1
|
Koehbach J, Craik DJ. The Vast Structural Diversity of Antimicrobial Peptides. Trends Pharmacol Sci 2019; 40:517-528. [DOI: 10.1016/j.tips.2019.04.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
|
2
|
Prantner D, Shirey KA, Lai W, Lu W, Cole AM, Vogel SN, Garzino-Demo A. The θ-defensin retrocyclin 101 inhibits TLR4- and TLR2-dependent signaling and protects mice against influenza infection. J Leukoc Biol 2017; 102:1103-1113. [PMID: 28729359 PMCID: PMC5597516 DOI: 10.1189/jlb.2a1215-567rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 01/08/2023] Open
Abstract
A member of the θ‐defensin family protects mice during infection with influenza, suggesting a new strategy for viral therapy in humans. Despite widespread use of annual influenza vaccines, seasonal influenza‐associated deaths number in the thousands each year, in part because of exacerbating bacterial superinfections. Therefore, discovering additional therapeutic options would be a valuable aid to public health. Recently, TLR4 inhibition has emerged as a possible mechanism for protection against influenza‐associated lethality and acute lung injury. Based on recent data showing that rhesus macaque θ‐defensins could inhibit TLR4‐dependent gene expression, we tested the hypothesis that a novel θ‐defensin, retrocyclin (RC)‐101, could disrupt TLR4‐dependent signaling and protect against viral infection. In this study, RC‐101, a variant of the humanized θ‐defensin RC‐1, blocked TLR4‐mediated gene expression in mouse and human macrophages in response to LPS, targeting both MyD88‐ and TRIF‐dependent pathways. In a cell‐free assay, RC‐101 neutralized the biologic activity of LPS at doses ranging from 0.5 to 50 EU/ml, consistent with data showing that RC‐101 binds biotinylated LPS. The action of RC‐101 was not limited to the TLR4 pathway because RC‐101 treatment of macrophages also inhibited gene expression in response to a TLR2 agonist, Pam3CSK4, but failed to bind that biotinylated agonist. Mouse macrophages infected in vitro with mouse‐adapted A/PR/8/34 influenza A virus (PR8) also produced lower levels of proinflammatory cytokine gene products in a TLR4‐independent fashion when treated with RC‐101. Finally, RC‐101 decreased both the lethality and clinical severity associated with PR8 infection in mice. Cumulatively, our data demonstrate that RC‐101 exhibits therapeutic potential for the mitigation of influenza‐related morbidity and mortality, potentially acting through TLR‐dependent and TLR‐independent mechanisms.
Collapse
Affiliation(s)
- Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Institute for Human Virology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Alexander M Cole
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, USA; and
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA;
| | - Alfredo Garzino-Demo
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Institute for Human Virology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Strzelecka P, Czaplinska D, Sadej R, Wardowska A, Pikula M, Lesner A. Simplified, serine-rich theta-defensin analogues as antitumour peptides. Chem Biol Drug Des 2017; 90:52-63. [PMID: 28004513 DOI: 10.1111/cbdd.12927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023]
Abstract
θ-defensins belong to the family of host defence peptides. They are the only known example of cyclic polypeptides in animal proteomes. This study presents the synthesis of simplified θ-defensin analogues with pairs of cysteine replaced either by alanine, leucine or serine residues. Cytotoxicity tests were performed on human mammary epithelial (HB2) and breast cancer (SKBR3, MDA-MB-231) cell lines to determine whether peptides are selectively targeting cancer cells. The effect of these peptides was also evaluated in 3D Matrigel cultures, which are based on extracellular matrix components and therefore closely represent in vivo conditions. Finally, to determine whether analogues are able to sensitize MDA-MB-231 triple-negative breast cancer cells to chemotherapeutics, we co-administrated peptides with cisplatin or doxorubicin hydrochloride also in 3D Matrigel cultures. Additionally, cytotoxicity towards peripheral blood mononuclear cells and haemolytic effect were examined for a chosen representative of synthesized compounds. The results showed that positively charged serine-containing θ-defensin derivatives were more cytotoxic towards breast cancer cells (SKBR3, MDA-MB-231) than towards mammary epithelial cells (HB2). Analogues enhanced the effect of cisplatin and doxorubicin hydrochloride on triple-negative breast cancer cell line (MDA-MB-231).
Collapse
Affiliation(s)
- Paulina Strzelecka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Dominika Czaplinska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Rafal Sadej
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Anna Wardowska
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Michal Pikula
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Lesner
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Nguyen GKT, Hemu X, Quek JP, Tam JP. Butelase-Mediated Macrocyclization ofd-Amino-Acid-Containing Peptides. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Giang K. T. Nguyen
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Xinya Hemu
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Jun-Ping Quek
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - James P. Tam
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
5
|
Nguyen GKT, Hemu X, Quek JP, Tam JP. Butelase-Mediated Macrocyclization of d-Amino-Acid-Containing Peptides. Angew Chem Int Ed Engl 2016; 55:12802-6. [PMID: 27624217 DOI: 10.1002/anie.201607188] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 01/19/2023]
Abstract
Macrocyclic compounds have received increasing attention in recent years. With their large surface area, they hold promise for inhibiting protein-protein interactions, a chemical space that was thought to be undruggable. Although many chemical methods have been developed for peptide macrocyclization, enzymatic methods have emerged as a promising new economical approach. Thus far, most enzymes have been shown to act on l-peptides; their ability to cyclize d-amino-acid-containing peptides has rarely been documented. Herein we show that macrocycles consisting of d-amino acids, except for the Asn residue at the ligating site, were efficiently synthesized by butelase 1, an Asn/Asp-specific ligase. Furthermore, by using a peptide-library approach, we show that butelase 1 tolerates most of the d-amino acid residues at the P1'' and P2'' positions.
Collapse
Affiliation(s)
- Giang K T Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jun-Ping Quek
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
6
|
Abstract
Cyclic peptides are found in a diverse range of organisms and are characterized by their stability and role in defense. Why is only one class of cyclic peptides found in mammals? Possibly we have not looked hard enough for them, or the technologies needed to identify them are not fully developed. We also do not yet understand their intriguing biosynthesis from two separate gene products. Addressing these challenges will require the application of chemical tools and insights from other classes of cyclic peptides. Herein, we highlight recent developments in the characterization of theta defensins and describe the important role that chemistry has played in delineating their modes of action. Furthermore, we emphasize the potential of theta defensins as antimicrobial agents and scaffolds for peptide drug design.
Collapse
Affiliation(s)
- Anne C. Conibear
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD (Australia) http://www.imb.uq.edu.au/index.html?page=11695
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD (Australia) http://www.imb.uq.edu.au/index.html?page=11695
| |
Collapse
|
7
|
Thapa P, Espiritu MJ, Cabalteja C, Bingham JP. The Emergence of Cyclic Peptides: The Potential of Bioengineered Peptide Drugs. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9421-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
|
9
|
Conibear AC, Rosengren KJ, Daly NL, Henriques ST, Craik DJ. The cyclic cystine ladder in θ-defensins is important for structure and stability, but not antibacterial activity. J Biol Chem 2013; 288:10830-40. [PMID: 23430740 DOI: 10.1074/jbc.m113.451047] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
θ-Defensins are ribosomally synthesized cyclic peptides found in the leukocytes of some primate species and have promising applications as antimicrobial agents and scaffolds for peptide drugs. The cyclic cystine ladder motif, comprising a cyclic peptide backbone and three parallel disulfide bonds, is characteristic of θ-defensins. In this study, we explore the role of the cyclic peptide backbone and cystine ladder in the structure, stability, and activity of θ-defensins. θ-Defensin analogues with different numbers and combinations of disulfide bonds were synthesized and characterized in terms of their NMR solution structures, serum and thermal stabilities, and their antibacterial and membrane-binding activities. Whereas the structures and stabilities of the peptides were primarily dependent on the number and position of the disulfide bonds, their antibacterial and membrane-binding properties were dependent on the cyclic backbone. The results provide insights into the mechanism of action of θ-defensins and illustrate the potential of θ-defensin analogues as scaffolds for peptide drug design.
Collapse
Affiliation(s)
- Anne C Conibear
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
10
|
Lehrer RI, Cole AM, Selsted ME. θ-Defensins: cyclic peptides with endless potential. J Biol Chem 2012; 287:27014-9. [PMID: 22700960 DOI: 10.1074/jbc.r112.346098] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
θ-Defensins, the only cyclic peptides of animal origin, have been isolated from the leukocytes of rhesus macaques and baboons. Their biogenesis is unusual because each peptide is an 18-residue chimera formed by the head-to-tail splicing of nonapeptides derived from two separate precursors. θ-Defensins have multiple arginines and a ladder-like tridisulfide array spanning their two antiparallel β-strands. Human θ-defensin genes contain a premature stop codon that prevents effective translation of the needed precursors; consequently, these peptides are not present in human leukocytes. Synthetic θ-defensins with sequences that correspond to those encoded within the human pseudogenes are called retrocyclins. Retrocyclin-1 inhibits the cellular entry of HIV-1, HSV, and influenza A virus. The rhesus θ-defensin RTD-1 protects mice from an experimental severe acute respiratory syndrome coronavirus infection, and retrocyclin-1 protects mice from infection by Bacillus anthracis spores. The small size, unique structure, and multiple host defense activities of θ-defensins make them intriguing potential therapeutic agents.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1688, USA.
| | | | | |
Collapse
|
11
|
Thennarasu S, Huang R, Lee DK, Yang P, Maloy L, Chen Z, Ramamoorthy A. Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367. Biochemistry 2010; 49:10595-605. [PMID: 21062093 PMCID: PMC3006059 DOI: 10.1021/bi101394r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a minimalist design approach, a synthetic peptide MSI-367 [(KFAKKFA)(3)-NH(2)] was designed and synthesized with the objective of generating cell-selective nonlytic peptides, which have a significant bearing on cell targeting. The peptide exhibited potent activity against both bacteria and fungi, but no toxicity to human cells at micromolar concentrations. Bacterial versus human cell membrane selectivity of the peptide was determined via membrane permeabilization assays. Circular dichroism investigations revealed the intrinsic helix propensity of the peptide, β-turn structure in aqueous buffer and extended and turn conformations upon binding to lipid vesicles. Differential scanning calorimetry experiments with 1,2-dipalmitoleoyl-sn-glycero-3-phosphatidylethanolamine bilayers indicated the induction of positive curvature strain and repression of the fluid lamellar to inverted hexagonal phase transition by MSI-367. Results of isothermal titration calorimetry (ITC) experiments suggested the possibility of formation of specific lipid-peptide complexes leading to aggregation. (2)H nuclear magnetic resonance (NMR) of deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) multilamellar vesicles confirmed the limited effect of the membrane-embedded peptide at the lipid-water interface. (31)P NMR data indicated changes in the lipid headgroup orientation of POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine lipid bilayers upon peptide binding. Membrane-embedded and membrane-inserted states of the peptide were observed via sum frequency generation vibrational spectroscopy. Circular dichroism, ITC, and (31)P NMR data for Escherichia coli lipids agree with the hypothesis that strong electrostatic lipid-peptide interactions embrace the peptide at the lipid-water interface and provide the basis for bacterial cell selectivity.
Collapse
Affiliation(s)
- Sathiah Thennarasu
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Rui Huang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Dong-Kuk Lee
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Pei Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
| | - Lee Maloy
- Genaera Pharmaceuticals, Plymouth Meeting, PA 19462
| | - Zhan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
12
|
Labaditin, a cyclic peptide with rich biotechnological potential: preliminary toxicological studies and structural changes in water and lipid membrane environment. Amino Acids 2010; 40:135-44. [DOI: 10.1007/s00726-010-0648-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 06/01/2010] [Indexed: 01/25/2023]
|
13
|
Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput Biol 2009; 5:e1000277. [PMID: 19180178 PMCID: PMC2614469 DOI: 10.1371/journal.pcbi.1000277] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 12/16/2008] [Indexed: 11/19/2022] Open
Abstract
Protegrin peptides are potent antimicrobial agents believed to act against a variety of pathogens by forming nonselective transmembrane pores in the bacterial cell membrane. We have employed 3D Poisson-Nernst-Planck (PNP) calculations to determine the steady-state ion conduction characteristics of such pores at applied voltages in the range of −100 to +100 mV in 0.1 M KCl bath solutions. We have tested a variety of pore structures extracted from molecular dynamics (MD) simulations based on an experimentally proposed octomeric pore structure. The computed single-channel conductance values were in the range of 290–680 pS. Better agreement with the experimental range of 40–360 pS was obtained using structures from the last 40 ns of the MD simulation, where conductance values range from 280 to 430 pS. We observed no significant variation of the conductance with applied voltage in any of the structures that we tested, suggesting that the voltage dependence observed experimentally is a result of voltage-dependent channel formation rather than an inherent feature of the open pore structure. We have found the pore to be highly selective for anions, with anionic to cationic current ratios (ICl−/IK+) on the order of 103. This is consistent with the highly cationic nature of the pore but surprisingly in disagreement with the experimental finding of only slight anionic selectivity. We have additionally tested the sensitivity of our PNP model to several parameters and found the ion diffusion coefficients to have a significant influence on conductance characteristics. The best agreement with experimental data was obtained using a diffusion coefficient for each ion set to 10% of the bulk literature value everywhere inside the channel, a scaling used by several other studies employing PNP calculations. Overall, this work presents a useful link between previous work focused on the structure of protegrin pores and experimental efforts aimed at investigating their conductance characteristics. Protegrins are small peptides with strong antimicrobial properties, believed to kill bacteria primarily by forming nonselective pores in the bacterial membrane. This nonspecific and highly effective mechanism of action has created significant excitement about the use of protegrins as therapeutic antibiotics. However, a lack of understanding of the fundamental processes that lead to pore formation and bacterial death has proven to be a major bottleneck in the rational design of protegrin-based antibiotics. In the present work, we have carried out computational investigations of the diffusion of ions through a protegrin pore. We have thereby provided a connection between previous experimental and simulation work aimed at elucidating the structure of the protegrin pore and earlier experimental work investigating the ion transport characteristics of protegrin pores. The ion diffusion characteristics of protegrin pores are likely to be important in their ability to kill bacteria, as the uncontrolled flow of ions through a bacterial membrane will result in membrane depolarization and the loss of vital membrane functions. The present work thus represents an important first step in modeling and quantifying the timeline of events that lead to the killing of bacteria by protegrins. Furthermore, the computational tools that we have presented herein are easily extendible to similar systems, in particular other antimicrobial peptides.
Collapse
|
14
|
Bensikaddour H, Snoussi K, Lins L, Van Bambeke F, Tulkens PM, Brasseur R, Goormaghtigh E, Mingeot-Leclercq MP. Interactions of ciprofloxacin with DPPC and DPPG: Fluorescence anisotropy, ATR-FTIR and 31P NMR spectroscopies and conformational analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2535-43. [DOI: 10.1016/j.bbamem.2008.08.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
15
|
Lohner K, Sevcsik E, Pabst G. Chapter Five Liposome-Based Biomembrane Mimetic Systems: Implications for Lipid–Peptide Interactions. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2008. [DOI: 10.1016/s1554-4516(07)06005-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Daly NL, Chen YK, Rosengren KJ, Marx UC, Phillips ML, Waring AJ, Wang W, Lehrer RI, Craik DJ. Retrocyclin-2: Structural Analysis of a Potent Anti-HIV θ-Defensin,. Biochemistry 2007; 46:9920-8. [PMID: 17685559 DOI: 10.1021/bi700720e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retrocyclins are circular mini-defensins with significant potential as agents against human immunodeficiency virus, influenza A, and herpes simplex virus. Retrocyclins bind carbohydrate-containing surface molecules such as gp120 and CD4 with high affinity (Kd, 10-100 nM), promoting their localization on cell membranes. The structural features important for activity have yet to be fully elucidated, but here, we have determined the first three-dimensional structure of a retrocyclin, namely, one of the most potent forms, retrocyclin-2. In the presence of SDS micelles, a well-defined beta-hairpin braced by three disulfide bonds that defines the cystine ladder motif is present. By contrast, a well-defined structure could not be determined in aqueous solution, suggesting that the presence of SDS micelles stabilizes the extended conformation of retrocyclin-2. Translational diffusion measurements indicate that retrocyclin-2 interacts with the SDS micelles, and such a membrane-like interaction may be an important feature in the mechanism of action of these antimicrobial peptides. Analytical ultracentrifugation and the NMR data indicated that retrocyclin-2 self-associates to form a trimer in a concentration-dependent manner. The ability to self-associate may contribute to the high-affinity binding of retrocyclins for glycoproteins by increasing the valency and enhancing the ability of retrocyclins to cross-link cell surface glycoproteins.
Collapse
Affiliation(s)
- Norelle L Daly
- Institute for Molecular Bioscience and Australian Research Council Special Research Centre for Functional and Applied Genomics, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sevcsik E, Pabst G, Jilek A, Lohner K. How lipids influence the mode of action of membrane-active peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2586-95. [PMID: 17662236 DOI: 10.1016/j.bbamem.2007.06.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/01/2007] [Accepted: 06/14/2007] [Indexed: 11/18/2022]
Abstract
The human, multifunctional peptide LL-37 causes membrane disruption by distinctly different mechanisms strongly dependent on the nature of the membrane lipid composition, varying not only with lipid headgroup charge but also with hydrocarbon chain length. Specifically, LL-37 induces a peptide-associated quasi-interdigitated phase in negatively charged phosphatidylglycerol (PG) model membranes, where the hydrocarbon chains are shielded from water by the peptide. In turn, LL-37 leads to a disintegration of the lamellar organization of zwitterionic dipalmitoyl-phosphatidylcholine (DPPC) into disk-like micelles. Interestingly, interdigitation was also observed for the longer-chain C18 and C20 PCs. This dual behavior of LL-37 can be attributed to a balance between electrostatic interactions reflected in different penetration depths of the peptide and hydrocarbon chain length. Thus, our observations indicate that there is a tight coupling between the peptide properties and those of the lipid bilayer, which needs to be considered in studies of lipid/peptide interaction. Very similar effects were also observed for melittin and the frog skin peptide PGLa. Therefore, we propose a phase diagram showing different lipid/peptide arrangements as a function of hydrocarbon chain length and LL-37 concentration and suggest that this phase diagram is generally applicable to membrane-active peptides localized parallel to the membrane surface.
Collapse
Affiliation(s)
- E Sevcsik
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
| | | | | | | |
Collapse
|
18
|
Andrushchenko VV, Vogel HJ, Prenner EJ. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2447-58. [PMID: 17597579 DOI: 10.1016/j.bbamem.2007.05.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 05/10/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable alpha-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.
Collapse
Affiliation(s)
- Valery V Andrushchenko
- Department of Biological Sciences, University of Calgary, 2500 University Dr., NW, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
19
|
|
20
|
Abstract
Endogenous antimicrobial peptides (AMPs) mediate innate immunity in every species in which they have been investigated. Cathelicidins and defensins are the two major AMP families in mammals, and they are abundant components of phagocytic leukocytes and are released by epithelial cells at mucosal surfaces. In the small intestine, Paneth cells at the base of the crypts of Lieberkühn secrete alpha-defensins and additional AMPs at high levels in response to cholinergic stimulation and when exposed to bacterial antigens. Paneth cell alpha-defensins evolved to function in the extracellular environment with broad-spectrum antimicrobial activities, and they constitute the majority of bactericidal peptide activity secreted by Paneth cells. The release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells from colonization by potential pathogens and confers protection from enteric infection, as is evident from the immunity of mice expressing a human Paneth cell alpha-defensin transgene to oral infection by Salmonella enterica serovar Typhimurium. alpha-Defensins in Paneth cell secretions also may interact with bacteria in the intestinal lumen above the crypt-villus boundary and influence the composition of the enteric microbial flora. Mutations that cause defects in the activation, secretion, dissolution, and bactericidal effects of Paneth cell AMPs may alter crypt innate immunity and contribute to immunopathology.
Collapse
Affiliation(s)
- A J Ouellette
- Department of Pathology & Laboratory Medicine, School of Medicine, College of Health Sciences, University of California, Irvine 92697-4800, USA.
| |
Collapse
|
21
|
Detergent-like actions of linear amphipathic cationic antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1529-39. [PMID: 16928357 DOI: 10.1016/j.bbamem.2006.07.001] [Citation(s) in RCA: 434] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/30/2006] [Accepted: 07/06/2006] [Indexed: 12/25/2022]
Abstract
Antimicrobial peptides have raised much interest as pathogens become resistant against conventional antibiotics. We review biophysical studies that have been performed to better understand the interactions of linear amphipathic cationic peptides such as magainins, cecropins, dermaseptin, delta-lysin or melittin. The amphipathic character of these peptides and their interactions with membranes resemble the properties of detergent molecules and analogies between membrane-active peptide and detergents are presented. Several models have been suggested to explain the pore-forming, membrane-lytic and antibiotic activities of these peptides. Here we suggest that these might be 'special cases' within complicated phase diagrams describing the morphological plasticity of peptide/lipid supramolecular assemblies.
Collapse
|
22
|
Jing W, Prenner EJ, Vogel HJ, Waring AJ, Lehrer RI, Lohner K. Headgroup structure and fatty acid chain length of the acidic phospholipids modulate the interaction of membrane mimetic vesicles with the antimicrobial peptide protegrin-1. J Pept Sci 2006; 11:735-43. [PMID: 16059971 DOI: 10.1002/psc.702] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interaction of protegrin-1 (PG-1), a small beta-sheet antimicrobial peptide with acidic phospholipid model membranes was investigated by differential scanning calorimetry. We found that PG-1 can distinguish between liposomes of the anionic phospholipids DPPG, DPPS and DPPA, eventhough the headgroups of these phospholipids all have the same net charge and they carry the same hydrocarbon chains. Specifically, PG-1 had only a minor effect on the thermotropic phase behavior of DPPA liposomes, while it interacted preferentially with the fluid phase of DPPS. Furthermore, PG-1 could induce a phase separation in DPPG liposomes resulting in the formation of peptide-rich domains even at low concentrations of the peptide. However, this peptide-rich domain was not evident when the fatty acyl chains were longer or shorter by two carbon atoms. In addition, PG-1 can also form peptide-rich domains in DPPS vesicles but only at high concentrations of the peptide. These results suggest that in addition to an overall negative charge, the structural features of the phospholipid headgroups, lipid packing and thus membrane fluidity will influence the interaction with PG-1, thereby modulating its biological activity.
Collapse
Affiliation(s)
- Weiguo Jing
- Institute of Biophysics and X-ray Structure Research, Austrian Academy of Sciences, Graz
| | | | | | | | | | | |
Collapse
|
23
|
Thennarasu S, Lee DK, Poon A, Kawulka KE, Vederas JC, Ramamoorthy A. Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem Phys Lipids 2005; 137:38-51. [PMID: 16095584 DOI: 10.1016/j.chemphyslip.2005.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/24/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
Subtilosin A is an antimicrobial peptide produced by the soil bacterium Bacillus subtilis that possesses bactericidal activity against a diverse range of bacteria, including Listeria monocytogenes. Recent structural studies have found that subtilosin A is posttranslationally modified in a unique way, placing it in a new class of bacteriocins. In this study, in order to understand the mechanism of membrane-disruption by subtilosin A, the interaction of the peptide with model phospholipid bilayers is characterized using fluorescence, solid-state NMR and differential scanning calorimetry (DSC) experiments. Our results in this study show that subtilosin A interacts with the lipid head group region of bilayer membranes in a concentration dependent manner. Fluorescence experiments reveal the interaction of subtilosin A with small unilamellar vesicles (SUVs) composed of POPC, POPG and E. coli total lipids, and that at least one edge of the molecule is buried in membrane bilayers. At high concentrations, it induces leakage from SUVs of POPC and POPE/POPG (7:3) mixture. (15)N solid-state NMR data suggests that the cyclic peptide is partially inserted into bilayers, which is in agreement with the fluorescence data. (31)P and (2)H NMR experiments and DSC data support the hypothesis that subtilosin A adopts a partially buried orientation in lipid bilayers, by showing that it induces a conformational change in the lipid headgroup and disordering in the hydrophobic region of bilayers. These results suggest that the lipid perturbation observed in this study may be one of the consequences of subtilosin A binding to lipid bilayers, which results in membrane permeabilization at high peptide concentrations.
Collapse
Affiliation(s)
- Sathiah Thennarasu
- Department of Chemistry and Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Defensins are peptidic components of the innate immune system of plants and animals. In mammals, defensins have evolved to have a central function in the host defense properties of granulocytic leukocytes, mucosal surfaces, skin and other epithelia. This review focuses on the biological functions of three structural subgroups of mammalian defensins and the evidence for their involvement as effectors of antimicrobial innate immunity.
Collapse
|
25
|
Hinz A, Galla HJ. Viral membrane penetration: lytic activity of a nodaviral fusion peptide. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:285-93. [PMID: 15834560 DOI: 10.1007/s00249-004-0450-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 11/19/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
The auto-cleavage product from the C-terminal part of the capsid protein of the flock house virus, namely the gamma(1) peptide, was used as a model peptide to characterize the initial steps of viral membrane penetration. Monolayers at the air-water interface were used to investigate the phase behaviour of ternary lipid-peptide mixtures, whereas solid-supported membranes were used to visualize the lytic activity of the gamma(1) peptide. 1,2-Dipalmitoyl-sn-glycero-phospatidylcholine/1,2-dipalmitoyl-sn-glycero-phospatidylserine (4:1) membranes were used as negatively charged model membranes. By means of film balance techniques lipid/peptide discrimination was found resulting in a lipid-rich and a peptide-rich phase. Quartz crystal microbalance and scanning force microscopy experiments led to the conclusion of a detergent-like mechanism of the gamma(1) peptide resulting in mixed lipid-peptide micelles with a molar ratio of 2.8:1. A monolayer adsorption with an ongoing lysis of membranes was found with gamma(1) peptide molecules interacting at membrane defects.
Collapse
Affiliation(s)
- Andreas Hinz
- Institut für Biochemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany.
| | | |
Collapse
|