1
|
Wang H, Siren J, Perttunen S, Immonen K, Chen Y, Narumanchi S, Kosonen R, Paavola J, Laine M, Tikkanen I, Lakkisto P. Deficiency of heme oxygenase 1a causes detrimental effects on cardiac function. J Cell Mol Med 2024; 28:e18243. [PMID: 38509740 PMCID: PMC10955162 DOI: 10.1111/jcmm.18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.
Collapse
Affiliation(s)
- Hong Wang
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Juuso Siren
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | | | - Yu‐Chia Chen
- Department of AnatomyUniversity of HelsinkiHelsinkiFinland
| | | | - Riikka Kosonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Jere Paavola
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mika Laine
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ilkka Tikkanen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Abdominal Centre NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Department of Clinical ChemistryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
2
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
4
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
5
|
Eltobshy SAG, Hussein AM, Elmileegy AA, Askar MH, Khater Y, Metias EF, Helal GM. Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:203-217. [PMID: 31080351 PMCID: PMC6488703 DOI: 10.4196/kjpp.2019.23.3.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asaad A Elmileegy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yomna Khater
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Kim H, Kim SR, Je J, Jeong K, Kim S, Kim HJ, Chang KC, Park SW. The proximal tubular α7 nicotinic acetylcholine receptor attenuates ischemic acute kidney injury through Akt/PKC signaling-mediated HO-1 induction. Exp Mol Med 2018; 50:1-17. [PMID: 29674665 PMCID: PMC5938048 DOI: 10.1038/s12276-018-0061-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Activation of the α7 nicotinic acetylcholine receptor (α7nAChR) has been shown to attenuate excessive inflammation by inhibiting proinflammatory cytokines during ischemia-reperfusion (IR) injury; however, the underlying kidney-specific molecular mechanisms remain unclear. The protective action of α7nAChR against renal IR injury was investigated using a selective α7nAChR agonist and antagonist. α7nAChR activation reduced plasma creatinine levels and tubular cell damage, whereas α7nAChR inhibition aggravated the IR-induced phenotype. α7nAChR activation decreased neutrophil infiltration and proinflammatory cytokine expression, increased heme oxygenase-1 (HO-1) expression, and reduced proximal tubular apoptosis after IR as shown by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and caspase-3 cleavage. In this study, we first showed that α7nAChR activation in the proximal tubules induced HO-1 expression through the phosphoinositide 3-kinase (PI3K)/Akt and protein kinase C (PKC) signaling pathway in vivo in renal IR mice and in vitro in proximal tubular cells. Chemical inhibitors of PKC or PI3K/Akt and small interfering RNA-mediated PKC silencing confirmed the signal specificity of α7nAChR-mediated HO-1 induction in the proximal tubular cells. α7nAChR activation inhibited high-mobility group box 1 release by inducing HO-1 expression and reduced proinflammatory cytokine gene expression and apoptotic cell death in tumor necrosis factor α-stimulated proximal tubular cells. Taken together, we conclude that α7nAChR activation in proximal tubular cells directly protects cells against renal IR injury by inducing HO-1 expression through PI3K/Akt and PKC signaling.
Collapse
Affiliation(s)
- Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sooji Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.
| |
Collapse
|
7
|
Ambegaokar SS, Kolson DL. Heme oxygenase-1 dysregulation in the brain: implications for HIV-associated neurocognitive disorders. Curr HIV Res 2015; 12:174-88. [PMID: 24862327 PMCID: PMC4155834 DOI: 10.2174/1570162x12666140526122709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that subserves cytoprotective responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, HO-1 expression is increased, presumably reflecting an endogenous neuroprotective response against ongoing cellular injury. In contrast, we have found that in human immunodeficiency virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress and neurodegeneration, HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways activated by HIV infection. We have also shown that HO-1 expression is significantly suppressed by HIV replication in cultured macrophages which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this glutamate-mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages. Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in macrophages, which could promote neuronal survival through HO-1-modulation of endogenous antioxidant and immune modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV infection is also discussed.
Collapse
Affiliation(s)
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Roveri G, Nascimbeni F, Rocchi E, Ventura P. Drugs and acute porphyrias: reasons for a hazardous relationship. Postgrad Med 2015; 126:108-20. [PMID: 25387219 DOI: 10.3810/pgm.2014.11.2839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The porphyrias are a group of metabolic diseases caused by inherited or acquired enzymatic deficiency in the metabolic pathway of heme biosynthesis. Simplistically, they can be considered as storage diseases, because the partial enzymatic defect gives rise to a metabolic "bottleneck" in the biosynthetic pathway and hence to an accumulation of different metabolic intermediates, potentially toxic and responsible for the various (cutaneous or neurovisceral) clinical manifestations observed in these diseases. In the acute porphyrias (acute intermittent porphyria, hereditary coproporphyria, variegate porphyria, and the very rare delta-aminolevulinic acid dehydratase ALAD-d porphyria), the characteristic severe neurovisceral involvement is mainly ascribed to a tissue accumulation of delta-aminolevulinic acid, a neurotoxic nonporphyrin precursor. Many different factors, both endogenous and exogenous, may favor the accumulation of this precursor in patients who are carriers of an enzymatic defect consistent with an acute porphyria, thus contributing to trigger the serious (and potentially fatal) clinical manifestations of the disease (acute porphyric attacks). To date, many different drugs are known to be able to precipitate an acute porphyric attack, so that the acute porphyrias are also considered as pharmacogenetic or toxygenetic diseases. This article reviews the different biochemical mechanisms underlying the capacity of many drugs to precipitate a porphyric acute attack (drug porphyrogenicity) in carriers of genetic mutations responsible for acute porphyrias, and addresses the issue of prescribing drugs for patients affected by these rare, but extremely complex, diseases.
Collapse
Affiliation(s)
- Giulia Roveri
- Centre for Porphyrias and Diseases from Disturbances of Amino Acid Metabolism, Division of Internal Medicine II, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | |
Collapse
|
9
|
Oliveira-Fusaro MCG, Clemente-Napimoga JT, Teixeira JM, Torres-Chávez KE, Parada CA, Tambeli CH. 5-HT induces temporomandibular joint nociception in rats through the local release of inflammatory mediators and activation of local β adrenoceptors. Pharmacol Biochem Behav 2012; 102:458-64. [DOI: 10.1016/j.pbb.2012.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 05/15/2012] [Accepted: 06/02/2012] [Indexed: 11/26/2022]
|
10
|
Du Y, Yan L, Du H, Wang L, Ding F, Quan L, Cheng X, Song K, Liu H. β1-adrenergic receptor autoantibodies from heart failure patients enhanced TNF-α secretion in RAW264.7 macrophages in a largely PKA-dependent fashion. J Cell Biochem 2012; 113:3218-28. [DOI: 10.1002/jcb.24198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Ha YM, Ham SA, Kim YM, Lee YS, Kim HJ, Seo HG, Lee JH, Park MK, Chang KC. β₁-adrenergic receptor-mediated HO-1 induction, via PI3K and p38 MAPK, by isoproterenol in RAW 264.7 cells leads to inhibition of HMGB1 release in LPS-activated RAW 264.7 cells and increases in survival rate of CLP-induced septic mice. Biochem Pharmacol 2011; 82:769-77. [PMID: 21763292 DOI: 10.1016/j.bcp.2011.06.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/17/2023]
Abstract
High mobility group box (HMGB)-1 plays an important role in sepsis-associated death in experimental studies. Heme oxygenase-1 (HO-1) inducers were reported to reduce HMGB1 release in experimental sepsis. Previously, we reported on the importance of the β₁-adrenergic receptor and protein kinase A pathway in the regulation of HO-1 expression by isoproterenol (ISO) in RAW 264.7 cells. We investigated whether ISO reduces HMGB1 release in LPS-activated RAW 264.7 cells and improves survival rate in septic mice due to HO-1 induction. ISO concentration-dependently increased HO-1 via Nrf-2 translocation and inhibited release of HMGB1 through the β₁-adrenergic receptor (β₁-AR) in LPS-activated RAW 264.7 cells. This conclusion was supported by the finding that dobutamine but not salbutamol increased HO-1 expression in both RAW 264.7 cells. ISO failed to inhibit HMGB1 release when HO-1 expression was suppressed by ZnPPIX, an HO-1 inhibitor in RAW 264.7 cells. ISO significantly inhibited phosphorylation of IκB-α and NF-κB-driven luciferase activity in LPS-activated RAW 264.7 cells. In addition, LY294002, a PI3K inhibitor, and SB203580, a p38 MAPK inhibitor, significantly inhibited not only HO-1 induction but also HMGB1 release by ISO. Importantly, ISO increased HO-1 protein expression in heart and lung tissues, reduced HMGB1 in plasma and increased survival rate in CLP-treated septic mice, which was significantly reversed by co-treatment with ZnPPIX. Taken together, we conclude that inhibition of HMGB1 release during sepsis via β₁-AR-mediated HO-1 induction is a novel mechanism for the beneficial effects of ISO in the treatment of sepsis.
Collapse
Affiliation(s)
- Yu Mi Ha
- Department of Pharmacology School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hsieh CH, Jeng JCY, Hsieh MW, Chen YC, Lu TH, Rau CS, Jeng SF. Involvement of the p38 pathway in the differential induction of heme oxygenase-1 by statins in Neuro-2A cells exposed to lipopolysaccharide. Drug Chem Toxicol 2010; 34:8-19. [DOI: 10.3109/01480545.2010.482587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Dimitrijević M, Pilipović I, Stanojević S, Mitić K, Radojević K, Pesić V, Leposavić G. Chronic propranolol treatment affects expression of adrenoceptors on peritoneal macrophages and their ability to produce hydrogen peroxide and nitric oxide. J Neuroimmunol 2009; 211:56-65. [PMID: 19398131 DOI: 10.1016/j.jneuroim.2009.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/11/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022]
Abstract
Using both immunocytochemical and flow cytometric analyses of rat peritoneal exudate cells constitutive expression of tyrosine hydroxylase and both beta(2)- and alpha(1)- adrenoceptors on macrophages was revealed. Furthermore, according to the characteristic assemblage of tyrosine hydroxylase and adrenoceptor subtype expression different macrophage subsets were identified. In vitro treatment of macrophages with the non-selective alpha,beta-adrenoceptor agonist arterenol and/or the beta-adrenoceptor antagonist propranolol indicated that beta-adrenoceptors potentiated nitric oxide (NO) production and suggested alpha-adrenoceptor-mediated suppression of hydrogen peroxide (H(2)O(2)) production. An increase in H(2)O(2) production in the presence of the alpha(1)-adrenoceptor antagonist ebrantil provided support for this. Chronic propranolol treatment in vivo led to increased NO and H(2)O(2) production by peritoneal macrophages. Furthermore, this treatment resulted in opposing effects on the expression of beta(2)- and alpha(1)-adrenoceptors on peritoneal macrophages (a stimulatory effect on beta(2)-adrenoceptors and a suppressive effect on alpha(1)-adrenoceptors). In conclusion, a subset of resident peritoneal macrophages synthesizes catecholamines, which may exert differential effects on H(2)O(2) and NO production via distinct adrenoceptors. Finally, chronic propranolol treatment affected adrenoceptor expression on peritoneal macrophages and altered their capacity to generate NO and H(2)O(2).
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ueyama T, Kawabe T, Hano T, Tsuruo Y, Ueda K, Ichinose M, Kimura H, Yoshida KI. Upregulation of heme oxygenase-1 in an animal model of Takotsubo cardiomyopathy. Circ J 2009; 73:1141-6. [PMID: 19372624 DOI: 10.1253/circj.cj-08-0988] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Disturbance of the coronary microcirculation and catecholamine intoxication, which may be responsible for the pathogenesis of takotsubo cardiomyopathy, could trigger an oxidative stress response in the heart. METHODS AND RESULTS Expression and localization of inducible heme oxygenase-1 (HO-1), which is an oxidative stress-related factor in the heart of immobilization stressed (IMO) rats, an animal model of takotsubo cardiomyopathy, were investigated by real-time reverse transcriptase-polymerase chain reaction and in situ hybridization histochemistry and immunohistochemistry. In response to IMO, the levels of HO-1 mRNA in the heart and in the aorta were slightly increased at 90 min, and increased 3-fold at 3 h compared with control levels. The signals for HO-1 mRNA were expressed on scatted cells in the myocardium and aortic adventitia. Double fluorescence immunohistochemistry showed that HO-1 immunoreactive cells were also ED1 and ED2 positive, indicating that they were macrophages. The numbers of ED1 and ED2 positive cells were constant, whereas the number of HO-1 positive cells was increased 5-fold at 6 h compared with control levels. Blocking of alpha- and beta-adrenoceptors attenuated IMO-induced upregulation of HO-1 mRNA levels in the heart. CONCLUSIONS Emotional stress and a surge of catecholamine upregulate HO-1 in the cardiac and aortic macrophages.
Collapse
Affiliation(s)
- Takashi Ueyama
- Department of Anatomy and Cell Biology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Martín MJ, Tanos T, García AB, Martin D, Gutkind JS, Coso OA, Marinissen MJ. The Galpha12/13 family of heterotrimeric G proteins and the small GTPase RhoA link the Kaposi sarcoma-associated herpes virus G protein-coupled receptor to heme oxygenase-1 expression and tumorigenesis. J Biol Chem 2007; 282:34510-24. [PMID: 17881360 DOI: 10.1074/jbc.m703043200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Galpha(12/13) family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Galpha(12), Galpha(13), or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Galpha(13) or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Galpha(12/13)/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.
Collapse
Affiliation(s)
- María José Martín
- Instituto de Investigaciones Biomédicas A. Sols, Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Emeny RT, Gao D, Lawrence DA. Beta1-adrenergic receptors on immune cells impair innate defenses against Listeria. THE JOURNAL OF IMMUNOLOGY 2007; 178:4876-84. [PMID: 17404268 DOI: 10.4049/jimmunol.178.8.4876] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cold restraint (CR) for 1 h elicits a psychological and physiological stress that inhibits host defenses against Listeria monocytogenes (LM). Previous analyses indicated that this inhibition is not due to depletion of B or T cells but is instead dependent on signaling through beta-adrenoceptors (betaARs). We now show that impaired host resistance by CR cannot be accounted for by a decrease in LM-specific (listeriolysin O(91-99) tetramer(+)) effector CD8(+) T cells; this result is consistent with previous observations that CR-induced effects are mainly limited to early anti-LM responses. beta2-Adrenoceptor (beta2AR)(-/-) FVB/NJ and wild-type FVB/NJ mice had equivalent anti-LM defenses, whereas beta1-adrenoceptor (beta1AR)(-/-) FVB/NJ mice had lower levels of LM even when subjected to CR treatment. Additionally, host-resistance competency of beta1AR(-/-) mice could be transferred to irradiated wild-type mice reconstituted with beta1AR(-/-) bone marrow progenitors and spleen cells, indicating that beta1AR signaling on immune cells reduces anti-LM responses. beta1AR(-/-) mice had improved cellular (delayed-type hypersensitivity) responses while beta2AR(-/-) mice had improved humoral responses (IgG1, IgG2, and IgM), a result that further explains the strain differences in LM defenses. CR-induced expression of beta1AR and beta2AR mRNA was assessed by real-time PCR. CR treatment significantly increased betaAR mRNAs in Ficoll-purified and F4/80(+)-enhanced liver but not splenic homogenates, demonstrating an organ-specific effect of stress that alters host defenses. Finally, CR treatment induced early increases in perforin expression that may enhance immune cell apoptosis and interfere with LM clearance. In conclusion, beta1AR signaling has immunomodulatory effects on early cell-mediated immune responses; a lack of beta1AR signaling improves antilisterial defenses and cell-mediated immunity, in general.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cold Temperature
- Corticosterone/blood
- Female
- Immunity, Innate
- Listeriosis/immunology
- Liver/immunology
- Male
- Membrane Glycoproteins/analysis
- Mice
- Mice, Inbred BALB C
- Perforin
- Pore Forming Cytotoxic Proteins/analysis
- RNA, Messenger/analysis
- Receptors, Adrenergic, beta-1/analysis
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/physiology
- Restraint, Physical
- Signal Transduction
- Spleen/immunology
- Stress, Physiological/immunology
Collapse
Affiliation(s)
- Rebecca T Emeny
- Laboratory of Clinical and Experimental Endocrinology and Immunology, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | |
Collapse
|