1
|
Rao YL, Ganaraja B, Suresh PK, Joy T, Ullal SD, Manjrekar PA, Murlimanju BV, Sharma BG, Massand A, Agrawal A. Outcome of resveratrol and resveratrol with donepezil combination on the β-amyloid plaques and neurofibrillary tangles in Alzheimer's disease. 3 Biotech 2024; 14:190. [PMID: 39099620 PMCID: PMC11294322 DOI: 10.1007/s13205-024-04034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
The goal of this research was to study the effect of different doses of resveratrol (RS) and RS with donepezil (DPZ) on the deposition of amyloid beta (Aβ) and neurofibrillary tangles (NFTs) in colchicine-induced Alzheimer's disease (AD) brain. The study included three months old male Albino Wistar rats and consisted of six animal groups: AD model (group 1), treatment groups, RS 10 mg/kg body weight (group 2), RS 20 mg/kg body weight (group 3), RS 10 mg/kg body weight along with DPZ 1 mg/kg body weight (group 6), prophylaxis groups, RS 10 mg/kg body weight (group 4) and RS 20 mg/kg body weight (group 5). In the treatment groups, RS was given for 7 consecutive days from the day of induction of AD, and in the prophylaxis groups, we started RS 7 days even before the induction of AD and continued for seven days after the induction. The number of Aβs and NFTs at the frontal region, cornu ammonis (CA) 1,2,3,4 and dentate gyrus regions of hippocampus were evaluated. The immunohistochemical analysis was performed by using mouse anti-β-amyloid antibody for the Aβ plaques and polyclonal rabbit anti-human tau for the tau-positive neurons. The present study observed the accumulation of Aβ plaques and tau-positive neurons in the AD model. However, their numbers were significantly decreased in the treatment groups (p < 0.001). The best results were observed when RS 10 mg was given prophylactically (p < 0.01) and RS along with DPZ (p < 0.001), suggesting the neuroprotective effect of RS and its synergistic effect with the DPZ.
Collapse
Affiliation(s)
- Y. Lakshmisha Rao
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Ganaraja
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Pooja K. Suresh
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, Jabberwock Beach Road, University Park, Coolidge, Antigua Antigua and Barbuda
| | - Sheetal D. Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Poornima A. Manjrekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Gaurav Sharma
- Senior Registrar in Trauma and Orthopaedic Surgery, Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA UK
| | - Amit Massand
- Department of Anatomy, Smt. B.K. Shah Medical Institute and Research Centre, Sumandeep Vidyapeeth, Piparia, Vadodara, Gujarat India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal, Madhya Pradesh India
| |
Collapse
|
2
|
Jang BG, Choi B, Kim MJ. Pyrogallol intermediates elicit beta-amyloid secretion via radical formation and alterations in intracellular trafficking, distinct from pyrogallol-generated superoxide. Redox Biol 2024; 73:103180. [PMID: 38795546 PMCID: PMC11140794 DOI: 10.1016/j.redox.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
This study unveils a novel role of pyrogallol (PG), a recognized superoxide generator, in inducing beta-amyloid (Aβ) secretion in an Alzheimer's disease (AD) cellular model. Contrary to expectations, the analysis of dihydroethidium fluorescence and UV-VIS spectrum scanning reveals that Aβ secretion arises from PG reaction intermediates rather than superoxide or other by-products. Investigation into Aβ secretion mechanisms identifies dynasore-dependent endocytosis and BFA-dependent exocytosis as independent pathways, regulated by tiron, tempol, and superoxide dismutase. Cell-type specificity is observed, with 293sw cells showing both pathways, while H4sw cells and primary astrocytes from an AD animal model exclusively exhibit the Aβ exocytosis pathway. This exploration contributes to understanding PG's chemical reactions and provides insights into the interplay between environmental factors, free radicals, and AD, linking occupational PG exposure to AD risk as reported in the literature.
Collapse
Affiliation(s)
- Bong-Geum Jang
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Boyoung Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min-Ju Kim
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
3
|
Pei MQ, Xu LM, Yang YS, Chen WC, Chen XL, Fang YM, Lin S, He HF. Latest advances and clinical application prospects of resveratrol therapy for neurocognitive disorders. Brain Res 2024; 1830:148821. [PMID: 38401770 DOI: 10.1016/j.brainres.2024.148821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.
Collapse
Affiliation(s)
- Meng-Qin Pei
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Li-Ming Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Wei-Can Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Xin-Li Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Ming Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China.
| |
Collapse
|
4
|
Lim JL, Lin CJ, Huang CC, Chang LC. Curcumin-derived carbon quantum dots: Dual actions in mitigating tau hyperphosphorylation and amyloid beta aggregation. Colloids Surf B Biointerfaces 2024; 234:113676. [PMID: 38056413 DOI: 10.1016/j.colsurfb.2023.113676] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The amyloid cascade and tau hypotheses both hold significant implications for the pathogenesis of Alzheimer's disease (AD). Curcumin shows potential by inhibiting the aggregation of amyloid beta (Aβ) and reducing tau hyperphosphorylation, however, its use is limited due to issues with solubility and bioavailability. Carbon dots, recognized for their high biocompatibility and optimal water solubility, have demonstrated the capability to inhibit either Aβ or tau aggregation. Nonetheless, their effects on tau hyperphosphorylation are yet to be extensively explored. This study aims to evaluate the water-soluble curcumin-derived carbon quantum dots (Cur-CQDs) synthesized via an eco-friendly method, designed to preserve the beneficial effects of curcumin while overcoming solubility challenges. The synthesis of Cur-CQDs involves a single-step dry heating process using curcumin, resulting in dots that exhibit negligible cytotoxicity to SH-SY5Y cells at the examined concentrations. Notably, Cur-CQDs have shown the ability to simultaneously mitigate Aβ aggregation and tau hyperphosphorylation. Therefore, it is suggested that Cur-CQDs may hold potential for AD treatment, a hypothesis deserving of further research.
Collapse
Affiliation(s)
- Jie Lay Lim
- School of Pharmacy, College of Medicine, National Taiwan University, Taiwan, 33 Linsen S. Rd., Zhongzheng Dist., Taipei City 100025, Taiwan.
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, 2 Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan, 2 Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan.
| | - Lin-Chau Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taiwan, 33 Linsen S. Rd., Zhongzheng Dist., Taipei City 100025, Taiwan.
| |
Collapse
|
5
|
Foudah AI, Devi S, Alam A, Salkini MA, Ross SA. Anticholinergic effect of resveratrol with vitamin E on scopolamine-induced Alzheimer's disease in rats: Mechanistic approach to prevent inflammation. Front Pharmacol 2023; 14:1115721. [PMID: 36817151 PMCID: PMC9932024 DOI: 10.3389/fphar.2023.1115721] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The most common form of dementia, Alzheimer's disease (AD), is characterized by gradual declines in cognitive abilities and behavior. It is caused by a combination of factors, including amyloid-β (Aβ) accumulation, acetylcholine (ACh) loss, oxidative stress, and inflammation. Phenolic compounds have a variety of health benefits, including antioxidant activities. Thus, the purpose of this study was to investigate how resveratrol (RES) alone and in combination with vitamin E affected rats with AD using scopolamine (SCO). Animals are categorized into groups; (i) control, (ii) SCO (1 mg/kg i.p.), (iii) SCO + donepezil, (iv) SCO + RES (50 mg/kg, p.o.), (v) SCO + RES (75 mg/kg, p.o.), (vi) SCO + RES (50 mg/kg + vitamin E 1 mg/kg, p.o.) for 17 days. In rats, studied behavioural (NOR and EPM) and biochemical characteristics. In addition, brain histopathology was examined to investigate any damage to the hippocampus and neuroprotection. SCO-induced changes in acetylcholinesterase, protein carbonyl, and TNF-α improved after resveratrol treatment. RES increased antioxidant levels, decreased SCO-induced lipid peroxidation, and reversed SCO-mediated changes compared with the drug donepezil. The results indicated that RES and vitamin E had nootropic action in the NOR and EPM tests, measured by the recognition index and the inflection ratio. This study supports the efficacy of RES as a preventive and treatment agent for AD. Vitamin E showed a synergistic effect on RES, which helps in managing cognitive impairment AD.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia,*Correspondence: Ahmed I. Foudah, ,
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Samir A. Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, United States,Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, United States
| |
Collapse
|
6
|
Mani S, Dubey R, Lai IC, Babu MA, Tyagi S, Swargiary G, Mody D, Singh M, Agarwal S, Iqbal D, Kumar S, Hamed M, Sachdeva P, Almutary AG, Albadrani HM, Ojha S, Singh SK, Jha NK. Oxidative Stress and Natural Antioxidants: Back and Forth in the Neurological Mechanisms of Alzheimer's Disease. J Alzheimers Dis 2023; 96:877-912. [PMID: 37927255 DOI: 10.3233/jad-220700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Deepansh Mody
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| |
Collapse
|
7
|
Shaito A, Al-Mansoob M, Ahmad SM, Haider MZ, Eid AH, Posadino AM, Pintus G, Giordo R. Resveratrol-Mediated Regulation of Mitochondria Biogenesis-associated Pathways in Neurodegenerative Diseases: Molecular Insights and Potential Therapeutic Applications. Curr Neuropharmacol 2023; 21:1184-1201. [PMID: 36237161 PMCID: PMC10286596 DOI: 10.2174/1570159x20666221012122855] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disorders include different neurological conditions that affect nerve cells, causing the progressive loss of their functions and ultimately leading to loss of mobility, coordination, and mental functioning. The molecular mechanisms underpinning neurodegenerative disease pathogenesis are still unclear. Nonetheless, there is experimental evidence to demonstrate that the perturbation of mitochondrial function and dynamics play an essential role. In this context, mitochondrial biogenesis, the growth, and division of preexisting mitochondria, by controlling mitochondria number, plays a vital role in maintaining proper mitochondrial mass and function, thus ensuring efficient synaptic activity and brain function. Mitochondrial biogenesis is tightly associated with the control of cell division and variations in energy demand in response to extracellular stimuli; therefore, it may represent a promising therapeutic target for developing new curative approaches to prevent or counteract neurodegenerative disorders. Accordingly, several inducers of mitochondrial biogenesis have been proposed as pharmacological targets for treating diverse central nervous system conditions. The naturally occurring polyphenol resveratrol has been shown to promote mitochondrial biogenesis in various tissues, including the nervous tissue, and an ever-growing number of studies highlight its neurotherapeutic potential. Besides preventing cognitive impairment and neurodegeneration through its antioxidant and anti-inflammatory properties, resveratrol has been shown to be able to enhance mitochondria biogenesis by acting on its main effectors, including PGC-1α, SIRT1, AMPK, ERRs, TERT, TFAM, NRF-1 and NRF-2. This review aims to present and discuss the current findings concerning the impact of resveratrol on the machinery and main effectors modulating mitochondrial biogenesis in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdullah Shaito
- Biomedical Research Center, College of Medicine, Qatar University, Doha, 2713, Qatar
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| | - Maryam Al-Mansoob
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Salma M.S. Ahmad
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | | | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, United Arab Emirates
| |
Collapse
|
8
|
Jang BG, Choi B, Kim S, Lee DS, Lee J, Koh YH, Jo SA, Kim JE, Kang TC, Kim MJ. 2,4-Diacetylphloroglucinol Reduces Beta-Amyloid Production and Secretion by Regulating ADAM10 and Intracellular Trafficking in Cellular and Animal Models of Alzheimer's Disease. Cells 2022; 11:cells11162585. [PMID: 36010661 PMCID: PMC9406471 DOI: 10.3390/cells11162585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
There is currently no effective treatment against Alzheimer’s disease (AD), although many strategies have been applied to reduce beta-amyloid (Aβ) levels. Here, we investigated 2,4-diacetylphloroglucinol (DAPG) effects on Aβ levels and mechanisms of action. DAPG was the most effective phloroglucinol derivative for reducing Aβ levels, without being toxic, in various models including HEK293 cells overexpressing Swedish mutant amyloid precursor protein (APP) (293sw), primary astrocytes isolated from APPsw/PS1dE9 transgenic mice, and after intrahippocampal injection of DAPG in APPsw/PS1dE9 transgenic mice. DAPG-mediated Aβ reduction was associated with increased soluble APPα (sAPPα) levels mediated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) but not ADAM17. ADAM10 inhibition in DAPG-treated cells prevented the effects on sAPPα but only partly on intracellular and secreted Aβ. To identify regulators of sAPPα and Aβ secretion, various inhibitors of intracellular trafficking were administered with DAPG. Brefeldin A (BFA) reversed DAPG-mediated changes in Aβ secretion in 293sw cells, whereas golgicide A (GCA) and BFA were effective in primary astrocytes, indicating a cell type-specific regulation of the trafficking. Moreover, GCA or BFA effects on sAPPα, but not Aβ, levels in primary astrocytes resembled those of ADAM10 inhibition, indicating at least partly independent trafficking pathways for sAPPα and Aβ. In conclusion, DAPG might be a promising drug candidate against AD regulating ADAM10 and intracellular trafficking, but optimizing DAPG ability to cross the BBB will be needed.
Collapse
Affiliation(s)
- Bong-Geum Jang
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Boyoung Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Suyeon Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jisun Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju 28159, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Ji-Eun Kim
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min-Ju Kim
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2523; Fax: +82-33-256-2525
| |
Collapse
|
9
|
Zhang Y, Yuan F, Li P, Gu J, Han J, Ni Z, Liu F. Resveratrol inhibits HeLa cell proliferation by regulating mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113788. [PMID: 35738103 DOI: 10.1016/j.ecoenv.2022.113788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The beneficial roles of resveratrol (RES) in affecting proliferation of multiple cancer cells have attracted intensive attention. However, the underlying mechanism remains unclear. This study aims to bridge the knowledge gap by investigating RES-induced growth inhibition of HeLa cells. Our work focuses on the metergasis of mitochondria in the RES-exposed cells. Therefore, HeLa cells were treated with different concentrations of RES for 30 min and 24 h, respectively. As a result, concentration-dependent increases in cell growth inhibition, ROS (reactive oxygen species) triggering, and LC3-II (light chain 3-II) expression were detected in the HeLa cells exposed to RES for 24 h. Interestingly, a specific concentration-dependent effect was observed in the HeLa cells exposed to RES for 30 min, that is, low concentration RES (≤ 25 μmol/L) reduced ROS levels, inhibited transcription and expression levels of LC3-II, and stimulated mitochondrial respiratory capacities. In contrast, high concentration RES (50 and 100 μmol/L) induced ROS over-production and autophagy in the cells, resulting in decreased levels of mitochondrial membrane potential, mitochondrial DNA copy numbers, and mitochondrial respiratory capacities. Together, our data concluded that RES inhibited HeLa cell proliferation through perturbation of mitochondrial structure and function, and ROS-induced autophagy also played a critical role in the process.
Collapse
Affiliation(s)
- Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Pei Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jihai Gu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Junjun Han
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhihua Ni
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
10
|
Gu X, Lai D, Liu S, Chen K, Zhang P, Chen B, Huang G, Cheng X, Lu C. Hub Genes, Diagnostic Model, and Predicted Drugs Related to Iron Metabolism in Alzheimer's Disease. Front Aging Neurosci 2022; 14:949083. [PMID: 35875800 PMCID: PMC9300955 DOI: 10.3389/fnagi.2022.949083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease, remains unclear in terms of its underlying causative genes and effective therapeutic approaches. Meanwhile, abnormalities in iron metabolism have been demonstrated in patients and mouse models with AD. Therefore, this study sought to find hub genes based on iron metabolism that can influence the diagnosis and treatment of AD. First, gene expression profiles were downloaded from the GEO database, including non-demented (ND) controls and AD samples. Fourteen iron metabolism-related gene sets were downloaded from the MSigDB database, yielding 520 iron metabolism-related genes. The final nine hub genes associated with iron metabolism and AD were obtained by differential analysis and WGCNA in brain tissue samples from GSE132903. GO analysis revealed that these genes were mainly involved in two major biological processes, autophagy and iron metabolism. Through stepwise regression and logistic regression analyses, we selected four of these genes to construct a diagnostic model of AD. The model was validated in blood samples from GSE63061 and GSE85426, and the AUC values showed that the model had a relatively good diagnostic performance. In addition, the immune cell infiltration of the samples and the correlation of different immune factors with these hub genes were further explored. The results suggested that these genes may also play an important role in immunity to AD. Finally, eight drugs targeting these nine hub genes were retrieved from the DrugBank database, some of which were shown to be useful for the treatment of AD or other concomitant conditions, such as insomnia and agitation. In conclusion, this model is expected to guide the diagnosis of patients with AD by detecting the expression of several genes in the blood. These hub genes may also assist in understanding the development and drug treatment of AD.
Collapse
Affiliation(s)
- Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Xuefeng Gu
| | - Donglin Lai
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Gang Huang
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Xiaoqin Cheng
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Changlian Lu
| |
Collapse
|