1
|
Cheng J, Dong Q, Nie S, Hao X, Mo S, Liu Y, Zhu Z, Lu H, Zhang T, Zeng W. G6PD lactylation is involved in regulating redox balance of boar sperm in low glucose extender. Theriogenology 2025; 239:117388. [PMID: 40106924 DOI: 10.1016/j.theriogenology.2025.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Glucose metabolism is an essential pathway that indirectly supports cellular redox homeostasis by providing reducing equivalents, such as NADPH, particularly in the highly specialized sperm. Sperm exhibit higher progressive motility in low glucose extender. However, the underlying mechanisms remain unclear. The objective of the present study was to investigate effect of low glucose on sperm metabolism and lactylation modification. After 3 h of incubation, low glucose had an effect on the redox state of boar semen in vitro, particularly in terms of the concentration of reactive oxygen species (ROS) and reductive products. Furthermore, glucose-6-phosphate dehydrogenase (G6PD) activity was significantly increased at low glucose condition, accompanied by increased lactate accumulation extracellularly. Meanwhile, protein lactylation levels were enhanced, with G6PD identified as one of lactylation proteins. In conclusion, low glucose incubation induced lactylation of G6PD, resulting in increased enzymatic activity that enhanced the pentose phosphate pathway (PPP), which in turn increased antioxidant capacity and maintained sperm motility in a low glucose environment. The research results provide valuable insights into the adaptation mechanisms of sperm to their environment and offer new perspectives and opportunities for reproductive biology research.
Collapse
Affiliation(s)
- Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Qinba Mountain Area Collaborative Innovation Center of Bio-resources Comprehensive Development, Shaanxi, Hanzhong, 723000, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi, Hanzhong, 723000, China.
| | - Qiqi Dong
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China
| | - Saiya Nie
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China
| | - Xu Hao
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China
| | - Sha Mo
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Hanzhong Vocational and Technical College, Shaanxi, Hanzhong, 723000, China
| | - Yixing Liu
- Shaanxi Shunxin Breeding Pig Selection Co., Shaanxi, Hanzhong, 723000, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Shandong, Qingdao, 266109, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Qinba Mountain Area Collaborative Innovation Center of Bio-resources Comprehensive Development, Shaanxi, Hanzhong, 723000, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi, Hanzhong, 723000, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Qinba Mountain Area Collaborative Innovation Center of Bio-resources Comprehensive Development, Shaanxi, Hanzhong, 723000, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi, Hanzhong, 723000, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Qinba Mountain Area Collaborative Innovation Center of Bio-resources Comprehensive Development, Shaanxi, Hanzhong, 723000, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi, Hanzhong, 723000, China.
| |
Collapse
|
2
|
Chang C, Dai Y, Zhang J, Wu Z, Li S, Zhou Z. Associations between exposure to pesticides mixture and semen quality among the non-occupationally exposed males: Four statistical models. ENVIRONMENTAL RESEARCH 2024; 257:119400. [PMID: 38866311 DOI: 10.1016/j.envres.2024.119400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Most epidemiological studies on the associations between pesticides exposure and semen quality have been based on a single pesticide, with inconsistent major results. In contrast, there was limited human evidence on the potential effect of pesticides mixture on semen quality. Our study aimed to investigate the relationship of pesticide profiles with semen quality parameters among 299 non-occupationally exposed males aged 25-50 without any clinical abnormalities. Serum concentrations of 21 pesticides were quantified by gas chromatography-tandem mass spectrometry (GC-MS/MS). Semen quality parameters were abstracted from medical records. Generalized linear regression models (GLMs) and three mixture approaches, including weighted quantile sum regression (WQS), elastic net regression (ENR) and Bayesian kernel machine regression (BKMR), were applied to explore the single and mixed effects of pesticide exposure on semen quality. In GLMs, as the serum levels of Bendiocarb, β-BHC, Clomazone, Dicrotophos, Dimethenamid, Paclobutrazole, Pentachloroaniline and Pyrimethanil increased, the straight-line velocity (VSL), linearity (LIN) and straightness (STR) decreased. This negative association also occurred between the concentration of β-BHC, Pentachloroaniline, Pyrimethanil and progressive motility, total motility. In the WQS models, pesticides mixture was negatively associated with total motility and several sperm motility parameters (β: -3.07∼-1.02 per decile, FDR-P<0.05). After screening the important pesticides derived from the mixture by ENR model, the BKMR models showed that the decreased qualities for VSL, LIN, and STR were also observed when pesticide mixtures were at ≥ 70th percentiles. Clomazone, Dimethenamid, and Pyrimethanil (Posterior inclusion probability, PIP: 0.2850-0.8900) were identified as relatively important contributors. The study provides evidence that exposure to single or mixed pesticide was associated with impaired semen quality.
Collapse
Affiliation(s)
- Chunxin Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Zhengmu Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Shuyuan Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
3
|
Zhang XY, Zhang YH, Guo YY, Luo Y, Xu SS, Lu X, Liang NN, Wu HY, Huang YC, Xu DX. Arsenic exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124060. [PMID: 38685555 DOI: 10.1016/j.envpol.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Arsenic (As) is a notorious environmental toxicant widely present in various natural environments. As exposure has been correlated with the decline in sperm motility. Yet, the mechanism has not been fully elucidated. Adult male C57 mice were given 0, 1, or 15 mg/L NaAsO2 for 10 weeks. The mature seminiferous tubules and sperm count were decreased in As-exposed mice. Sperm motility and several sperm motility parameters, including average path velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL), beat-cross frequency (BCF), linearity (LIN), straightness (STR), and amplitude of lateral head displacement (ALH), were declined in As-exposed mice. RNA sequencing and transcriptomics analyses revealed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways. Untargeted metabolomics analyses indicated that energy metabolism was disrupted in As-exposed mouse testes. Gene set enrichment analysis showed that glycolysis and oxidative phosphorylation were disturbed in As-exposed mouse testes. As-induced disruption of testicular glucose metabolism and oxidative phosphorylation was further validated by RT-PCR and Western blotting. In conclusion, As exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes.
Collapse
Affiliation(s)
- Xiao-Yi Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Hao Zhang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yue-Yue Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yan Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shan-Shan Xu
- Department of Public Health and General Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Nan-Nan Liang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hong-Yan Wu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Papaccio F, Caputo S, Iorio A, De Simone P, Ottaviani M, Del Brocco A, Frascione P, Bellei B. Persistent β-Hexachlorocyclohexane Exposure Impacts Cellular Metabolism with a Specific Signature in Normal Human Melanocytes. Cells 2024; 13:374. [PMID: 38474338 PMCID: PMC10930995 DOI: 10.3390/cells13050374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Cutaneous melanoma arises from skin melanocytes and has a high risk of metastatic spread. Despite better prevention, earlier detection, and the development of innovative therapies, melanoma incidence and mortality increase annually. Major clinical risk factors for melanoma include fair skin, an increased number of nevi, the presence of dysplastic nevi, and a family history of melanoma. However, several external inducers seem to be associated with melanoma susceptibility such as environmental exposure, primarily unprotected sun experience, alcohol consumption, and heavy metals. In recent years, epidemiological studies have highlighted a potential risk of β-hexachlorocyclohexane (β-HCH), the most studied organochlorine pesticide, causing cancer induction including melanoma. METHODS We evaluated in vitro the impact of this pollutant on epidermal and dermal cells, attempting to describe mechanisms that could render cutaneous cells more prone to oncogenic transformation. RESULTS We demonstrated that β-HCH impacts melanocyte biology with a highly cell-type specific signature that involves perturbation of AKT/mTOR and Wnt/β-catenin signaling, and AMPK activation, resulting in lowering energy reserve, cell proliferation, and pigment production. CONCLUSIONS In conclusion, long-term exposure to persistent organic pollutants damages melanocyte metabolism in its function of melanin production with a consequent reduction of melanogenesis indicating a potential augmented skin cancer risk.
Collapse
Affiliation(s)
- Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.); (M.O.)
| | - Silvia Caputo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.); (M.O.)
| | - Alessandra Iorio
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.I.); (P.D.S.); (P.F.)
| | - Paola De Simone
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.I.); (P.D.S.); (P.F.)
| | - Monica Ottaviani
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.); (M.O.)
| | - Antonella Del Brocco
- Laboratory Clinimed, Clinical and Microbiological Analyses Laboratory, 03023 Ceccano, Italy;
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.I.); (P.D.S.); (P.F.)
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.); (M.O.)
| |
Collapse
|
5
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Wu Y, Sun Y. Cationic Polymers Remarkably Boost Haloalkane Dehalogenase Activity in Organic Solvent Solutions and the Molecular Implications. Molecules 2023; 28:6795. [PMID: 37836637 PMCID: PMC10574148 DOI: 10.3390/molecules28196795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Applications of haloalkane dehalogenase DhaA in biocatalysis are limited by its unfavorable performance in organic solvents. Our previous work proved that mutations of surface positive-charged residues enhanced the organic solvent resistance of DhaA, which inspired us to explore the effect of cationic polymers on DhaA in organic solvents. Remarkably boosted performance was achieved in different organic solvent solutions by introducing cationic polymers, for example, there was a 6.1-fold activity increase with poly(allylamine hydrochloride) and a 5.5-fold activity increase with poly(ethylene imine) in 40 vol.% dimethylsulfoxide. The presence of cationic polymers protected DhaA from damage by organic solvents and increased the substrate concentration around the enzyme-polymer complex. Fluorescence spectroscopy and molecular dynamics simulations revealed that the binding of cationic polymers onto DhaA weakened the interactions between organic solvents and DhaA, decreased the organic solvent solvation level around DhaA, and enhanced the structural stability of DhaA in organic solvents. This comprehensive understanding of the effect of cationic polymers on DhaA can help to broaden the applications of DhaA in organic solvent-involved biocatalysis.
Collapse
Affiliation(s)
- Yin Wu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|