1
|
Yang W, Zhou C, Sun Q, Guan G. Anisomycin inhibits angiogenesis, growth, and survival of triple-negative breast cancer through mitochondrial dysfunction, AMPK activation, and mTOR inhibition. Can J Physiol Pharmacol 2022; 100:612-620. [PMID: 35852219 DOI: 10.1139/cjpp-2021-0577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aberrant upregulation of mitochondrial biogenesis is observed in breast cancer and holds potential therapeutic option. In our work, we showed that inhibition of mitochondrial function by anisomycin is effective against triple-negative breast cancer (TNBC). Anisomycin inhibits growth and induces caspase-dependent apoptosis in a panel of TNBC cell lines. Of note, anisomycin at a tolerable dose remarkably suppresses growth of TNBC in mice. In addition, anisomycin effectively targets breast cancer angiogenesis through inhibiting capillary network formation, migration, proliferation, and survival. Mechanistic studies show that although anisomycin activates p38 and JNK, their activations are not required for anisomycin's action. In contrast, anisomycin inhibits mitochondrial respiration, and decreases mitochondrial membrane potential and adenosine triphosphate (ATP) level. The inhibitory effect of anisomycin is significantly reversed in mitochondria respiration-deficient ρ0 cells. As a consequence, anisomycin activates AMPK and inhibits mammalian target-of-rapamycin signaling pathways. Our work demonstrated that anisomycin is a useful addition to the treatment armamentarium for TNBC.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Cuiling Zhou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Qiushi Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Gege Guan
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| |
Collapse
|
2
|
Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget 2018; 7:40418-40436. [PMID: 27250026 PMCID: PMC5130017 DOI: 10.18632/oncotarget.9622] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
MALAT1 (metastasis associated lung adenocarcinoma transcript1) is a conserved long non-coding RNA, known to regulate gene expression by modulating transcription and post-transcriptional pre-mRNA processing of a large number of genes. MALAT1 expression is deregulated in various tumors, including breast cancer. However, the significance of such abnormal expression is yet to be fully understood. In this study, we demonstrate that regulation of aggressive breast cancer cell traits by MALAT1 is not predicted solely based on an elevated expression level but is context specific. By performing loss- and gain-of-function studies, both under in vitro and in vivo conditions, we demonstrate that MALAT1 facilitates cell proliferation, tumor progression and metastasis of triple-negative breast cancer (TNBC) cells despite having a comparatively lower expression level than ER or HER2-positive breast cancer cells. Furthermore, MALAT1 regulates the expression of several cancer metastasis-related genes, but displays molecular subtype specific correlations with such genes. Assessment of the prognostic significance of MALAT1 in human breast cancer (n=1992) revealed elevated MALAT1 expression was associated with decreased disease-specific survival in ER negative, lymph node negative patients of the HER2 and TNBC molecular subtypes. Multivariable analysis confirmed MALAT1 to have independent prognostic significance in the TNBC lymph node negative patient subset (HR=2.64, 95%CI 1.35 − 5.16, p=0.005). We propose that the functional significance of MALAT1 as a metastasis driver and its potential use as a prognostic marker is most promising for those patients diagnosed with ER negative, lymph node negative breast cancer who might otherwise mistakenly be stratified to have low recurrence risk.
Collapse
|
3
|
Zhou Z, Lu X, Wang J, Xiao J, Liu J, Xing F. microRNA let-7c is essential for the anisomycin-elicited apoptosis in Jurkat T cells by linking JNK1/2 to AP-1/STAT1/STAT3 signaling. Sci Rep 2016; 6:24434. [PMID: 27087117 PMCID: PMC4834478 DOI: 10.1038/srep24434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/30/2016] [Indexed: 11/24/2022] Open
Abstract
Anisomycin, an antibiotic produced by Streptomyces griseolus, strongly induces apoptosis in various tumor cells in vitro, superior dramatically to adriamycin. The present study aims to elucidate its detailed mechanistic process. The results showed that anisomycin sufficiently promoted the apoptosis in human leukemic Jurkat T cells at a quite low dose. microRNA let-7c (let-7c) contributed to the anisomycin-induced apoptosis, which could be abrogated by the inactivation of JNK signaling. The let-7c over-expression and the addition of its mimics facilitated the activation of AP-1, STAT1 and Bim by linking JNK1/2 to AP-1/STAT1, but rather inhibited the activation of STAT3 and Bcl-xL by connecting JNK1/2 to STAT3, followed by the augmented apoptosis in the cells. The let-7c deficiency reduced the AP-1, STAT1 and Bim activities, and enhanced the STAT3 and Bcl-xL, alleviating the anisomycin-induced apoptosis. The knockdown of the bim gene repressed the anisomycin-boosted apoptosis through the attenuation of the active Bak and Bax. The findings indicate for the first time that miR let-7c is essential for the anisomycin-triggered apoptosis by linking JNK1/2 to AP-1/STAT1/STAT3/Bim/Bcl-xL/Bax/Bak signaling. This provides a novel insight into the mechanism by which anisomycin leads to the tumor cell apoptosis, potentially laying the foundations for its development and clinical application.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xijian Lu
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jin Wang
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jia Xiao
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China
| | - Jing Liu
- Department of Stomatology, Jinan University, Guangzhou 510632, China
| | - Feiyue Xing
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou 510632, China.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Monaghan D, O’Connell E, Cruickshank FL, O’Sullivan B, Giles FJ, Hulme AN, Fearnhead HO. Inhibition of protein synthesis and JNK activation are not required for cell death induced by anisomycin and anisomycin analogues. Biochem Biophys Res Commun 2014; 443:761-7. [DOI: 10.1016/j.bbrc.2013.12.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 12/01/2022]
|
5
|
Abstract
AbstractAnisomycin is a pyrrolidine antibiotic isolated from Streptomyces griseolus. It has been found that a quite low dose of anisomycin is sufficient to block proliferation of primary T lymphocytes. The focus of this study is to explore the possibility of anisomycin to treat human acute leukemia Jurkat T cells in vitro. The results indicated that the low dose of anisomycin could significantly inhibit the colony formation of Jurkat T cells and elevate the inhibition rate of Jurkat T cell growth along with its increasing concentrations. Jurkat T cell cycle was blocked into S-phase by anisomycin. Consistent with the increased proportion of sub-G1 phase, anisomycin promoted Jurkat T cell apoptosis. The CD69 and CD25 expression on the surface of Jurkat T cells was also down-regulated prominently along with the enhancing concentrations of anisomycin, followed by the decreased production of IL-4, IL-10, IL-17, TGF-β and IFN-γ, and the down-regulated expression of phosphorylated-ERK1/2. The results suggest that the suppressive effect of anisomycin on Jurkat T cell growth may be related to inhibiting TGF-β production and ERK1/2 activation, arresting the cell cycle at S-phase and promoting the apoptosis of Jurkat T cells.
Collapse
|
6
|
Casas A, Di Venosa G, Hasan T, Al Batlle. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011; 18:2486-515. [PMID: 21568910 PMCID: PMC3780570 DOI: 10.2174/092986711795843272] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
Collapse
Affiliation(s)
- A Casas
- Centro de Invesigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clinicas José de San Martin, University of Buenos Aires Córdoba 2351 ler subsuelo, Argentina.
| | | | | | | |
Collapse
|
7
|
Anisomycin inhibits the behaviors of T cells and the allogeneic skin transplantation in mice. J Immunother 2009; 31:858-70. [PMID: 18833001 DOI: 10.1097/cji.0b013e3181869873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is still a lack of a high potent and low toxic immunosuppressive drug. We accidentally found that a quite low dose of anisomycin was sufficient to block proliferation of T cells. In this study, carboxy-fluorescein diacetate-succinimidyl ester staining showed that over 10.0 ng/mL of anisomycin markedly inhibited the proliferation of T cells induced by ConA. Propidium iodide staining revealed that anisomycin led to G0/G1 arrest and blocked S phase entry stimulated by ConA or phorbol 12, 13-dibutyrate plus ionomycin. Anisomycin down-regulated remarkably the CD69 and CD25 expression on the surface of T cells. The response of T cells was repressed by treatment of anisomycin, which was partly restored by adding exogenous interleukin-2, and there was no difference between anisomycin and dexamethasone, although the used dose of the latter was 100-fold of the former. The inhibition of cytotoxicity of T cells against 7919 cells by anisomycin was observed without the direct cytotoxicity to T cells or 7919 cells. The level of transforming growth factor-beta1 fell by <80.0 ng/mL in vitro and 30.0 mg/kg of anisomycin in vivo and enhanced by more than the doses. The treatment of anisomycin prolonged the survival of the transplanted skin and depressed the delayed type hypersensitivity development and the T-cell response in the skin-transplanted mice. Moreover, the effect of its restraining allograft rejection might be superior to cyclosporine A, with relatively slight toxic signs. These results indicate anisomycin significantly inhibits the behaviors of T cells and the transplantation rejection, providing important evidence for anisomycin as a novel immunosuppressant.
Collapse
|
8
|
Wei X, Guo W, Wu S, Wang L, Lu Y, Xu B, Liu J, Fang B. Inhibiting JNK dephosphorylation and induction of apoptosis by novel anticancer agent NSC-741909 in cancer cells. J Biol Chem 2009; 284:16948-16955. [PMID: 19414586 DOI: 10.1074/jbc.m109.010256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NSC-741909 is a recently identified novel anticancer agent that suppresses the growth of several NCI-60 cancer cell lines with a unique anticancer spectrum. However, its molecular mechanisms remain unknown. To determine the molecular mechanisms of NSC-741909-induced antitumor activity, we analyzed the changes of 77 protein biomarkers in a sensitive lung cancer cell line after treatment with this compound by using reverse-phase protein microarray. The results showed that phosphorylation of mitogen-activated protein (MAP) kinases (P38 MAPK, ERK, and JNK) were persistently elevated by the treatment with NSC-741909. However, only the JNK-specific inhibitor SP600125 effectively blocked the apoptosis induced by NSC-741909. Moreover, NSC-741909-mediated apoptosis was also blocked by a dominant-negative JNK construct, suggesting that sustained activation of JNK is critical for the apoptosis induction. Further studies revealed that treatment with NSC-741909 suppressed dephosphorylation of JNK and the expression of MAPK phosphatase-1. Thus, NSC-741909-mediated inhibition of JNK dephosphorylation results in sustained JNK activation, which leads to apoptosis in cancer cells.
Collapse
Affiliation(s)
- Xiaoli Wei
- From the Departments of Thoracic and Cardiovascular Surgery, Houston, Texas 77030
| | - Wei Guo
- From the Departments of Thoracic and Cardiovascular Surgery, Houston, Texas 77030
| | - Shuhong Wu
- From the Departments of Thoracic and Cardiovascular Surgery, Houston, Texas 77030
| | - Li Wang
- From the Departments of Thoracic and Cardiovascular Surgery, Houston, Texas 77030
| | - Yiling Lu
- Systems Biology, Houston, Texas 77030
| | - Bo Xu
- Protein Biosynthesis and Biomarker Core Laboratory, University of Texas Medical Branch, Galveston, Texas 77555
| | - Jinsong Liu
- Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Bingliang Fang
- From the Departments of Thoracic and Cardiovascular Surgery, Houston, Texas 77030.
| |
Collapse
|
9
|
Espada J, Galaz S, Sanz-Rodríguez F, Blázquez-Castro A, Stockert JC, Bagazgoitia L, Jaén P, González S, Cano A, Juarranz Á. Oncogenic H-Ras and PI3K signaling can inhibit E-cadherin-dependent apoptosis and promote cell survival after photodynamic therapy in mouse keratinocytes. J Cell Physiol 2009; 219:84-93. [DOI: 10.1002/jcp.21652] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Abayasiriwardana KS, Barbone D, Kim KU, Vivo C, Lee KK, Dansen TB, Hunt AE, Evan GI, Broaddus VC. Malignant mesothelioma cells are rapidly sensitized to TRAIL-induced apoptosis by low-dose anisomycin via Bim. Mol Cancer Ther 2008; 6:2766-76. [PMID: 17938269 DOI: 10.1158/1535-7163.mct-07-0278] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) holds promise for the treatment of tumors; however, many tumors are resistant to TRAIL alone. We previously showed that resistant malignant mesothelioma cells are sensitized to TRAIL-induced apoptosis by diverse toxic insults including chemotherapy, irradiation, or protein translation inhibitors such as cycloheximide. In seeking nontoxic sensitizers for TRAIL, we tested the protein translation inhibitor anisomycin at subtoxic concentrations 10- to 100-fold below those reported to inhibit protein translation. At these low concentrations (25 ng/mL), anisomycin potently and rapidly sensitized mesothelioma cells to TRAIL-induced apoptosis. Moreover, such sensitization occurred in malignant but not in nonmalignant mesothelial cells. Sensitization by anisomycin was dependent on Bid, indicating a role for mitochondrial amplification in the apoptotic synergy with TRAIL signaling. Consistent with this, we found that anisomycin induces rapid accumulation of the BH3-only protein Bim; moreover, small interfering RNA knockdown of Bim inhibits anisomycin-induced sensitization. Bim accumulation seems not to be transcriptional; instead, it is associated with Bim phosphorylation and increased stability, both consistent with the activation of c-jun NH2-terminal kinase signals by anisomycin. Overall, our data indicate that the rapid and selective sensitization by anisomycin in mesothelioma cells is mediated by posttranslational potentiation of Bim, which primes the cells for apoptosis via the death receptor pathway. Such subtoxic approaches to sensitization may enhance the value of TRAIL in cancer therapy.
Collapse
Affiliation(s)
- Keith S Abayasiriwardana
- Lung Biology Center, Box 0854, University of California San Francisco, San Francisco, CA 94110-0854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zapata HJ, Nakatsugawa M, Moffat JF. Varicella-zoster virus infection of human fibroblast cells activates the c-Jun N-terminal kinase pathway. J Virol 2006; 81:977-90. [PMID: 17079291 PMCID: PMC1797429 DOI: 10.1128/jvi.01470-06] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transcription factors ATF-2 and c-Jun are important for transactivation of varicella-zoster virus (VZV) genes. c-Jun is activated by the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase pathway that responds to stress and cytokines. To study the effects of VZV on this pathway, confluent human foreskin fibroblasts were infected with cell-associated VZV for 1 to 4 days. Immunoblots showed that phosphorylated JNK and c-Jun levels increased in VZV-infected cells, and kinase assays determined that phospho-JNK was active. Phospho-JNK was detected after 24 h, and levels rose steadily over 4 days in parallel with accumulation of VZV antigen. The two main activators of JNK are MKK4 and MKK7, and levels of their active, phosphorylated forms also increased. The competitive inhibitor of JNK, SP600125, caused a dose-dependent reduction in VZV yield (50% effective concentration, congruent with 8 microM). Specificity was verified by immunoblotting; phospho-c-Jun was eliminated by 18 microM SP600125 in VZV-infected cells. Immunofluorescent confocal microscopy showed that phospho-c-Jun and most of phospho-JNK were in the nuclei of VZV-infected cells; some phospho-JNK was in the cytoplasm. MKK4, MKK7, JNK, and phospho-JNK were detected by immunoblotting in purified preparations of VZV virions, but c-Jun was absent. JNK was located in the virion tegument, as determined by biochemical fractionation and immunogold transmission electron microscopy. Overall, these results demonstrate the importance of the JNK pathway for VZV replication and advance the idea that JNK is a useful drug target against VZV.
Collapse
Affiliation(s)
- Heidi J Zapata
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | | | | |
Collapse
|