1
|
Zhang Y, Hu T, Wang X, Sun N, Cai Q, Kim HY, Fan Y, Liu D, Guan X. Profiles of gut microbiota and metabolites for high risk of transgenerational depression-like behavior by paternal methamphetamine exposure. FASEB J 2025; 39:e70386. [PMID: 39927989 DOI: 10.1096/fj.202402839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Parental substance abuse increases the risk of neurological and psychiatric disorders in offsprings. However, its underlying mechanism remains elusive. Our previous study demonstrated that long-term exposure to methamphetamine (Meth), a psychostimulant drug with high addiction potential, remarkably alters the gut microbiome and metabolites in male mice, which contribute to Meth-induced anxiety-like behaviors. The current study aimed to investigate whether gut microbiota and metabolism serve as potential peripheral targets for transgenerational mental problems by paternal Meth exposure. We found that paternal Meth exposure induced depression-like behaviors both in the first (F1) and the second (F2) generations of male mice. Further, the depletion of gut bacteria through antibiotic treatments normalized the depression-like behaviors to normal levels in both F1 and F2 male mice. Then, alterations in gut bacterial composition were observed in both F1 and F2 male mice. Specifically, Eubacterium_ruminantium_group, Enterorhabdus, Alloprevotella, and Parabacteroides were the commonly affected bacterial taxa in F1 and F2 male mice. In addition, the results of alterations in gut metabolism showed that LPC 14:1-SN1 emerged as the consistently altered metabolite in the colons of F1 and F2 male mice. Taken together, our findings provide the first evidence that paternal Meth exposure enhances depression-like behaviors in F1 and F2 male mice, potentially mediated by the gut microbiome and metabolism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nongyuan Sun
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Chen Y, Hu Q, Zhang W, Gong Q, Yan J, Wang Z, Zhou Z, Ma X, Li Y, Lu X, Efferth T. Chidan Tuihuang granule modulates gut microbiota to influence NOD1/RIPK2 pathway in cholestatic liver injury recovery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156164. [PMID: 39461197 DOI: 10.1016/j.phymed.2024.156164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Cholestatic liver injury (CLI), which occurs if bile acids are imbalanced and the liver becomes inflamed, is difficult to treat effectively OBJECTIVE: We investigated how the Chinese patent medicine Chidan Tuihuang granule (CDTH) ameliorates cholestatic liver injury with a focus on its effects on the NOD1/RIPK2 pathway and intestinal flora METHODS: We used an ANIT-induced SD rat model of CLI to evaluate the therapeutic effects of CDTH. The experimental design included control, model, UDCA (ursodeoxycholic acid) and CDTH treatment groups. UHPLC-Q-Orbitrap-HRMS was used to analyse the blood components of CDTH. The efficacy of CDTH was assessed by liver function tests, histopathological examination (HE and TUNEL staining), transmission electron microscopy, and ELISA to measure apoptosis and inflammatory markers. Mechanistic insights were obtained using transcriptomics and RT-qPCR, while alterations in the expression of key proteins were studied using western blotting, immunohistochemistry, and immunofluorescence. Furthermore, the impact of CDTH on the gut microbiota and its associated metabolite, meso-2,6-diaminopimelic acid (DAP), which is linked to NOD1 activation, was examined and confirmed through in vitro RESULTS: The experimental results demonstrated a notable elevation in serum levels of AST, ALT, ALP, TBA, TBIL, and DBIL in the rats belonging to the model group, accompanied by the infiltration of inflammatory cells, hepatocyte degeneration, and necrosis in the liver tissue. CDTH administration significantly improved liver function and cholestasis indicators. Transmission electron microscopy and TUNEL staining revealed a marked reduction in liver cell apoptosis with CDTH treatment. ELISA results showed that CDTH effectively reduced inflammatory markers. Transcriptomic analysis showed that CDTH inhibited the NOD1/RIPK2 pathway, resulting in a significant decrease in the expression of NOD1, RIPK2 and associated genes in liver tissue. Gut microbiota analysis demonstrated that CDTH regulated intestinal flora structure, reducing the abundance of DAP-producing Gram-negative bacteria such as lactobacilli. In vitro experiments confirmed that CDTH enhanced cell viability by downregulating the DAP-mediated NOD1/RIPK2 signaling pathway secreted by intestinal bacteria CONCLUSION: CDTH ameliorated liver damage in cholestatic rats by inhibiting the NOD1/RIPK2 signaling pathway through regulation of gut flora and downregulation of DAP metabolites.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianqian Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zexin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongyuan Zhou
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yeyu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
3
|
Chen L, Zhang K, Liu J, Li X, Liu Y, Ma H, Yang J, Li J, Chen L, Hsu C, Zeng J, Xie X, Wang Q. The role of the microbiota-gut-brain axis in methamphetamine-induced neurotoxicity: Disruption of microbial composition and short-chain fatty acid metabolism. Acta Pharm Sin B 2024; 14:4832-4857. [PMID: 39664442 PMCID: PMC11628825 DOI: 10.1016/j.apsb.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/08/2024] [Accepted: 07/24/2024] [Indexed: 12/13/2024] Open
Abstract
Methamphetamine (METH) abuse is associated with significant neurotoxicity, high addiction potential, and behavioral abnormalities. Recent studies have identified a connection between the gut microbiota and METH-induced neurotoxicity and behavioral disorders. However, the underlying causal mechanisms linking the gut microbiota to METH pathophysiology remain largely unexplored. In this study, we employed fecal microbiota transplantation (FMT) and antibiotic (Abx) intervention to manipulate the gut microbiota in mice administered METH. Furthermore, we supplemented METH-treated mice with short-chain fatty acids (SCFAs) and pioglitazone (Pio) to determine the protective effects on gut microbiota metabolism. Finally, we assessed the underlying mechanisms of the gut-brain neural circuit in vagotomized mice. Our data provide compelling evidence that modulation of the gut microbiome through FMT or microbiome knockdown by Abx plays a crucial role in METH-induced neurotoxicity, behavioral disorders, gut microbiota disturbances, and intestinal barrier impairment. Furthermore, our findings highlight a novel prevention strategy for mitigating the risks to both the nervous and intestinal systems caused by METH, which involves supplementation with SCFAs or Pio.
Collapse
Affiliation(s)
- Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongsheng Ma
- Shunde Police in Foshan City, Foshan 528300, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Zhang KK, Wan JY, Chen YC, Cheng CH, Zhou HQ, Zheng DK, Lan ZX, You QH, Sun J. Polystyrene nanoplastics exacerbate aflatoxin B1-induced hepatic injuries by modulating the gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173285. [PMID: 38772488 DOI: 10.1016/j.scitotenv.2024.173285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Dietary pollution of Aflatoxin B1 (AFB1) poses a great threat to global food safety, which can result in serious hepatic injuries. Following the widespread use of plastic tableware, co-exposure to microplastics and AFB1 has dramatically increased. However, whether microplastics could exert synergistic effects with AFB1 and amplify its hepatotoxicity, and the underlying mechanisms are still unelucidated. Here, mice were orally exposed to 100 nm polystyrene nanoplastics (NPs) and AFB1 to investigate the influences of NPs on AFB1-induced hepatic injuries. We found that exposure to only NPs or AFB1 resulted in colonic inflammation and the impairment of the intestinal barrier, which was exacerbated by combined exposure to NPs and AFB1. Meanwhile, co-exposure to NPs exacerbated AFB1-induced dysbiosis of gut microbiota and remodeling of the fecal metabolome. Moreover, NPs and AFB1 co-exposure exhibited higher levels of systemic inflammatory factors compared to AFB1 exposure. Additionally, NPs co-exposure further exacerbated AFB1-induced hepatic fibrosis and inflammation, which could be associated with the overactivation of the TLR4/MyD88/NF-κB pathway. Notably, Spearman's correlation analysis revealed that the exacerbation of NPs co-exposure was closely associated with microbial dysbiosis. Furthermore, microbiota from NPs-exposed mice (NPsFMT) partly reproduced the exacerbation of NPs on AFB1-induced systemic and hepatic inflammation, but not fibrosis. In summary, our findings indicate that gut microbiota could be involved in the exacerbation of NPs on AFB1-induced hepatic injuries, highlighting the health risks of NPs.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Yuan Wan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu-Chuan Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chang-Hao Cheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - He-Qi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - De-Kai Zheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhi-Xian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qiu-Hong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Zhang KK, Yang JZ, Cheng CH, Wan JY, Chen YC, Zhou HQ, Zheng DK, Lan ZX, You QH, Wang Q, Sun J. Short-chain fatty acids mitigate Methamphetamine-induced hepatic injuries in a Sigma-1 receptor-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116538. [PMID: 38833980 DOI: 10.1016/j.ecoenv.2024.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Methamphetamine (Meth) is a potent psychostimulant with well-established hepatotoxicity. Gut microbiota-derived short-chain fatty acids (SCFAs) have been reported to yield beneficial effects on the liver. In this study, we aim to further reveal the mechanisms of Meth-induced hepatic injuries and investigate the potential protective effects of SCFAs. Herein, mice were intraperitoneally injected with 15 mg/kg Meth to induce hepatic injuries. The composition of fecal microbiota and SCFAs was profiled using 16 S rRNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) analysis, respectively. Subsequently, SCFAs supplementation was performed to evaluate the protective effects against hepatic injuries. Additionally, Sigma-1 receptor knockout (S1R-/-) mice and fluvoxamine (Flu), an agonist of S1R, were introduced to investigate the mechanisms underlying the protective effects of SCFAs. Our results showed that Meth activated S1R and induced hepatic autophagy, inflammation, and oxidative stress by stimulating the MAPK/ERK pathway. Meanwhile, Meth disrupted SCFAs product-related microbiota, leading to a reduction in fecal SCFAs (especially Acetic acid and Propanoic acid). Accompanied by the optimization of gut microbiota, SCFAs supplementation normalized S1R expression and ameliorated Meth-induced hepatic injuries by repressing the MAPK/ERK pathway. Effectively, S1R knockout repressed Meth-induced activation of the MAPK/ERK pathway and further ameliorated hepatic injuries. Finally, the overexpression of S1R stimulated the MAPK/ERK pathway and yielded comparable adverse phenotypes to Meth administration. These findings suggest that Meth-induced hepatic injuries relied on the activation of S1R, which could be alleviated by SCFAs supplementation. Our study confirms the crucial role of S1R in Meth-induced hepatic injuries for the first time and provides a potential preemptive therapy.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chang-Hao Cheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Yuan Wan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu-Chuan Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - He-Qi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - De-Kai Zheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhi-Xian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qiu-Hong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Rana S, Canfield JR, Ward CS, Sprague JE. Bile acids and the gut microbiome are involved in the hyperthermia mediated by 3,4-methylenedioxymethamphetamine (MDMA). Sci Rep 2024; 14:14485. [PMID: 38914648 PMCID: PMC11196659 DOI: 10.1038/s41598-024-65433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
Hyperthermia induced by phenethylamines, such as 3,4-methylenedioxymethamphetamine (MDMA), can lead to life-threatening complications and death. Activation of the sympathetic nervous system and subsequent release of norepinephrine and activation of uncoupling proteins have been demonstrated to be the key mediators of phenethylamine-induced hyperthermia (PIH). Recently, the gut microbiome was shown to also play a contributing role in PIH. Here, the hypothesis that bile acids (BAs) produced by the gut microbiome are essential to PIH was tested. Changes in the serum concentrations of unconjugated primary BAs cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BA deoxycholic acid (DCA) were measured following MDMA (20 mg/kg, sc) treatment in antibiotic treated and control rats. MDMA-induced a significant hyperthermic response and reduced the serum concentrations of three BAs 60 min post-treatment. Pretreatment with antibiotics (vancomycin, bacitracin and neomycin) in the drinking water for five days resulted in the depletion of BAs and a hypothermic response to MDMA. Gut bacterial communities in the antibiotic-treated group were distinct from the MDMA or saline treatment groups, with decreased microbiome diversity and alteration in taxa. Metagenomic functions inferred using the bioinformatic tool PICRUSt2 on 16S rRNA gene sequences indicated that bacterial genes associated to BA metabolism are less abundant in the antibiotic-MDMA treated group. Overall, these findings suggest that gut bacterial produced BAs might play an important role in MDMA-induced hyperthermia.
Collapse
Affiliation(s)
- Srishti Rana
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jeremy R Canfield
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Christopher S Ward
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
7
|
Tao W, Fan Q, Wei J. Gut-Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury. Curr Issues Mol Biol 2024; 46:1219-1236. [PMID: 38392196 PMCID: PMC10887627 DOI: 10.3390/cimb46020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Drug-induced liver injury (DILI) is a liver disease that remains difficult to predict and diagnose, and the underlying mechanisms are yet to be fully clarified. The gut-liver axis refers to the reciprocal interactions between the gut and the liver, and its homeostasis plays a prominent role in maintaining liver health. It has been recently reported that patients and animals with DILI have a disrupted gut-liver axis, involving altered gut microbiota composition, increased intestinal permeability and lipopolysaccharide translocation, decreased short-chain fatty acids production, and impaired bile acid metabolism homeostasis. The present review will summarize the evidence from both clinical and preclinical studies about the role of the gut-liver axis in the pathogenesis of DILI. Moreover, we will focus attention on the potential therapeutic strategies for DILI based on improving gut-liver axis function, including herbs and phytochemicals, probiotics, fecal microbial transplantation, postbiotics, bile acids, and Farnesoid X receptor agonists.
Collapse
Affiliation(s)
- Wenjing Tao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qiwen Fan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
8
|
Li JH, Liu JL, Li XW, Liu Y, Yang JZ, Ma HS, Chen LJ, Zhang KK, Xie XL, Wang Q. Maternal inulin supplementation ameliorates prenatal methamphetamine exposure-induced hepatotoxicity and restores gut microbiota in mouse offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115769. [PMID: 38039856 DOI: 10.1016/j.ecoenv.2023.115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Prenatal exposure to methamphetamine (METH) is an issue of global concern due to its adverse effects on offspring, particularly its impact on liver health, an area still not fully understood. Inulin, a recognized prebiotic, is thought to potentially ameliorate these developmental disorders and toxic injuries in progeny. To investigate the effects of prenatal METH exposure on the liver and the role of gut microbiota, we established a murine model, the subjects of which were exposed to METH prenatally and subsequently treated with inulin. Our findings indicate that prenatal METH exposure causes liver damage in offspring, as evidenced by a decreased liver index, histopathological changes, diminished glycogen synthesis, hepatic dysfunction, and alterations in mRNA profiles. Furthermore, it impairs the antioxidant system and induces oxidative stress, possibly due to changes in cecal microbiota and dysregulation of bile acid homeostasis. However, maternal inulin supplementation appears to restore the gut microbiota in offspring and mitigate the hepatotoxic effects induced by prenatal METH exposure. Our study provides definitive evidence of METH's transgenerational hepatotoxicity and suggests that maternal inulin supplementation could be an effective preventive strategy.
Collapse
Affiliation(s)
- Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hong-Sheng Ma
- Shunde Police in Foshan City, Foshan, Guangdong 528300, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
9
|
Zhang K, Chen L, Yang J, Liu J, Li J, Liu Y, Li X, Chen L, Hsu C, Zeng J, Xie X, Wang Q. Gut microbiota-derived short-chain fatty acids ameliorate methamphetamine-induced depression- and anxiety-like behaviors in a Sigmar-1 receptor-dependent manner. Acta Pharm Sin B 2023; 13:4801-4822. [PMID: 38045052 PMCID: PMC10692394 DOI: 10.1016/j.apsb.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Methamphetamine (Meth) abuse can cause serious mental disorders, including anxiety and depression. The gut microbiota is a crucial contributor to maintaining host mental health. Here, we aim to investigate if microbiota participate in Meth-induced mental disorders, and the potential mechanisms involved. Here, 15 mg/kg Meth resulted in anxiety- and depression-like behaviors of mice successfully and suppressed the Sigma-1 receptor (SIGMAR1)/BDNF/TRKB pathway in the hippocampus. Meanwhile, Meth impaired gut homeostasis by arousing the Toll-like receptor 4 (TLR4)-related colonic inflammation, disturbing the gut microbiome and reducing the microbiota-derived short-chain fatty acids (SCFAs). Moreover, fecal microbiota from Meth-administrated mice mediated the colonic inflammation and reproduced anxiety- and depression-like behaviors in recipients. Further, SCFAs supplementation optimized Meth-induced microbial dysbiosis, ameliorated colonic inflammation, and repressed anxiety- and depression-like behaviors. Finally, Sigmar1 knockout (Sigmar1-/-) repressed the BDNF/TRKB pathway and produced similar behavioral phenotypes with Meth exposure, and eliminated the anti-anxiety and -depression effects of SCFAs. The activation of SIGMAR1 with fluvoxamine attenuated Meth-induced anxiety- and depression-like behaviors. Our findings indicated that gut microbiota-derived SCFAs could optimize gut homeostasis, and ameliorate Meth-induced mental disorders in a SIGMAR1-dependent manner. This study confirms the crucial role of microbiota in Meth-related mental disorders and provides a potential preemptive therapy.
Collapse
Affiliation(s)
- Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Zhu Y, Zhu J, Song G. The impact of aerobic exercise training on cognitive function and gut microbiota in methamphetamine-dependent individuals in the community. Physiol Behav 2023; 270:114302. [PMID: 37474085 DOI: 10.1016/j.physbeh.2023.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE This study aimed to investigate the impact and mechanism of gut microbiota on the enhancement of cognitive function in methamphetamine (MA)-dependent individuals during aerobic exercise training. METHODS A total of sixty-four MA-dependent individuals were randomly assigned to either an aerobic exercise training group (DK, n = 32) or a conventional rehabilitation group (CK, n = 32). After an eight-week intervention, the participants' working memory and inhibition ability were assessed using the Stroop paradigm and Go/NoGo paradigm, respectively. Gut microbiota composition was analyzed using high-throughput sequencing. RESULTS 1) Eight weeks of aerobic exercise training significantly improved the working memory and inhibition ability of MA-dependent individuals (P < 0.05). 2) Following the intervention, the DK group exhibited significantly higher levels of Lactobacillus, Lactococcus lactis, Prevotellaceae, and Ruminococcaceae compared to the CK group. Conversely, the DK group demonstrated significantly lower levels of Desulfovibrio and Akkermansia compared to the CK group. Furthermore, the DK group showed significantly increased metabolic pathways associated with d-Glutaralate and d-Galactate Degradation, as well as the Alanine, aspartate, and glutamate metabolism pathway, compared to the control group. 3) Cognitive function related to MA addiction positively correlated with Bifidobacterium, Dialister, and Adlercreutzia, while negatively correlated with Enterobacteria, Bacillus cereus, Catabacter, and Akkermansia. CONCLUSION Aerobic exercise training enhances working memory and inhibition ability in MA-dependent individuals, thereby mitigating the detrimental effects of MA addiction on cognitive function. Additionally, analysis of gut microbiota suggests that the modulation of gut microbiota and associated metabolic pathways play a role in regulating the improvement of cognitive function in MA-dependent individuals through exercise.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Jiang Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Liu Y, Chen Q, Yang JZ, Li XW, Chen LJ, Zhang KK, Liu JL, Li JH, Hsu C, Chen L, Zeng JH, Wang Q, Zhao D, Xu JT. Multi-Omics Analysis Reveals the Role of Sigma-1 Receptor in a Takotsubo-like Cardiomyopathy Model. Biomedicines 2023; 11:2766. [PMID: 37893138 PMCID: PMC10604683 DOI: 10.3390/biomedicines11102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy that presents with sudden onset of chest pain and dyspneic and cardiac dysfunction as a result of extreme physical or emotional stress. The sigma-1 receptor (Sigmar1) is a ligand-dependent molecular chaperone that is postulated to be involved in various processes related to cardiovascular disease. However, the role of Sigmar1 in TTS remains unresolved. In this study, we established a mouse model of TTS using wild-type and Sigmar1 knockout mice to investigate the involvement of Sigmar1 in TTS development. Our results revealed that Sigmar1 knockout exacerbated cardiac dysfunction, with a noticeable decrease in ejection fraction (EF) and fractional shortening (FS) compared to the wild-type model. In terms of the gut microbiome, we observed regulation of Firmicutes and Bacteroidetes ratios; suppression of probiotic Lactobacillus growth; and a rise in pathogenic bacterial species, such as Colidextribacter. Metabolomic and transcriptomic analyses further suggested that Sigmar1 plays a role in regulating tryptophan metabolism and several signaling pathways, including MAPK, HIF-1, calcium signaling, and apoptosis pathways, which may be crucial in TTS pathogenesis. These findings offer valuable insight into the function of Sigmar1 in TTS, and this receptor may represent a promising therapeutic target for TTS.
Collapse
Affiliation(s)
- Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Qing Chen
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, China
- Beijing Municipal Public Security Judicial Appraisal Center, Beijing 100142, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Dong Zhao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, China
| | - Jing-Tao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| |
Collapse
|
12
|
Liu L, Deng Z, Liu W, Liu R, Ma T, Zhou Y, Wang E, Tang Y. The gut microbiota as a potential biomarker for methamphetamine use disorder: evidence from two independent datasets. Front Cell Infect Microbiol 2023; 13:1257073. [PMID: 37790913 PMCID: PMC10543748 DOI: 10.3389/fcimb.2023.1257073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Background Methamphetamine use disorder (MUD) poses a considerable public health threat, and its identification remains challenging due to the subjective nature of the current diagnostic system that relies on self-reported symptoms. Recent studies have suggested that MUD patients may have gut dysbiosis and that gut microbes may be involved in the pathological process of MUD. We aimed to examine gut dysbiosis among MUD patients and generate a machine-learning model utilizing gut microbiota features to facilitate the identification of MUD patients. Method Fecal samples from 78 MUD patients and 50 sex- and age-matched healthy controls (HCs) were analyzed by 16S rDNA sequencing to identify gut microbial characteristics that could help differentiate MUD patients from HCs. Based on these microbial features, we developed a machine learning model to help identify MUD patients. We also used public data to verify the model; these data were downloaded from a published study conducted in Wuhan, China (with 16 MUD patients and 14 HCs). Furthermore, we explored the gut microbial features of MUD patients within the first three months of withdrawal to identify the withdrawal period of MUD patients based on microbial features. Results MUD patients exhibited significant gut dysbiosis, including decreased richness and evenness and changes in the abundance of certain microbes, such as Proteobacteria and Firmicutes. Based on the gut microbiota features of MUD patients, we developed a machine learning model that demonstrated exceptional performance with an AUROC of 0.906 for identifying MUD patients. Additionally, when tested using an external and cross-regional dataset, the model achieved an AUROC of 0.830. Moreover, MUD patients within the first three months of withdrawal exhibited specific gut microbiota features, such as the significant enrichment of Actinobacteria. The machine learning model had an AUROC of 0.930 for identifying the withdrawal period of MUD patients. Conclusion In conclusion, the gut microbiota is a promising biomarker for identifying MUD and thus represents a potential approach to improving the identification of MUD patients. Future longitudinal studies are needed to validate these findings.
Collapse
Affiliation(s)
- Linzi Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zijing Deng
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ruina Liu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Ma
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Enhui Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanqing Tang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Zhang K, Yang J, Chen L, He J, Qu D, Zhang Z, Liu Y, Li X, Liu J, Li J, Xie X, Wang Q. Gut Microbiota Participates in Polystyrene Microplastics-Induced Hepatic Injuries by Modulating the Gut-Liver Axis. ACS NANO 2023; 17:15125-15145. [PMID: 37486121 DOI: 10.1021/acsnano.3c04449] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dietary pollution by polystyrene microplastics (MPs) can cause hepatic injuries and microbial dysbiosis. Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, exerts beneficial effects on the liver by modulating the gut microbiota. However, the role of microbiota in MPs-induced hepatic injuries and the protective effect of EGCG have not been clarified. Here, 5 μm MPs were orally administered to mice to induce hepatic injuries. Subsequently, antibiotic cocktail (ABX) and fecal microbial transplant (FMT) experiments were performed to investigate the underlying microbial mechanisms. Additionally, EGCG was orally administered to mice to explore its protection against MPs-induced hepatic injuries. Our results showed that MPs activated systemic and hepatic inflammation, promoted fibrosis, and altered the liver metabolome; meanwhile, MPs damaged the gut homeostasis by disturbing the gut microbiome, promoting colonic inflammation, and impairing the intestinal barrier. Notably, MPs reduced the abundance of the probiotics Akkermansia, Mucispirillum, and Faecalibaculum while increasing the pathogenic Tuzzerella. Interestingly, the elimination of gut microbiota mitigated MPs-induced colonic inflammation and intestinal barrier impairment. Moreover, ABX ameliorated MPs-induced systemic and hepatic inflammation but not fibrosis. Correspondingly, microbiota from MPs-administered mice induced colonic, systemic, and hepatic inflammation, while their profibrosis effect on the liver was not observed. Finally, EGCG elevated the abundance of probiotics and effectively repressed MPs-induced colonic inflammation. MPs-induced systemic and hepatic inflammation, fibrosis, and remodeling of the liver metabolome were also attenuated by EGCG. These findings illustrated that gut microbiota contributed to MPs-induced colonic and hepatic injuries, while EGCG could serve as a potential prevention strategy for these adverse consequences.
Collapse
Affiliation(s)
- Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jietao He
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong 528225, China
| | - Dong Qu
- Institute of Legal Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Zheng Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
14
|
Koukou Z, Papadopoulou E, Panteris E, Papadopoulou S, Skordou A, Karamaliki M, Diamanti E. The Effect of Breastfeeding on Food Allergies in Newborns and Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1046. [PMID: 37371277 PMCID: PMC10297573 DOI: 10.3390/children10061046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Breastfeeding is the preferred method of infant feeding and its establishment is one of the primary goals for the infant. Allergic diseases are common in childhood, with increased morbidity. Food allergies are also associated with a strong negative impact on health-related quality of life and is a major public health problem. In addition, maternal exclusion of common allergens during pregnancy and/or lactation suggests that supplementation with regular cow's milk formula during the first week of life should be avoided. Breast milk contains many active immune factors, such as cytokines, inflammatory mediators, signaling molecules and soluble receptors, which may also reduce the risk of allergic disease. The prophylactic effects of breastfeeding have been the subject of many studies, some with weak evidence. In this narrative review, we aim to provide an up-to-date account of the effects of prophylactic breastfeeding on food allergy and other common allergies in infants and children up to 5 years of age. Colostrum in particular has been shown to be prophylactic against food allergy. The American Academy of Pediatrics cautions that the relationship between duration of breastfeeding and incidence of food allergy in early childhood is unclear. The protective role of breastfeeding has a positive effect on allergy prevention, which is opposed by the early introduction of solid foods, but larger studies are needed to confirm the evidence. There is evidence that breastfeeding is effective in providing partial protection to infants.
Collapse
Affiliation(s)
- Zoi Koukou
- School of Health Sciences, International Hellenic University (IHU), Sindos, 57400 Thessaloniki, Greece; (S.P.); (A.S.); (M.K.)
| | | | - Eleftherios Panteris
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Styliani Papadopoulou
- School of Health Sciences, International Hellenic University (IHU), Sindos, 57400 Thessaloniki, Greece; (S.P.); (A.S.); (M.K.)
| | - Anna Skordou
- School of Health Sciences, International Hellenic University (IHU), Sindos, 57400 Thessaloniki, Greece; (S.P.); (A.S.); (M.K.)
| | - Maria Karamaliki
- School of Health Sciences, International Hellenic University (IHU), Sindos, 57400 Thessaloniki, Greece; (S.P.); (A.S.); (M.K.)
| | - Elisavet Diamanti
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
15
|
Liu Y, Chen LJ, Li XW, Yang JZ, Liu JL, Zhang KK, Li JH, Wang Q, Xu JT, Zhi X. Gut microbiota contribute to Methamphetamine-induced cardiotoxicity in mouse model. Chem Biol Interact 2023; 379:110512. [PMID: 37116852 DOI: 10.1016/j.cbi.2023.110512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Methamphetamine (METH) is a psychotropic drug known to cause cardiotoxicity. The gut-heart axis is emerging as an important pathway linking gut microbiota to cardiovascular disease, but the precise association between METH-induced cardiotoxicity and gut microbiota has yet to be elucidated. In this study, we established an escalating dose-multiple METH administration model in male BALB/c mice, examined cardiac injury and gut microbiota, and investigated the contribution of gut microbiota to cardiotoxicity induced by METH. Additionally, we treated mice with antibiotics and fecal microbiota transplantation (FMT) to assess the impact of gut microbiota on cardiotoxicity. Our results showed that METH exposure altered the p53 and PI3K/Akt signaling pathways and modulated the apoptosis pathway in heart tissue, accompanied by elevated levels of Bax/BCL-2 expression and cleaved caspase-3 proteins. METH exposure increased the diversity and richness of gut microbiota, and significantly changed the microbial community composition, accompanied by elevated abundance of Lactobacillus, Bifidobacterium, and decreased abundance of Bacteroides, norank_f_Muribaculaceae and Alistipes. Eliminating gut microbiota by antibiotics treatment alleviated METH-induced cardiotoxicity, while FMT treatment transferred similar cardiac injury manifestations from METH-exposed mice to healthy recipient mice. Our study unveils the crucial involvement of gut microbiota in the development of cardiotoxicity induced by METH and provides potential strategies for treating cardiac complications caused by METH.
Collapse
Affiliation(s)
- Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Jing-Tao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
16
|
Li JH, Liu JL, Li XW, Liu Y, Yang JZ, Chen LJ, Zhang KK, Xie XL, Wang Q. Gut microbiota from sigma-1 receptor knockout mice induces depression-like behaviors and modulates the cAMP/CREB/BDNF signaling pathway. Front Microbiol 2023; 14:1143648. [PMID: 37089558 PMCID: PMC10116000 DOI: 10.3389/fmicb.2023.1143648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionDepression is a common mental disorder that affects approximately 350 million people worldwide. Much remains unknown about the molecular mechanisms underlying this complex disorder. Sigma-1 receptor (Sig-1R) is expressed at high levels in the central nervous system. Increasing evidence has demonstrated a close association between the Sig-1R and depression. Recently, research has suggested that the gut microbiota may play a crucial role in the development of depression.MethodsMale Sig-1R knockout (Sig-1R KO) and wild-type (WT) mice were used for this study. All transgenic mice were of a pure C57BL/6J background. Mice received a daily gavage of vancomycin (100 mg/kg), neomycin sulfate (200 mg/kg), metronidazole (200 mg/kg), and ampicillin (200 mg/kg) for one week to deplete gut microbiota. Fecal microbiota transplantation (FMT) was conducted to assess the effects of gut microbiota. Depression-like behaviors was evaluated by tail suspension test (TST), forced swimming test (FST) and sucrose preference test (SPT). Gut microbiota was analyzed by 16s rRNA and hippocampal transcriptome changes were assessed by RNA-seq.ResultsWe found that Sig-1R knockout induced depression-like behaviors in mice, including a significant reduction in immobility time and an increase in latency to immobility in the FST and TST, which was reversed upon clearance of gut microbiota with antibiotic treatment. Sig-1R knockout significantly altered the composition of the gut microbiota. At the genus level, the abundance of Alistipes, Alloprevotella, and Lleibacterium decreased significantly. Gut microbiota dysfunction and depression-like phenotypes in Sig-1R knockout mice could be reproduced through FMT experiments. Additionally, hippocampal RNA sequencing identified multiple KEGG pathways that are associated with depression. We also discovered that the cAMP/CREB/BDNF signaling pathway is inhibited in the Sig-1R KO group along with lower expression of neurotrophic factors including CTNF, TGF-α and NGF. Fecal bacteria transplantation from Sig-1R KO mice also inhibited cAMP/CREB/BDNF signaling pathway.DiscussionIn our study, we found that the gut-brain axis may be a potential mechanism through which Sig-1R regulates depression-like behaviors. Our study provides new insights into the mechanisms by which Sig-1R regulates depression and further supports the concept of the gut-brain axis.
Collapse
Affiliation(s)
- Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
- *Correspondence: Xiao-Li Xie,
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Qi Wang, ;
| |
Collapse
|
17
|
Yang JZ, Zhang KK, He JT, Chen LJ, Ding JF, Liu JL, Li JH, Liu Y, Li XW, Zhao D, Xie XL, Wang Q. Obeticholic acid protects against methamphetamine-induced anxiety-like behavior by ameliorating microbiota-mediated intestinal barrier impairment. Toxicology 2023; 486:153447. [PMID: 36720452 DOI: 10.1016/j.tox.2023.153447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Methamphetamine (Meth) abuse can cause severe anxiety disorder and interfere with gut homeostasis. Obeticholic acid (OCA) has emerged as a protective agent against diet-related anxiety that improves gut homeostasis. The potential for OCA to ameliorate Meth-induced anxiety, and the microbial mechanisms involved, remain obscure. Here, C57/BL6 mice were intraperitoneally injected with Meth (15 mg/kg) to induce anxiety-like behavior. 16 S rRNA sequence analysis and fecal microbiome transplantation (FMT) were used to profile the gut microbiome and evaluate its effects, respectively. Orally administered OCA was investigated for protection against Meth-induced anxiety. Results indicated that Meth mediated anxiety-like behavior, aroused hippocampal neuroinflammation through activation of the TLR4/MyD88/NF-κB pathway, weakened intestinal barrier and disturbed the gut microbiome. Specifically, abundance of anxiety-related Rikenella was increased. FMT from Meth-administrated mice also weakened intestinal barrier and elevated serum LPS, inducing hippocampal neuroinflammation and anxiety-like behavior in recipient mice. Finally, OCA pretreatment ameliorated Meth-induced impairment of gut homeostasis by reshaping the microbial composition and improving the intestinal barrier. Meth-induced anxiety-like behavior and hippocampal neuroinflammation were also ameliorated by OCA pretreatment. These preliminary findings reveal the crucial role of gut microbiota in Meth-induced anxiety-like behavior and neuroinflammation, highlighting OCA as a potential candidate for the prevention of Meth-induced anxiety.
Collapse
Affiliation(s)
- Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jie-Tao He
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jin-Feng Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
18
|
Ding J, Huang J, Tang X, Shen L, Hu S, He J, Liu T, Yu Z, Liu Y, Wang Q, Wang J, Zhao N, Qi X, Huang J. Low and high dose methamphetamine differentially regulate synaptic structural plasticity in cortex and hippocampus. Front Cell Neurosci 2022; 16:1003617. [PMID: 36406748 PMCID: PMC9666390 DOI: 10.3389/fncel.2022.1003617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 03/24/2024] Open
Abstract
Psychostimulants, such as methamphetamine (METH) can induce structural remodeling of synapses by remodeling presynaptic and postsynaptic morphology. Escalating or long-lasting high dose METH accounts for neurodegeneration by targeting multiple neurotransmitters. However, the effects of low dose METH on synaptic structure and the modulation mechanism remain elusive. This study aims to assess the effects of low dose (2 mg/kg) and high dose (10 mg/kg) of METH on synaptic structure alternation in hippocampus and prefrontal cortex (PFC) and to reveal the underlying mechanism involved in the process. Low dose METH promoted spine formation, synaptic number increase, post-synaptic density length elongation, and memory function. High dose of METH induced synaptic degeneration, neuronal number loss and memory impairment. Moreover, high dose, but not low dose, of METH caused gliosis in PFC and hippocampus. Mechanism-wise, low dose METH inactivated ras-related C3 botulinum toxin substrate 1 (Rac1) and activated cell division control protein 42 homolog (Cdc42); whereas high dose METH inactivated Cdc42 and activated Rac1. We provided evidence that low and high doses of METH differentially regulate synaptic plasticity in cortex and hippocampus.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jian Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiang Tang
- Department of Children Rehabilitation, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Shen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaojiao He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Zhixing Yu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Jia S, Guo X, Chen Z, Li S, Liu XA. The roles of the circadian hormone melatonin in drug addiction. Pharmacol Res 2022; 183:106371. [PMID: 35907435 DOI: 10.1016/j.phrs.2022.106371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Given the devastating social and health consequences of drug addiction and the limitations of current treatments, a new strategy is needed. Circadian system disruptions are frequently associated with drug addiction. Correcting abnormal circadian rhythms and improving sleep quality may thus be beneficial in the treatment of patients with drug addiction. Melatonin, an essential circadian hormone that modulates the biological clock, has anti-inflammatory, analgesic, anti-depressive, and neuroprotective effects via gut microbiota regulation and epigenetic modifications. It has attracted scientists' attention as a potential solution to drug abuse. This review summarized scientific evidence on the roles of melatonin in substance use disorders at the cellular, circuitry, and system levels, and discussed its potential applications as an intervention strategy for drug addiction.
Collapse
Affiliation(s)
- Shuhui Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuantong Guo
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|