1
|
Hoekzema M, Jiang J, Driessen AJM. Optimizing Archaeal Lipid Biosynthesis in Escherichia coli. ACS Synth Biol 2024; 13:2470-2479. [PMID: 39096298 PMCID: PMC11334171 DOI: 10.1021/acssynbio.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Membrane lipid chemistry is remarkably different in archaea compared with bacteria and eukaryotes. In the evolutionary context, this is also termed the lipid divide and is reflected by distinct biosynthetic pathways. Contemporary organisms have almost without exception only one type of membrane lipid. During early membrane evolution, mixed membrane stages likely occurred, and it was hypothesized that the instability of such mixtures was the driving force for the lipid divide. To examine the compatibility between archaeal and bacterial lipids, the bacterium Escherichia coli has been engineered to contain both types of lipids with varying success. Only limited production of archaeal lipid archaetidylethanolamine was achieved. Here, we substantially increased its production in E. coli by overexpression of an archaeal phosphatidylserine synthase needed for ethanolamine headgroup attachment. Furthermore, we introduced a synthetic isoprenoid utilization pathway to increase the supply of isopentenyl-diphosphate and dimethylallyl diphosphate. This improved archaeal lipid production substantially. The archaeal phospholipids also served as a substrate for the E. coli cardiolipin synthase, resulting in archaeal and novel hybrid archaeal/bacterial cardiolipin species not seen in living organisms before. Growth of the E. coli strain with the mixed membrane shows an enhanced sensitivity to the inhibitor of fatty acid biosynthesis, cerulenin, indicating a critical dependence of the engineered E. coli strain on its native phospholipids.
Collapse
Affiliation(s)
- Mirthe Hoekzema
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Jiayi Jiang
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| |
Collapse
|
2
|
Ben Mouhoub R, Mansouri A, Aliliche K, Beghalem H, Landoulsi A, El May A. Unraveling the expression of genes involved in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine in Salmonella Hadar grown under static magnetic field 200 mT. Microb Pathog 2017; 111:414-421. [PMID: 28923603 DOI: 10.1016/j.micpath.2017.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/07/2023]
Abstract
We aimed in this work to evaluate the effect of static magnetic field 200 mT (SMF) on the expression of genes involved in the biosynthetic pathway of cardiolipin: g3pd, plsB, cdsA, pgsA, pgpA, cls and phosphatidylethanolamine: pssA and psd in Salmonella enterica subsp enterica serovar Hadar. Bacteria were exposed to a SMF during 3, 6 and 9 h. RNA extraction was followed by Reverse Transcriptase Polymerase Chain Reaction RT-PCR. The relative quantification of mRNA expression levels using 16S rRNA doesn't change during the time exposure. RT-PCR was done for two exposure experiments. The gene expression using RT-PCR present no significant difference in case of plsB, cdsA, pgpA, pgsA and psd genes during the different exposure times. However, a significant increase was observed in the expression of g3pd and pssA genes after 6 h and for cls gene after 3 h of exposure, but any variation was notified after 9 h of exposure. So we can conclude from this study that cls, g3pd and pssA genes are required in the adaptation of Salmonella Hadar to SMF.
Collapse
Affiliation(s)
- Ramla Ben Mouhoub
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia.
| | - Ahlem Mansouri
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| | - Khadidja Aliliche
- Laboratory of Genetics, Faculty of Science of Bizerte, Zarzouna 7021, Tunisia
| | - Hamida Beghalem
- Laboratory of Genetics, Faculty of Science of Bizerte, Zarzouna 7021, Tunisia
| | - Ahmed Landoulsi
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| | - Alya El May
- Biochemistry and Molecular Biology, Code UR13ES34 Research Unit, Faculty of Sciences of Bizerte, Zarzouna 7021, Carthage University, Tunisia
| |
Collapse
|
3
|
Lin TY, Weibel DB. Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 2016; 100:4255-67. [PMID: 27026177 DOI: 10.1007/s00253-016-7468-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/25/2022]
Abstract
In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology.
Collapse
Affiliation(s)
- Ti-Yu Lin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
5
|
Ariöz C, Ye W, Bakali A, Ge C, Liebau J, Götzke H, Barth A, Wieslander Å, Mäler L. Anionic Lipid Binding to the Foreign Protein MGS Provides a Tight Coupling between Phospholipid Synthesis and Protein Overexpression in Escherichia coli. Biochemistry 2013; 52:5533-44. [DOI: 10.1021/bi400616n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Candan Ariöz
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Weihua Ye
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Amin Bakali
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Changrong Ge
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Jobst Liebau
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Hansjörg Götzke
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Andreas Barth
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Åke Wieslander
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Lena Mäler
- Center for Biomembrane
Research, Department of Biochemistry
and Biophysics, Stockholm University, SE-106
91 Stockholm, Sweden
| |
Collapse
|
6
|
Nina S, Ludmila D, Svetlana B, Olga N, Olga P, Tamara S, Valery S, Mikhail B. Effect of phenol-induced changes in lipid composition on conformation of OmpF-like porin of Yersinia pseudotuberculosis. FEBS Lett 2013; 587:2260-5. [DOI: 10.1016/j.febslet.2013.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
|
7
|
Dowhan W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:471-94. [PMID: 22925633 PMCID: PMC3513495 DOI: 10.1016/j.bbalip.2012.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 12/11/2022]
Abstract
Although the study of individual phospholipids and their synthesis began in the 1920s first in plants and then mammals, it was not until the early 1960s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960s. In 1970s and 1980s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Ge C, Georgiev A, Öhman A, Wieslander Å, Kelly AA. Tryptophan residues promote membrane association for a plant lipid glycosyltransferase involved in phosphate stress. J Biol Chem 2010; 286:6669-84. [PMID: 21156807 DOI: 10.1074/jbc.m110.138495] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplast membranes contain a substantial excess of the nonbilayer-prone monogalactosyldiacylglycerol (GalDAG) over the biosynthetically consecutive, bilayer-forming digalactosyldiacylglycerol (GalGalDAG), yielding a high membrane curvature stress. During phosphate shortage, plants replace phospholipids with GalGalDAG to rescue phosphate while maintaining membrane homeostasis. Here we investigate how the activity of the corresponding glycosyltransferase (GT) in Arabidopsis thaliana (atDGD2) depends on local bilayer properties by analyzing structural and activity features of recombinant protein. Fold recognition and sequence analyses revealed a two-domain GT-B monotopic structure, present in other plant and bacterial glycolipid GTs, such as the major chloroplast GalGalDAG GT atDGD1. Modeling led to the identification of catalytically important residues in the active site of atDGD2 by site-directed mutagenesis. The DGD synthases share unique bilayer interface segments containing conserved tryptophan residues that are crucial for activity and for membrane association. More detailed localization studies and liposome binding analyses indicate differentiated anchor and substrate-binding functions for these separated enzyme interface regions. Anionic phospholipids, but not curvature-increasing nonbilayer lipids, strongly stimulate enzyme activity. From our studies, we propose a model for bilayer "control" of enzyme activity, where two tryptophan segments act as interface anchor points to keep the substrate region close to the membrane surface. Binding of the acceptor substrate is achieved by interaction of positive charges in a surface cluster of lysines, arginines, and histidines with the surrounding anionic phospholipids. The diminishing phospholipid fraction during phosphate shortage stress will then set the new GalGalDAG/phospholipid balance by decreasing stimulation of atDGD2.
Collapse
Affiliation(s)
- Changrong Ge
- Center for Biomembrane Research, Stockholm University SE-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
9
|
Eriksson HM, Wessman P, Ge C, Edwards K, Wieslander Å. Massive formation of intracellular membrane vesicles in Escherichia coli by a monotopic membrane-bound lipid glycosyltransferase. J Biol Chem 2009; 284:33904-14. [PMID: 19767390 PMCID: PMC2797161 DOI: 10.1074/jbc.m109.021618] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/17/2009] [Indexed: 01/07/2023] Open
Abstract
The morphology and curvature of biological bilayers are determined by the packing shapes and interactions of their participant molecules. Bacteria, except photosynthetic groups, usually lack intracellular membrane organelles. Strong overexpression in Escherichia coli of a foreign monotopic glycosyltransferase (named monoglycosyldiacylglycerol synthase), synthesizing a nonbilayer-prone glucolipid, induced massive formation of membrane vesicles in the cytoplasm. Vesicle assemblies were visualized in cytoplasmic zones by fluorescence microscopy. These have a very low buoyant density, substantially different from inner membranes, with a lipid content of > or = 60% (w/w). Cryo-transmission electron microscopy revealed cells to be filled with membrane vesicles of various sizes and shapes, which when released were mostly spherical (diameter approximately 100 nm). The protein repertoire was similar in vesicle and inner membranes and dominated by the glycosyltransferase. Membrane polar lipid composition was similar too, including the foreign glucolipid. A related glycosyltransferase and an inactive monoglycosyldiacylglycerol synthase mutant also yielded membrane vesicles, but without glucolipid synthesis, strongly indicating that vesiculation is induced by the protein itself. The high capacity for membrane vesicle formation seems inherent in the glycosyltransferase structure, and it depends on the following: (i) lateral expansion of the inner monolayer by interface binding of many molecules; (ii) membrane expansion through stimulation of phospholipid synthesis, by electrostatic binding and sequestration of anionic lipids; (iii) bilayer bending by the packing shape of excess nonbilayer-prone phospholipid or glucolipid; and (iv) potentially also the shape or penetration profile of the glycosyltransferase binding surface. These features seem to apply to several other proteins able to achieve an analogous membrane expansion.
Collapse
Affiliation(s)
- Hanna M. Eriksson
- From the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm and
| | - Per Wessman
- the Department of Physical and Analytical Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Changrong Ge
- From the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm and
| | - Katarina Edwards
- the Department of Physical and Analytical Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Åke Wieslander
- From the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm and
| |
Collapse
|
10
|
Zhang YN, Lu FP, Chen GQ, Li Y, Wang JL. Expression, purification, and characterization of phosphatidylserine synthase from Escherichia coli K12 in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:122-126. [PMID: 19072541 DOI: 10.1021/jf802664u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although phosphatidylserine synthase (PSS) from Escherichia coli is an ideal enzyme for phospholipid production, its application in the food industry has been limited because of the low PSS yield. In this study, the pss gene was cloned from E. coli K(12) and expressed in Bacillus subtilis DB104, and the recombinant PSS was characterized subsequently. PSS was purified to 39.59-fold, and the highest activity was detected as 13.62 U/mg. The enzyme was found to be stable in a pH range of 6.5-9.5, with optimal pH values of 8.0 for hydrolysis and 7.0 for transphosphatidylation, respectively. The optimal temperature for PSS activity was 35 degrees C. The enzyme activity could be detected after 1 h of heating at 65 degrees C. Among the detected detergents and metal ions, Triton X-100, Ca(2+), Mn(2+), and Co(2+) could improve PSS activity. The transformation of phosphatidylcholine to phosphatidylserine under PSS catalyzation was carried out in a biphasic system, which confirmed the actual catalyzing ability of the recombinant protein.
Collapse
Affiliation(s)
- Ye-Ni Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, 300457 Tianjin, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Bokvist M, Gröbner G. Misfolding of Amyloidogenic Proteins at Membrane Surfaces: The Impact of Macromolecular Crowding. J Am Chem Soc 2007; 129:14848-9. [DOI: 10.1021/ja076059o] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcus Bokvist
- Department of Chemistry, University of Umeå, 90187 Umeå, Sweden
| | - Gerhard Gröbner
- Department of Chemistry, University of Umeå, 90187 Umeå, Sweden
| |
Collapse
|
13
|
Klement MLR, Ojemyr L, Tagscherer KE, Widmalm G, Wieslander A. A processive lipid glycosyltransferase in the small human pathogen Mycoplasma pneumoniae: involvement in host immune response. Mol Microbiol 2007; 65:1444-57. [PMID: 17697098 DOI: 10.1111/j.1365-2958.2007.05865.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human pathogen Mycoplasma pneumoniae has a very small genome but with many yet not identified gene functions, e.g. for membrane lipid biosynthesis. Extensive radioactive labelling in vivo and enzyme assays in vitro revealed a substantial capacity for membrane glycolipid biosynthesis, yielding three glycolipids, five phosphoglycolipids, in addition to six phospholipids. Most glycolipids were synthesized in a cell protein/lipid-detergent extract in vitro; galactose was incorporated into all species, whereas glucose only into a few. One (MPN483) of the three predicted glycosyltransferases (GTs; all essential) was both processive and promiscuous, synthesizing most of the identified glycolipids. These enzymes are of a GT-A fold, similar to an established structure, and belong to CAZy GT-family 2. The cloned MPN483 could use both diacylglycerol (DAG) and human ceramide acceptor substrates, and in particular UDP-galactose but also UDP-glucose as donors, making mono-, di- and trihexose variants. MPN483 output and processitivity was strongly influenced by the local lipid environment of anionic lipids. The structure of a major beta1,6GlcbetaGalDAG species was determined by NMR spectroscopy. This, as well as other purified M. pneumoniae glycolipid species, is important antigens in early infections, as revealed from ELISA screens with patient IgM sera, highlighting new aspects of glycolipid function.
Collapse
Affiliation(s)
- Maria L Rosén Klement
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|