepression from transactivation, it might be a selective GR modulator against inflammatory disorders.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jiarui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
23
|
Diao M, Liang Y, Zhao J, Zhao C, Zhang J, Zhang T. Enhanced cytotoxicity and antioxidant capacity of kaempferol complexed with α-lactalbumin. Food Chem Toxicol 2021; 153:112265. [PMID: 34004225 DOI: 10.1016/j.fct.2021.112265] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/25/2023]
Abstract
As a dietary polyphenol, kaempferol exhibits numerous biological activities such as antioxidant and anticancer properties. However, its application is limited because of its poor solubility and low permeability. This work aims to investigate the interaction of kaempferol with α-lactalbumin. Multiple-spectroscopic techniques were used to prove the interaction between kaempferol and α-lactalbumin. UV-vis absorption spectra suggested that the conformation of α-lactalbumin could be changed via binding with kaempferol. The fluorescence quenching test showed that kaempferol significantly quenched the intrinsic fluorescence of α-lactalbumin. Circular dichroism spectroscopy showed that the percent helicity of α-lactalbumin secondary structure increased when combined with kaempferol. In addition, the α-lactalbumin-kaempferol complex showed stronger inhibition ability on the growth of HeLa cells compared with kaempferol alone. The complex also showed higher antioxidant capacity than kaempferol alone. Molecular docking provided three predicted binding sites of α-lactalbumin for kaempferol, as well as five predicted binding poses of kaempferol. The weak intermolecular interactions were the main forces to stabilize the α-lactalbumin-kaempferol complex. Besides, the binding stability between α-lactalbumin and kaempferol was explored by molecular dynamics simulation. In conclusion, this work provides a basis for the potential application of α-lactalbumin as a delivery carrier for kaempferol owing to its nontoxic and biocompatible properties.
Collapse
Affiliation(s)
- Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
24
|
Liang Y, Zhang T, Jing S, Zuo P, Li T, Wang Y, Xing S, Zhang J, Wei Z. 20(S)-Ginsenoside Rg3 Inhibits Lung Cancer Cell Proliferation by Targeting EGFR-Mediated Ras/Raf/MEK/ERK Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:753-765. [DOI: 10.1142/s0192415x2150035x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer death in the world and classified into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). As tyrosine kinase inhibitors (TKIs), several triterpenoid saponins can target to epidermal growth factor receptor (EGFR), a widely used molecular therapeutic target, to exhibit remarkable anti-proliferative activities in cancer cells. As one of triterpenoid saponins, 20([Formula: see text])-ginsenoside Rg3 [20([Formula: see text])-Rg3] was confirmed to be an EGFR-TKI in this work. According to the quantitative real-time reverse transcription-PCR (qRT-PCR) and immunoblotting analysis, 20([Formula: see text])-Rg3 was certified to play a key role on EGFR/Ras/Raf/MEK/ERK signal pathway regulation. Our data demonstrated that 20([Formula: see text])-Rg3 might block the cell cycle at the G0/G1 phase by downregulating CDK2, Cyclin A2, and Cyclin E1. Molecular docking suggested that the combination of both hydrophobic and hydrogen-bonding interactions may help stabilizing the 20([Formula: see text])-Rg3-EGFR binding. Furthermore, their binding stability was assessed by molecular dynamics simulation. Taken together, these data provide the evidence that 20([Formula: see text])-Rg3 could prohibit A549 cell proliferation, probably by arresting the cell cycle at the G0/G1 phase via the EGFR/Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Peng Zuo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Tiezhu Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Yongjun Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| |
Collapse
|
25
|
Zhang J, Liang Y, Ren L, Zhang T. In vitro Anti-Inflammatory Potency of Sanguinarine and Chelerythrine via Interaction with Glucocorticoid Receptor. EFOOD 2021. [DOI: 10.2991/efood.k.210118.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
26
|
Liang Y, Zhang T, Ren L, Jing S, Li Z, Zuo P, Li T, Wang Y, Zhang J, Wei Z. Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103542. [PMID: 33161110 DOI: 10.1016/j.etap.2020.103542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) is considered as a valid target in the clinical trials of anticancer therapy and tyrosine kinase inhibitors (TKIs) of EGFR are approved for cancer treatments. In present work, cucurbitacin IIb (CuIIb) was confirmed to exhibit the proliferation inhibitory activity in A549 cells. CuIIb induced apoptosis via STAT3 pathway, which was mitochondria-mediated and caspase-dependent. CuIIb also suppressed the cell cycle and induced G2/M phase cell cycle arrest. CuIIb was capable of suppressing the signal transmitting of the EGFR/mitogen-activated protein kinase (MAPK) pathway which was responsible for the apoptosis and cell cycle arrest. Homogeneous time-resolved fluorescence (HTRF) analysis demonstrated that the kinase activity of EGFR was inhibited by CuIIb. Molecular docking suggested that the CuIIb-EGFR binding fundamentally depends on the contribution of both hydrophobic and hydrogen-bonding interactions. Hence CuIIb may serve as a potential EGFR TKI.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Peng Zuo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Tiezhu Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yongjun Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
27
|
A new horizon for the steroidal alkaloid cyclovirobuxine D (huangyangning) and analogues: Anticancer activities and mechanism of action. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Liang Y, Zhang T, Zhang J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: Their relevance for cancer therapy. Pharmacol Res 2020; 161:105164. [PMID: 32846211 DOI: 10.1016/j.phrs.2020.105164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR), also known as ErbB-1/HER-1, plays a key role in the regulation of the cell proliferation, migration, differentiation, and survival. Since the constitutive activation or overexpression of EGFR is nearly found in various cancers, the applications focused on EGFR are the most widely used in the clinical level, including the therapeutic drugs of targeting EGFR, monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs).Over the past decades, the compounds from natural sources have been a productive source of novel drugs, especially in both discovery and development of anti-tumor drugs by targeting the EGFR pathways as the TKIs. This work presents a review of the compounds from natural sources as potential EGFR-TKIs involved in the regulation of cancer. Moreover, high-throughput drug screening of EGFR-TKIs from the natural compounds has also been summarized.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
29
|
Zhang T, Liang Y, Zhang J. Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor. Pharmacol Res 2020; 156:104802. [DOI: 10.1016/j.phrs.2020.104802] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
|
30
|
Cespedes-Acuña CL, Wei ZJ. X th International Symposium on Natural Products Chemistry and Applications (2019 X ISNPCA Chillan Chile). Food Chem Toxicol 2020; 140:111316. [PMID: 32246955 DOI: 10.1016/j.fct.2020.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello, Avenue, Chillan, Chile.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|