1
|
Dai X, Yang J, Ye Y, Wang C, Liu Y, Zhang M, Chai X, Wen X, Wang Y. Bioactive components and mechanisms of the traditional Chinese herbal formula Xuefu Zhuyu Formula in the treatment of cardiovascular and cerebrovascular diseases. JOURNAL OF ETHNOPHARMACOLOGY 2025:119873. [PMID: 40280375 DOI: 10.1016/j.jep.2025.119873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE The rapid increase in cardiovascular and cerebrovascular diseases (CCVDs) is a significant threat to human health. Traditional Chinese medicine (TCM) offers unique therapeutic advantages. Xuefu Zhuyu Formula (XFZYF), a classic TCM prescription, has been widely used in clinical practice to treat CCVDs and other related conditions. AIM OF THE STUDY The study aimed to comprehensively elucidate the bioactive components and mechanisms of XFZYF and serve as a reference for future research. The current development, structural characteristics, blood- and intestine-migratory components, quality control measures, pharmacokinetics, pharmacological mechanisms, and clinical applications of XFZYF were systematically summarized. MATERIALS AND METHODS A comprehensive literature search was conducted up to 2024 in PubMed, Web of Science, and the China National Knowledge Infrastructure (CNKI) database using the keywords: "Xuefu Zhuyu", "cardiovascular disease", "cerebrovascular disease", "chemical constituents", "migratory components", "quality control", and "pharmacological properties". RESULTS Eight distinct dosage forms of XFZYF have been developed for clinical application. XFZYF consists of 11 medicinal ingredients, and various compounds have been identified or preliminarily characterized. These compounds are broadly classified into phenolic acids, flavonoids, triterpenoid saponins, monoterpene glycosides, spermidines, and phthalides. Clinically, XFZYF is widely applied in both internal medicine and surgical settings. CONCLUSION XFZYF may exert protective effects against the onset and progression of CCVDs by modulating amino acid metabolism, non-coding RNAs, inflammatory responses, synaptic plasticity, chemokines, oxidative stress, lipid metabolism, mitochondrial function, platelet aggregation, angiogenesis, and gut microbiota. Additionally, perspectives on current limitations and directions for future research were discussed. 1) Establishment of a comprehensive quality control standard for XFZYF. 2) Enhancement of the clinical safety assessment of XFZYF, especially in combination therapies. 3) Advancement of the systematic study of the interactions and compatibility of migratory components. 4) Promotion of AI-driven strategies in the standardization and modernization of TCM.
Collapse
Affiliation(s)
- Xuyang Dai
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jing Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yalin Ye
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Changjian Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingbo Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoli Wen
- Heilongjiang Province Research and Technology Center for Processing of Shenge Traditional Chinese Medicines, Heilongjiang Shenge Pharmaceutical Co., Ltd
| | - Yuefei Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Zhu C, Lin Z, Jiang H, Wei F, Wu Y, Song L. Recent Advances in the Health Benefits of Phenolic Acids in Whole Grains and the Impact of Processing Techniques on Phenolic Acids: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24131-24157. [PMID: 39441722 DOI: 10.1021/acs.jafc.4c05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Phenolic acids, essential compounds in whole grains, are renowned for their health-enhancing antioxidant and anti-inflammatory properties. Variations in concentration, particularly of hydroxybenzoic and hydroxycinnamic acids, are observed among grain types. Their antiobesity and antidiabetes effects are linked to their modulation of key signaling pathways like AMPK and PI3K, crucial for metabolic regulation and the body's response to inflammation and oxidative stress. Processing methods significantly influence phenolic acid content and bioavailability in whole grains. Thermal techniques like boiling, baking, or roasting can degrade these compounds, with loss influenced by processing conditions. Nonthermal methods such as germination, fermentation, or their combination, can protect or enhance phenolic acid content under ideal conditions. Novel nonthermal approaches like ultrahigh pressure (UHP), irradiation, and pulsed electric fields (PEF) show promise in preserving these compounds. Further research is needed to fully comprehend the impact mechanisms of these innovative methods on the nutritional and sensory attributes of cereals.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Liang Y, Qi J, Yu D, Wang Z, Li W, Long F, Ning S, Yuan M, Zhong X. Ferulic Acid Alleviates Lipid and Bile Acid Metabolism Disorders by Targeting FASN and CYP7A1 in Iron Overload-Treated Mice. Antioxidants (Basel) 2024; 13:1277. [PMID: 39594419 PMCID: PMC11591460 DOI: 10.3390/antiox13111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024] Open
Abstract
Iron overload is a common complication in various chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD). Lipid and bile acid metabolism disorders are regarded as crucial hallmarks of NAFLD. However, effects of iron accumulation on lipid and bile acid metabolism are not well understood. Ferulic acid (FA) can chelate iron and regulate lipid and bile acid metabolism, but its potential to alleviate lipid and bile acid metabolism disorders caused by iron overload remains unclear. Here, in vitro experiments, iron overload induced oxidative stress, apoptosis, genomic instability, and lipid deposition in AML12 cells. FA reduced lipid and bile acid synthesis while increasing fatty acid β-oxidation and bile acid export, as indicated by increased mRNA expression of PPARα, Acox1, Adipoq, Bsep, and Shp, and decreased mRNA expression of Fasn, Acc, and Cyp7a1. In vivo experiments, FA mitigated liver injury in mice caused by iron overload, as indicated by reduced AST and ALT activities, and decreased iron levels in both serum and liver. RNA-seq results showed that differentially expressed genes were enriched in biological processes related to lipid metabolism, lipid biosynthesis, lipid storage, and transport. Furthermore, FA decreased cholesterol and bile acid contents, downregulated lipogenesis protein FASN, and bile acid synthesis protein CYP7A1. In conclusion, FA can protect the liver from lipid and bile acid metabolism disorders caused by iron overload by targeting FASN and CYP7A1. Consequently, FA, as a dietary supplement, can potentially prevent and treat chronic liver diseases related to iron overload by regulating lipid and bile acid metabolism.
Collapse
Affiliation(s)
- Yaxu Liang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Jun Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Dongming Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Zhibo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Weite Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Fei Long
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Shuai Ning
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Meng Yuan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
- Natural Plant and Animal Health Innovation Institute, NJAU-Cohoo Biotechnology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Khatun MM, Bhuia MS, Chowdhury R, Sheikh S, Ajmee A, Mollah F, Al Hasan MS, Coutinho HDM, Islam MT. Potential utilization of ferulic acid and its derivatives in the management of metabolic diseases and disorders: An insight into mechanisms. Cell Signal 2024; 121:111291. [PMID: 38986730 DOI: 10.1016/j.cellsig.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Metabolic diseases are abnormal conditions that impair the normal metabolic process, which involves converting food into energy at a cellular level, and cause difficulties like obesity and diabetes. The study aimed to investigate how ferulic acid (FA) and its derivatives could prevent different metabolic diseases and disorders and to understand the specific molecular mechanisms responsible for their therapeutic effects. Information regarding FA associations with metabolic diseases and disorders was compiled from different scientific search engines, including Science Direct, Wiley Online, PubMed, Scopus, Web of Science, Springer Link, and Google Scholar. This review revealed that FA exerts protective effects against metabolic diseases such as diabetes, diabetic retinopathy, neuropathy, nephropathy, cardiomyopathy, obesity, and diabetic hypertension, with beneficial effects on pancreatic cancer. Findings also indicated that FA improves insulin secretion by increasing Ca2+ influx through the L-type Ca2+ channel, thus aiding in diabetes management. Furthermore, FA regulates the activity of inflammatory cytokines (TNF-α, IL-18, and IL-1β) and antioxidant enzymes (CAT, SOD, and GSH-Px) and reduces oxidative stress and inflammation, which are common features of metabolic diseases. FA also affects various signaling pathways, including the MAPK/NF-κB pathways, which play an important role in the progression of diabetic neuropathy and other metabolic disorders. Additionally, FA regulates apoptosis markers (Bcl-2, Bax, and caspase-3) and exerts its protective effects on cellular destruction. In conclusion, FA and its derivatives may act as potential medications for the management of metabolic diseases.
Collapse
Affiliation(s)
- Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Afiya Ajmee
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Faysal Mollah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE 63105-000, Brazil.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| |
Collapse
|
5
|
Bhuia MS, Chowdhury R, Shill MC, Chowdhury AK, Coutinho HDM, Antas E Silva D, Raposo A, Islam MT. Therapeutic Promises of Ferulic Acid and its Derivatives on Hepatic damage Related with Oxidative Stress and Inflammation: A Review with Mechanisms. Chem Biodivers 2024; 21:e202400443. [PMID: 38757848 DOI: 10.1002/cbdv.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Ferulic acid (FA) is a naturally occurring phenolic compound commonly found in the plant Ferula communis. This study aims to investigate the hepatoprotective effect of FA and its derivatives (methyl ferulic acid and trans-ferulic acid) against oxidative stress and inflammation-related hepatotoxicity due to toxicants based on the results of different non-clinical and preclinical tests. For this, data was collected from different reliable electronic databases such as PubMed, Google Scholar, and ScienceDirect, etc. The results of this investigation demonstrated that FA and its derivatives have potent hepatoprotective effects against oxidative stress and inflammation-related damage. The findings also revealed that these protective effects are due to the antioxidant and anti-inflammatory effects of the chemical compound. FA and its analogues significantly inhibit free radical generation and hinder the effects of proinflammatory markers and inflammatory enzymes, resulting in diminished cytotoxic and apoptotic hepatocyte death. The compounds also prevent intracellular lipid accumulation and provide protective effects.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | | | | | - Davi Antas E Silva
- Departament of Physiology and Pathology, Federal University of Paraíba, Campus I Lot. Cidade Universitaria, João Pessoa, PB, 58051-900, Brazil
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
6
|
He WS, Zhao L, Yang H, Rui J, Li J, Chen ZY. Novel Synthesis of Phytosterol Ferulate Using Acidic Ionic Liquids as a Catalyst and Its Hypolipidemic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2309-2320. [PMID: 38252882 PMCID: PMC10835726 DOI: 10.1021/acs.jafc.3c09148] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Phytosterol ferulate (PF) is quantitively low in rice, corn, wheat, oats, barley, and millet, but it is potentially effective in reducing plasma lipids. In this study, PF was synthesized for the first time using acidic ionic liquids as a catalyst. The product was purified, characterized using Fourier transform infrared, mass spectroscopy, and nuclear magnetic resonance, and ultimately confirmed as the desired PF compound. The conversion of phytosterol surpassed an impressive 99% within just 2 h, with a selectivity for PF exceeding 83%. Plasma lipid-lowering activity of PF was further investigated by using C57BL/6J mice fed a high-fat diet as a model. Supplementation of 0.5% PF into diet resulted in significant reductions in plasma total cholesterol, triacylglycerols, and nonhigh-density lipoprotein cholesterol by 13.7, 16.9, and 46.3%, respectively. This was accompanied by 55.8 and 36.3% reductions in hepatic cholesterol and total lipids, respectively, and a 22.9% increase in fecal cholesterol excretion. Interestingly, PF demonstrated a higher lipid-lowering activity than that of its substrates, a physical mixture of phytosterols and ferulic acid. In conclusion, an efficient synthesis of PF was achieved for the first time, and PF had the great potential to be developed as a lipid-lowering dietary supplement.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin ,Hong Kong, China
| | - Liying Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haonan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiaxin Rui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin ,Hong Kong, China
| |
Collapse
|
7
|
Nakano H, Sakao K, Wada K, Hou DX. Ameliorative Effects of Anthocyanin Metabolites on Western Diet-Induced NAFLD by Modulating Co-Occurrence Networks of Gut Microbiome. Microorganisms 2023; 11:2408. [PMID: 37894066 PMCID: PMC10609007 DOI: 10.3390/microorganisms11102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Anthocyanins (Acn) have been reported to have preventive effects on Western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). However, the amount of Acn that reached the bloodstream were less than 1%, suggesting that anthocyanin metabolites (Acn-M) in the gut may contribute to their in vivo effects. This study is focused on a gut microbiota investigation to elucidate the effect of two major Acn-M, protocatechuic acid (PC) and phloroglucinol carboxaldehyde (PG), on NAFLD prevention. C57BL/6N male mice were divided into five groups and fed with a normal diet (ND), WD, WD + 0.5% PC, WD + 0.5% PG and WD + a mixture of 0.25% PC + 0.25% PG (CG) for 12 weeks. The results revealed that WD-fed mice showed a significant increase in final body weight, epididymis fat weight, liver weight and fat accumulation rate, serum total cholesterol, alanine aminotransferase, monocyte chemoattractant protein 1, and 2-thiobarbituric acid reactive substances. At the same time, these indices were significantly decreased by Acn-M in the order of PG, CG > PC. In particular, PG significantly decreased serum glucose and insulin resistance. Gut microbiome analysis revealed that PG significantly increased the relative abundance of Parabacteroides, Prevotella, Prevotella/Bacteroides ratio, and upregulated glucose degradation pathway. Interestingly, the co-occurrence networks of Lachnospiraceae and Desulfovibrionaceae in the PC and PG groups were similar to the ND group and different to WD group. These data suggest that PC and PG were able to recover the gut microbiome networks and functions from dysbiosis caused by WD. Therefore, PG might act as a master metabolite for anthocyanins and prevent WD-induced NAFLD and gut dysbiosis.
Collapse
Affiliation(s)
- Hironobu Nakano
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (H.N.); (K.S.); (K.W.)
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (H.N.); (K.S.); (K.W.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Koji Wada
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (H.N.); (K.S.); (K.W.)
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (H.N.); (K.S.); (K.W.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
8
|
Li S, Wu X, Ma Y, Zhang H, Chen W. Prediction and verification of the active ingredients and potential targets of Erhuang Quzhi Granules on non-alcoholic fatty liver disease based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116435. [PMID: 37023836 DOI: 10.1016/j.jep.2023.116435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erhuang Quzhi Granules (EQG) is a compound composed of 13 traditional Chinese medicines developed by the First Affiliated Hospital of Shihezi University. In clinical practice, EQG has been applied to the treatment of hyperlipidemia and non-alcoholic fatty liver disease (NAFLD), and could significantly improve the serum biochemical indicators of NAFLD patients. AIM OF THE STUDY This study aims to explore the bioactive compounds, potential targets, and molecular mechanisms of EQG against NAFLD through network pharmacology, molecular docking, and experimental verification. MATERIALS AND METHODS The chemical components of EQG came from the literature and quality standard. Bioactive compounds were screened based on the absorption, distribution, metabolism, and excretion (ADME) feature, and their potential targets were predicted using the substructure-drug-target network-based inference (SDTNBI). The core targets and signaling pathways were obtained through the analysis of protein-protein interaction (PPI), gene ontology (GO) function, and Kyoto encyclopedia of genes and genomes (KEGG) pathway. The results were further confirmed by literature retrieval, molecular docking, and in vivo experiments. RESULTS The results of network pharmacology showed 12 active ingredients and 10 core targets for EQG in treating NAFLD. And EQG mainly regulates lipid and atherosclerosis-related pathways to improve NAFLD. The collected literature verified the regulatory effect of the active components of EQG on core targets TP53, PPARG, EGFR, HIF1A, PPARA, and MTOR. Molecular docking results showed that Aloe-Emodin (AE), Emodin, Physcion, and Rhein (RH) had stable binding structures with the core targets HSP90AA1. In vivo experiment showed that AE and RH reduced aspartate transaminase (AST), alanine aminotransferase (ALT), interleukin (IL)-1β, IL-6, IL18, and tumor necrosis factor α (TNF-α) in the serum or liver of NAFLD mice, improved liver lipid deposition and fibrosis, and inhibit gene expression of nuclear factor kappa B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), IL-1β, TNF-α and protein expression of HSP90, NF-κB and Cleaved caspase-1. CONCLUSIONS This study comprehensively revealed the biological compounds, potential targets, and molecular mechanisms of EQG in the treatment of NAFLD, providing a reference basis for the promotion of EQG in the clinic.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Xi Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yue Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
9
|
Shi Y, Shi L, Liu Q, Wang W, Liu Y. Molecular mechanism and research progress on pharmacology of ferulic acid in liver diseases. Front Pharmacol 2023; 14:1207999. [PMID: 37324465 PMCID: PMC10264600 DOI: 10.3389/fphar.2023.1207999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Ferulic acid (FA) is a natural polyphenol, a derivative of cinnamic acid, widely found in Angelica, Chuanxiong and other fruits, vegetables and traditional Chinese medicine. FA contains methoxy, 4-hydroxy and carboxylic acid functional groups that bind covalently to neighbouring adjacent unsaturated Cationic C and play a key role in many diseases related to oxidative stress. Numerous studies have shown that ferulic acid protects liver cells and inhibits liver injury, liver fibrosis, hepatotoxicity and hepatocyte apoptosis caused by various factors. FA has protective effects on liver injury induced by acetaminophen, methotrexate, antituberculosis drugs, diosbulbin B and tripterygium wilfordii, mainly through the signal pathways related to TLR4/NF-κB and Keap1/Nrf2. FA also has protective effects on carbon tetrachloride, concanavalin A and septic liver injury. FA pretreatment can protect hepatocytes from radiation damage, protects the liver from damage caused by fluoride, cadmium and aflatoxin b1. At the same time, FA can inhibit liver fibrosis, inhibit liver steatosis and reduce lipid toxicity, improve insulin resistance in the liver and exert the effect of anti-liver cancer. In addition, signalling pathways such as Akt/FoxO1, AMPK, PPAR γ, Smad2/3 and Caspase-3 have been shown to be vital molecular targets for FA involvement in improving various liver diseases. Recent advances in the pharmacological effects of ferulic acid and its derivatives on liver diseases were reviewed. The results will provide guidance for the clinical application of ferulic acid and its derivatives in the treatment of liver diseases.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Lu Shi
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Qi Liu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Wenbo Wang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - YongJuan Liu
- Department of Central Laboratory, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
10
|
Zou H, Gong Y, Ye H, Yuan C, Li T, Zhang J, Ren L. Dietary regulation of peroxisome proliferator-activated receptors in metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154904. [PMID: 37267691 DOI: 10.1016/j.phymed.2023.154904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are a class of ligand-activated nuclear transcription factors, members of the type nuclear receptor superfamily, with three subtypes, namely PPARα, PPARβ/δ, and PPARγ, which play a key role in the metabolic syndrome. In the past decades, a large number of studies have shown that natural products can act by regulating metabolic pathways mediated by PPARs. PURPOSE This work summarizes the physiological importance and clinical significance of PPARs and reviews the experimental evidence that natural products mediate metabolic syndrome via PPARs. METHODS This study reviews relevant literature on clinical trials, epidemiology, animals, and cell cultures published in NCBI PubMed, Scopus, Web of Science, Google Scholar, and other databases from 2001 to October 2022. Search keywords were "natural product" OR "botanical" OR "phytochemical" AND "PPAR" as well as free text words. RESULTS The modulatory involvement of PPARs in the metabolic syndrome has been supported by prior research. It has been observed that many natural products can treat metabolic syndrome by altering PPARs. The majority of currently described natural compounds are mild PPAR-selective agonists with therapeutic effects that are equivalent to synthetic medicines but less harmful adverse effects. CONCLUSION PPAR agonists can be combined with natural products to treat and prevent metabolic syndrome. Further human investigations are required because it is unknown how natural products cause harm and how they might have negative impacts.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Liao Z, Li Y, Liao L, Shi Q, Kong Y, Hu J, Cai Y. Structural characterization and anti-lipotoxicity effects of a pectin from okra (Abelmoschus esculentus (L.) Moench). Int J Biol Macromol 2023; 238:124111. [PMID: 36948330 DOI: 10.1016/j.ijbiomac.2023.124111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Okra (Abelmoschus esculentus (L.) Moench) is rich in various bioactive ingredients and used as a medicinal plant in traditional medicine. In the present study, to find the polysaccharide with anti-lipotoxicity effects from okra and clarify its structure, a pectin OP-1 was purified from okra, which had a backbone containing →4)-α-GalpA-(1 → residues, and 1,5-Ara linked the main chain through the O-3 of the residue →3,4)-α-GalpA-(1→, and the C-6 of residue 1, 4-α-GalpA replaced by methyl ester. In vitro experiments showed that OP-1 pretreatment alleviated oleic acid (OA)-induced lipid accumulation, ROS generation, apoptosis, transaminase leakage, and inflammatory cytokine secretion in HepG2 cells, resulting in reduced lipotoxicity. Further molecular results revealed that OP-1 increased Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and affected the expression of AMPK downstream targets, including inhibit SREBP1c and FAS, as well as activate CPT-1A. Impressively, AMPK inhibitor dorsomorphin (Compound C) blocked the effects of OP-1 against lipotoxicity. The effects of OP-1 on lipid metabolism were also diminished by dorsomorphin. Our results demonstrated that OP-1 possesses a potent function in preventing lipotoxicity via regulating AMPK-mediated lipid metabolism and provide a novel insight into the future utilization of okra polysaccharide.
Collapse
Affiliation(s)
- Zhengzheng Liao
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, People's Republic of China
| | - Yuhua Li
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, People's Republic of China
| | - Lihong Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, People's Republic of China
| | - Qing Shi
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, People's Republic of China
| | - Ying Kong
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, People's Republic of China
| | - Jinfang Hu
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, People's Republic of China.
| | - Yaojun Cai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi, 330006 Nanchang, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Jiangxi, 330006 Nanchang, People's Republic of China.
| |
Collapse
|
12
|
Ye L, Hu P, Feng LP, Huang LL, Wang Y, Yan X, Xiong J, Xia HL. Protective Effects of Ferulic Acid on Metabolic Syndrome: A Comprehensive Review. Molecules 2022; 28:molecules28010281. [PMID: 36615475 PMCID: PMC9821889 DOI: 10.3390/molecules28010281] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex disease in which protein, fat, carbohydrates and other substances are metabolized in a disorderly way. Ferulic acid (FA) is a phenolic acid found in many vegetables, fruits, cereals and Chinese herbs that has a strong effect on ameliorating MetS. However, no review has summarized the mechanisms of FA in treating MetS. This review collected articles related to the effects of FA on ameliorating the common symptoms of MetS, such as diabetes, hyperlipidemia, hypertension and obesity, from different sources involving Web of Science, PubMed and Google Scholar, etc. This review summarizes the potential mechanisms of FA in improving various metabolic disorders according to the collected articles. FA ameliorates diabetes via the inhibition of the expressions of PEPCK, G6Pase and GP, the upregulation of the expressions of GK and GS, and the activation of the PI3K/Akt/GLUT4 signaling pathway. The decrease of blood pressure is related to the endothelial function of the aortas and RAAS. The improvement of the lipid spectrum is mediated via the suppression of the HMG-Co A reductase, by promoting the ACSL1 expression and by the regulation of the factors associated with lipid metabolism. Furthermore, FA inhibits obesity by upregulating the MEK/ERK pathway, the MAPK pathway and the AMPK signaling pathway and by inhibiting SREBP-1 expression. This review can be helpful for the development of FA as an appreciable agent for MetS treatment.
Collapse
Affiliation(s)
- Lei Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Pan Hu
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
- Correspondence: (P.H.); (H.-L.X.); Tel.: +86-182-2442-7340 (P.H.); +86-135-6889-9011 (H.-L.X.)
| | - Li-Ping Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Lu Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Yan
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
| | - Jing Xiong
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
| | - Hou-Lin Xia
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (P.H.); (H.-L.X.); Tel.: +86-182-2442-7340 (P.H.); +86-135-6889-9011 (H.-L.X.)
| |
Collapse
|
13
|
Li Y, Sair AT, Zhao W, Li T, Liu RH. Ferulic Acid Mediates Metabolic Syndrome via the Regulation of Hepatic Glucose and Lipid Metabolisms and the Insulin/IGF-1 Receptor/PI3K/AKT Pathway in Palmitate-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14706-14717. [PMID: 36367981 DOI: 10.1021/acs.jafc.2c05676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferulic acid (FA) is one of the most abundant bound phenolics in whole grains, partly contributing to its preventive effects on metabolic syndrome (MetS). The study aims to investigate if FA mediates MetS through the regulation of hepatic metabolisms and the insulin receptor related pathways in the palmitate-treated HepG2 cells (MetS model). We found that FA (50, 100, and 200 μM) dramatically ameliorated the lipid accumulation in the MetS model. FA significantly decreased the activities of the gluconeogenic enzymes, G6Pase and PEPCK, downregulated the lipogenic enzyme FAS-1, and upregulated the lipolytic enzyme CPT-1 by regulating a series of transcriptional factors including HNF4α, FOXO-1, SREBP-1c, and PPAR-γ. Notably, we found that FA's ability to alleviate MetS is achieved by activating the insulin receptor/PI3K/AKT pathway. Our results validated the effects of FA on mediating the metabolic disorders of lipid and glucose pathways and unveiled its potential intracellular mechanisms for the prevention of MetS.
Collapse
Affiliation(s)
- Yitong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Ali Tahir Sair
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Weiyang Zhao
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Tong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Rui Hai Liu
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Kaur R, Sood A, Lang DK, Arora R, Kumar N, Diwan V, Saini B. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic. Curr Top Med Chem 2022; 22:347-365. [PMID: 35040403 DOI: 10.2174/1568026622666220117105740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Nature has provided therapeutic substances for millennia, with many valuable medications derived from plant sources. Multitarget drugs become essential in the management of various disorders including hepatic disorders, neurological disorders, diabetes, and carcinomas. Ferulic acid is a significant potential therapeutic agent, which is easily available at low cost, possesses a low toxicity profile, and has minimum side effects. Ferulic acid exhibits various therapeutic actions by modulation of various signal transduction pathways such as Nrf2, p38, and mTOR. The actions exhibited by ferulic acid include anti-apoptosis, antioxidant, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotection, cardioprotection, activation of transcriptional factors, expression of genes, regulation of enzyme activity, and neuroprotection, which further help in treating various pathophysiological conditions such as cancer, skin diseases, brain disorders, diabetes, Parkinson's disease, Alzheimer's disease, hypoxia, hepatic disorders, H1N1 flu, and viral infections. The current review focuses on the significance of natural products as sources of multitarget compounds and a primary focus has been made on ferulic acid and its mechanism, role, and protective action in various ailments.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neeraj Kumar
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Vishal Diwan
- Centre for Chronic Disease, The University of Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
15
|
Yang XF, Lu M, You L, Gen H, Yuan L, Tian T, Li CY, Xu K, Hou J, Lei M. Herbal therapy for ameliorating nonalcoholic fatty liver disease via rebuilding the intestinal microecology. Chin Med 2021; 16:62. [PMID: 34315516 PMCID: PMC8314451 DOI: 10.1186/s13020-021-00470-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
The worldwide prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing, and this metabolic disorder has been recognized as a severe threat to human health. A variety of chemical drugs have been approved for treating NAFLD, however, they always has serious side effects. Chinese herbal medicines (CHMs) have been widely used for preventing and treating a range of metabolic diseases with satisfactory safety and effective performance in clinical treatment of NAFLD. Recent studies indicated that imbanlance of the intestinal microbiota was closely associated with the occurrence and development of NAFLD, thus, the intestinal microbiota has been recognized as a promising target for treatment of NAFLD. In recent decades, a variety of CHMs have been reported to effectively prevent or treat NAFLD by modulating intestinal microbiota to further interfer the gut-liver axis. In this review, recent advances in CHMs for the treatment of NAFLD via rebuilding the intestinal microecology were systematically reviewed. The key roles of CHMs in the regulation of gut microbiota and the gut-liver axis along with their mechanisms (such as modulating intestinal permeability, reducing the inflammatory response, protecting liver cells, improving lipid metabolism, and modulating nuclear receptors), were well summarized. All the knowledge and information presented here will be very helpful for researchers to better understand the applications and mechanisms of CHMs for treatment of NAFLD.
Collapse
Affiliation(s)
- Xiao-Fang Yang
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China
| | - Ming Lu
- Trauma Emergency Center, The Seventh Peoples Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Lijiao You
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China
| | - Huan Gen
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China
| | - Lin Yuan
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China
| | - Tianning Tian
- Trauma Emergency Center, The Seventh Peoples Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Chun-Yu Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kailiang Xu
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China.
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Ming Lei
- Critical Care Medicine, Seventh Peoples Hospital, Affiliated to Shanghai University of TCM, Shanghai, 200137, China.
| |
Collapse
|