1
|
Du Q, Chen Z, Feng Z, Li Y, Xu L, Lin Y, Wang Y, Peng A, Feng Q. Valproic acid promotes transcriptional activation of Drd2 by mediating histone acetylation to inhibit the mTOR-Pttg1 signaling axis and exerts anti-PitNETs activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156707. [PMID: 40220407 DOI: 10.1016/j.phymed.2025.156707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Valproic acid (VPA), a short branched-chain fatty acid derived from valeric acid naturally produced by Valeriana officinalis L., is widely used in clinical settings for the treatment of epilepsy. Furthermore, VPA has been shown to reduce prolactin (PRL) levels in epileptic patients and exerts anti-tumor properties. Nevertheless, the prospective anti-pituitary neuroendocrine tumors (PitNETs) effects and the underlying mechanism of VPA remain unknown. PURPOSE To assess VPA's efficacy in inhibiting PitNETs cell growth and hormone secretion, and to investigate the underlying mechanisms. STUDY DESIGN/METHODS The pharmacological effects of VPA in PitNETs cells were assessed using CCK-8, colony formation, EdU staining, cell cycle/apoptosis, cell migration/invasion, and ELISA assays. The relevant VPA targets against PitNETs were assessed via RNA-sequencing and validated by qRT-PCR. CUT&RUN-qPCR was performed to detect the enrichment of DNA fragments precipitated by associated antibodies. Immunohistochemistry and western blot analysis were performed to assess the levels of factors associated with apoptosis, cell cycle, autophagy, and mTOR-Pttg1 signaling pathway activation. RESULTS VPA significantly inhibited the proliferation, invasivity, and PRL secretion of PitNET GH3 cells, induced cytoprotective autophagy, and also inhibited GH3-xenografted tumor growth and PRL secretion in vivo. Pretreatment with the autophagy inhibitor significantly enhanced the inhibitory effects of VPA on GH3 cell growth and PRL secretion, and further promoted VPA-induced apoptosis. RNA sequencing analysis revealed 927 upregulated and 878 downregulated genes in VPA-treated GH3 cells, and the cell cycle and other pathways were significantly enriched. Moreover, several crucial genes, including markers of proliferation Kiel 67 (Mki67), pituitary transforming gene 1 (Pttg1), and dopamine D2 receptor (Drd2), were regulated by VPA. Mechanistically, VPA induced increased histone acetylation at Drd2 promoter, activating its transcription and inhibiting the mechanistic target of the rapamycin (mTOR)-Pttg1 signaling axis. Finally, the therapeutic effects of VPA on multiple PitNET cells were evaluated and confirmed its sensitization effects on first-line therapeutics. CONCLUSION Our results revealed that VPA exerts anti-PitNET effects by promoting Drd2 transcriptional activation, thereby inhibiting the mTOR-Pttg1 signaling axis, indicating the potential therapeutic utility of VPA in PitNET treatment.
Collapse
Affiliation(s)
- Qiu Du
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University No. 368 Hanjiang Middle Road, Yangzhou 225012, China; Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Zhiyong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Zize Feng
- Department of Neurosurgery, Jiangmen Central Hospital, Jiangmen 529000, China
| | - Yaru Li
- Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Lei Xu
- Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Yingda Lin
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Youwei Wang
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University No. 368 Hanjiang Middle Road, Yangzhou 225012, China
| | - Aijun Peng
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University No. 368 Hanjiang Middle Road, Yangzhou 225012, China; Department of Neurosurgery, the First People's Hospital of Guannan County, Lianyungang 223500, China.
| | - Qingling Feng
- Department of Emergency Intensive Care Unit, the Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225012, China.
| |
Collapse
|
2
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
3
|
Zhang D, Zhang J, Wang Y, Wang G, Tang P, Liu Y, Zhang Y, Ouyang L. Targeting epigenetic modifications in Parkinson's disease therapy. Med Res Rev 2023; 43:1748-1777. [PMID: 37119043 DOI: 10.1002/med.21962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disease due to a complex interplay between genetic and epigenetic factors. Recent efforts shed new light on the epigenetic mechanisms involved in regulating pathways related to the development of PD, including DNA methylation, posttranslational modifications of histones, and the presence of microRNA (miRNA or miR). Epigenetic regulators are potential therapeutic targets for neurodegenerative disorders. In the review, we aim to summarize mechanisms of epigenetic regulation in PD, and describe how the DNA methyltransferases, histone deacetylases, and histone acetyltransferases that mediate the key processes of PD are attractive therapeutic targets. We discuss the use of inhibitors and/or activators of these regulators in PD models or patients, and how these small molecule epigenetic modulators elicit neuroprotective effects. Further more, given the importance of miRNAs in PD, their contributions to the underlying mechanisms of PD will be discussed as well, together with miRNA-based therapies.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Pan Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yun Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
4
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
5
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. Valproic acid upregulates the expression of the p75NTR/sortilin receptor complex to induce neuronal apoptosis. Apoptosis 2021; 25:697-714. [PMID: 32712736 PMCID: PMC7527367 DOI: 10.1007/s10495-020-01626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The antiepileptic and mood stabilizer agent valproic acid (VPA) has been shown to exert anti-tumour effects and to cause neuronal damage in the developing brain through mechanisms not completely understood. In the present study we show that prolonged exposure of SH-SY5Y and LAN-1 human neuroblastoma cells to clinically relevant concentrations of VPA caused a marked induction of the protein and transcript levels of the common neurotrophin receptor p75NTR and its co-receptor sortilin, two promoters of apoptotic cell death in response to proneurotrophins. VPA induction of p75NTR and sortilin was associated with an increase in plasma membrane expression of the receptor proteins and was mimicked by cell treatment with several histone deacetylase (HDAC) inhibitors. VPA and HDAC1 knockdown decreased the level of EZH2, a core component of the polycomb repressive complex 2, and upregulated the transcription factor CASZ1, a positive regulator of p75NTR. CASZ1 knockdown attenuated VPA-induced p75NTR overexpression. Cell treatment with VPA favoured proNGF-induced p75NTR/sortilin interaction and the exposure to proNGF enhanced JNK activation and apoptotic cell death elicited by VPA. Depletion of p75NTR or addition of the sortilin agonist neurotensin to block proNGF/sortilin interaction reduced the apoptotic response to VPA and proNGF. Exposure of mouse cerebellar granule cells to VPA upregulated p75NTR and sortilin and induced apoptosis which was enhanced by proNGF. These results indicate that VPA upregulates p75NTR apoptotic cell signalling through an epigenetic mechanism involving HDAC inhibition and suggest that this effect may contribute to the anti-neuroblastoma and neurotoxic effects of VPA.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Luisa Marras
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Angela Ingianni
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy.
| |
Collapse
|
6
|
Oh JS, Park J, Kim K, Jeong HH, Oh YM, Choi S, Choi KH. HSP70-mediated neuroprotection by combined treatment of valproic acid with hypothermia in a rat asphyxial cardiac arrest model. PLoS One 2021; 16:e0253328. [PMID: 34138955 PMCID: PMC8211226 DOI: 10.1371/journal.pone.0253328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
It has been reported that valproic acid (VPA) combined with therapeutic hypothermia can improve survival and neurologic outcomes in a rat asphyxial cardiac arrest model. However, neuroprotective mechanisms of such combined treatment of valproic acid with hypothermia remains unclear. We hypothesized that epigenetic regulation of HSP70 by histone acetylation could increase HSP70-mediated neuroprotection suppressed under hypothermia. Male Sprague-Dawley rats that achieved return of spontaneous circulation (ROSC) from asphyxial cardiac arrest were randomized to four groups: normothermia (37°C ± 1°C), hypothermia (33°C ± 1°C), normothermia + VPA (300 mg/kg IV initiated 5 minutes post-ROSC and infused over 20 min), and hypothermia + VPA. Three hours after ROSC, acetyl-histone H3 was highly expressed in VPA-administered groups (normothermia + VPA, hypothermia + VPA). Four hours after ROSC, HSP70 mRNA expression levels were significantly higher in normothermic groups (normothermia, normothermia + VPA) than in hypothermic groups (hypothermia, hypothermia + VPA). The hypothermia + VPA group showed significantly higher HSP70 mRNA expression than the hypothermia group. Similarly, at five hours after ROSC, HSP70 protein levels were significantly higher in normothermic groups than in hypothermic groups. HSP70 levels were significantly higher in the hypothermia + VPA group than in the hypothermia group. Only the hypothermia + VPA group showed significantly attenuated cleaved caspase-9 levels than the normothermia group. Hypothermia can attenuate the expression of HSP70 at transcriptional level. However, VPA administration can induce hyperacetylation of histone H3, leading to epigenetic transcriptional activation of HSP70 even in a hypothermic status. Combining VPA treatment with hypothermia may compensate for reduced activation of HSP70-mediated anti-apoptotic pathway.
Collapse
Affiliation(s)
- Joo Suk Oh
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Jungtaek Park
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Kiwook Kim
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Hyun Ho Jeong
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Young Min Oh
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Semin Choi
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Kyoung Ho Choi
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| |
Collapse
|
7
|
Askar MH, Hussein AM, Al-Basiony SF, Meseha RK, Metias EF, Salama MM, Antar A, El-Sayed A. Effects of Exercise and Ferulic Acid on Alpha Synuclein and Neuroprotective Heat Shock Protein 70 in An Experimental Model of Parkinsonism Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:156-169. [PMID: 30113007 DOI: 10.2174/1871527317666180816095707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & OBJECTIVE This study investigated the effects of ferulic acid (FR), muscle exercise (Ex) and combination of them on rotenone (Rot)-induced Parkinson disease (PD) in mice as well as their underlying mechanisms. METHOD 56 male C57BL/6 mice were allocated into 8 equal groups, 1) Normal control (CTL), 2) FR (mice received FR at 20 mg/kg/day), 3) Ex (mice received swimming Ex) and 4) Ex + FR (mice received FR and Ex), 5) Rot (mice received Rot 3 mg/Kg i.p. for 70 days), 6) ROT+ FR (mice received Rot + FR at 20 mg/kg/day), 7) ROT+ Ex (mice received Rot + swimming Ex) and 8) ROT+ Ex + FR (mice received Rot + FR and Ex). ROT group showed significant impairment in motor performance and significant reduction in tyrosine hydroxylase (TH) density and Hsp70 expression (p< 0.05) with Lewy bodies (alpha synuclein) aggregates in corpus striatum. Also, ROT+FR, ROT+EX and ROT + Ex+ FR groups showed significant improvement in behavioral and biochemical changes, however the effect of FR alone was more potent than Ex alone (p< 0.05) and addition of Ex to FR caused no more significant improvement than FR alone. CONCLUSION We concluded that, FR and Ex improved the motor performance in rotenone-induced PD rodent model which might be due to increased Hsp70 expression and TH density in corpus striatum and combination of both did not offer more protection than FR alone.
Collapse
Affiliation(s)
- Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Soheir F Al-Basiony
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Refka K Meseha
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Mohamed M Salama
- Department of Clinical Toxicology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Ashraf Antar
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Aya El-Sayed
- MERC, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| |
Collapse
|
8
|
Sharma S, Sarathlal KC, Taliyan R. Epigenetics in Neurodegenerative Diseases: The Role of Histone Deacetylases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:11-18. [PMID: 30289079 DOI: 10.2174/1871527317666181004155136] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND & OBJECTIVE Imbalance in histone acetylation levels and consequently the dysfunction in transcription are associated with a wide variety of neurodegenerative diseases. Histone proteins acetylation and deacetylation is carried out by two opposite acting enzymes, histone acetyltransferases and histone deacetylases (HDACs), respectively. In-vitro and in-vivo animal models of neurodegenerative diseases and post mortem brains of patients have been reported overexpressed level of HDACs. In recent past numerous studies have indicated that HDAC inhibitors (HDACIs) might be a promising class of therapeutic agents for treating these devastating diseases. HDACs being a part of repressive complexes, the outcome of their inhibition has been attributed to enhanced gene expression due to heightened histone acetylation. Beneficial effects of HDACIs has been explored both in preclinical and clinical studies of these diseases. Thus, their screening as future therapeutics for neurodegenerative diseases has been widely explored. CONCLUSION In this review, we focus on the putative role of HDACs in neurodegeneration and further discuss their potential as a new therapeutic avenue for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - K C Sarathlal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
9
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
10
|
Reddy RG, Surineni G, Bhattacharya D, Marvadi SK, Sagar A, Kalle AM, Kumar A, Kantevari S, Chakravarty S. Crafting Carbazole-Based Vorinostat and Tubastatin-A-like Histone Deacetylase (HDAC) Inhibitors with Potent in Vitro and in Vivo Neuroactive Functions. ACS OMEGA 2019; 4:17279-17294. [PMID: 31656902 PMCID: PMC6811854 DOI: 10.1021/acsomega.9b01950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Small-molecule inhibitors of HDACs (HDACi) induce hyperacetylation of histone and nonhistone proteins and have emerged as potential therapeutic agents in most animal models tested. The established HDACi vorinostat and tubastatin-A alleviate neurodegenerative and behavioral conditions in animal models of neuropsychiatric disorders restoring the neurotrophic milieu. In spite of the neuroactive pharmacological role of HDACi (vorinostat and tubastatin-A), they are limited by efficacy and toxicity. Considering these limitations and concern, we have designed novel compounds 3-11 as potential HDACi based on the strategic crafting of the key pharmacophoric elements of vorinostat and tubastatin-A into architecting a single molecule. The molecules 3-11 were synthesized through a multistep reaction sequence starting from carbazole and were fully characterized by NMR and mass spectral analysis. The novel molecules 3-11 showed remarkable pan HDAC inhibition and the potential to increase the levels of acetyl H3 and acetyl tubulin. In addition, few novel HDAC inhibitors 4-8, 10, and 11 exhibited significant neurite outgrowth-promoting activity with no observable cytotoxic effects, and interestingly, compound 5 has shown comparably more neurite growth than the parent compounds vorinostat and tubastatin-A. Also, compound 5 was evaluated for possible mood-elevating effects in a chronic unpredictable stress model of Zebrafish. It showed potent anxiolytic and antidepressant-like effects in the novel tank test and social interaction test, respectively. Furthermore, the potent in vitro and in vivo neuroactive compound 5 has shown selectivity for class II over class I HDACs. Our results suggest that the novel carbazole-based HDAC inhibitors, crafted with vorinostat and tubastatin-A pharmacophoric moieties, have potent neurite outgrowth activity and potential to be developed as therapeutics to treat depression and related psychiatric disorders.
Collapse
Affiliation(s)
- R. Gajendra Reddy
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Goverdhan Surineni
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Dwaipayan Bhattacharya
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Sandeep Kumar Marvadi
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Arpita Sagar
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Arunasree M. Kalle
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Arvind Kumar
- CSIR-Centre
for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Srinivas Kantevari
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Sumana Chakravarty
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| |
Collapse
|
11
|
He Y, Li X, Jia D, Zhang W, Zhang T, Yu Y, Xu Y, Zhang Y. A transcriptomics-based analysis of the toxicity mechanisms of gabapentin to zebrafish embryos at realistic environmental concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:746-755. [PMID: 31121539 DOI: 10.1016/j.envpol.2019.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Gabapentin (GPT) has become an emerging contaminant in aquatic environments due to its wide application in medical treatment all over the world. In this study, embryos of zebrafish were exposed to gabapentin at realistically environmental concentrations, 0.1 μg/L and 10 μg/L, so as to evaluate the ecotoxicity of this emergent contaminant. The transcriptomics profiling of deep sequencing was employed to illustrate the mechanisms. The zebrafish (Danio rerio) embryo were exposed to GPT from 12 hpf to 96 hpf resulting in 136 and 750 genes differentially expressed, respectively. The results of gene ontology (GO) analysis and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis illustrated that a large amount of differentially expressed genes (DEGs) were involved in the antioxidant system, the immune system and the nervous system. RT-qPCR was applied to validate the results of RNA-seq, which provided direct evidence that the selected genes involved in those systems mentioned above were all down-regulated. Acetylcholinesterase (AChE), lysozyme (LZM) and the content of C-reactive protein (CRP) were decreased at the end of exposure, which is consistent with the transcriptomics results. The overall results of this study demonstrate that GPT simultaneously affects various vital functionalities of zebrafish at early developmental stage, even at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Xiuwen Li
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Dantong Jia
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Wenming Zhang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Tao Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China.
| |
Collapse
|
12
|
Kumkhaek C, LaChance C, Aerbajinai W, Zhu J, Rodgers GP. Role of MFHAS1 in regulating hepcidin expression via the BMP/SMAD and MAPK/ERK1/2 signalling pathways. Br J Haematol 2019; 186:e108-e112. [PMID: 31049940 DOI: 10.1111/bjh.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chutima Kumkhaek
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian LaChance
- Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Wulin Aerbajinai
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Ganguly U, Chakrabarti SS, Kaur U, Mukherjee A, Chakrabarti S. Alpha-synuclein, Proteotoxicity and Parkinson's Disease: Search for Neuroprotective Therapy. Curr Neuropharmacol 2018; 16:1086-1097. [PMID: 29189163 PMCID: PMC6120113 DOI: 10.2174/1570159x15666171129100944] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/11/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is a growing body of evidence in animal and cell based models of Parkinson's disease (PD) to suggest that overexpression and / or abnormal accumulation and aggregation of α-synuclein can trigger neuronal death. This important role of α-synuclein in PD pathogenesis is supported by the fact that duplication, triplication and mutations of α-synuclein gene cause familial forms of PD. METHODS A review of literature was performed by searching PubMed and Google Scholar for relevant articles highlighting the pathogenic role of α-synuclein and the potential therapeutic implications of targeting various pathways related to this protein. RESULTS The overexpression and accumulation of α-synuclein within neurons may involve both transcriptional and post-transcriptional mechanisms including a decreased degradation of the protein through proteasomal or autophagic processes. The mechanisms of monomeric α-synuclein aggregating to oligomers and fibrils have been investigated intensively, but it is still not certain which form of this natively unfolded protein is responsible for toxicity. Likewise the proteotoxic pathways induced by α- synuclein leading to neuronal death are not elucidated completely but mitochondrial dysfunction, endoplasmic reticulum (ER) stress and altered ER-golgi transport may play crucial roles in this process. At the molecular level, the ability of α-synuclein to form pores in biomembranes or to interact with specific proteins of the cell organelles and the cytosol could be determining factors in the toxicity of this protein. CONCLUSION Despite many limitations in our present knowledge of physiological and pathological functions of α-synuclein, it appears that this protein may be a target for the development of neuroprotective drugs against PD. This review has discussed many such potential drugs which prevent the expression, accumulation and aggregation of α-synuclein or its interactions with mitochondria or ER and thereby effectively abolish α-synuclein mediated toxicity in different experimental models.
Collapse
Affiliation(s)
| | | | | | | | - Sasanka Chakrabarti
- Address correspondence to this author at the Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India; Tel: +919874489805; E-mail:
| |
Collapse
|
14
|
Valproic Acid Combined With Postcardiac Arrest Hypothermic-Targeted Temperature Management Prevents Delayed Seizures and Improves Survival in a Rat Cardiac Arrest Model. Crit Care Med 2017; 45:e1149-e1156. [PMID: 28857853 DOI: 10.1097/ccm.0000000000002690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES High-dose valproic acid in combination with hypothermic-targeted temperature management has been reported to synergistically improve neurologic outcomes after cardiac arrest. This study investigated the potential synergistic mechanisms. DESIGN Prospective, randomized, experimental study. SETTING University research institution. SUBJECTS Male Long Evans rats. INTERVENTION Rats resuscitated from asphyxial cardiac arrest were randomized to one of the three groups: normothermic-targeted temperature management (37°C ± 1°C), hypothermic-targeted temperature management (33° ± 1° × 24 hr + placebo infusion), hypothermic-targeted temperature management plus high-dose valproic acid (300 mg/kg IV × 1 initiated 5 min post return of spontaneous circulation and infused over 20 min) (hypothermic-targeted temperature management + valproic acid). MEASUREMENTS AND MAIN RESULTS Seventy-two-hour survival was significantly greater with hypothermic-targeted temperature management + valproic acid, compared to hypothermic-targeted temperature management and normothermic-targeted temperature management (p < 0.05). Survival with good neurologic function, neurodegeneration, expression of HSP70, phosphorylation of Akt and Erk1/2 were not significantly different between hypothermic-targeted temperature management and hypothermic-targeted temperature management + valproic acid. The prevalence of seizures during the first 72-hour postcardiac arrest was significantly lower with hypothermic-targeted temperature management + valproic acid compared to hypothermic-targeted temperature management and normothermic-targeted temperature management (p = 0.01). CONCLUSIONS High-dose valproic acid combined with hypothermic-targeted temperature management prevents postcardiac arrest seizures and improves survival. It remains to be determined if the mechanism of seizure prevention is through the antiepileptic effect of valproic acid or direct neuroprotection. Overall, the combination of high-dose valproic acid and hypothermic-targeted temperature management remains a promising strategy to improve cardiac arrest outcomes.
Collapse
|
15
|
Ji F, Lv R, Zhao T. A correlation analysis between tumor imaging changes and p-AKT and HSP70 expression in tumor cells after osteosarcoma chemotherapy. Oncol Lett 2017; 14:6749-6753. [PMID: 29151914 PMCID: PMC5678351 DOI: 10.3892/ol.2017.7005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
This study sought to investigate osteosarcoma property changes after neoadjuvant chemotherapy and to analyze any correlation between changes with phospho-AKT (p-AKT) and heat shock protein 70 (HSP70) expression in osteosarcoma cells. Thirty patients with osteosarcoma treated at Liaocheng People's Hospital between January and October, 2016 were given an imaging examination before and after neoadjuvant chemotherapy to examine osteosarcoma tumor properties, with images scored. Immunohistochemistry was used to determine p-AKT and HSP70 expression levels, as well as tumor cell necrosis rate (TCNR), in specimens obtained before and after chemotherapy. The correlation between the imaging changes of osteosarcoma after chemotherapy and the expressions of p-AKT and HSP70 in tumor cells. Compared with pre-chemotherapy, the imaging scores of the 30 patients significantly increased after chemotherapy (P<0.05). The radiographic score of the TCNR ≥90% group was 11.3±0.5, which was significantly higher than that of the TCNR <90% group (8.7±0.3, P<0.05). p-AKT expression in osteosarcoma cells was found in 13.3% of samples (4/30 cases) after chemotherapy, which was significantly lower than prior to chemotherapy (73.3%, 22/30 cases, P<0.05). After chemotherapy, HSP70 expression in osteosarcoma cells was found in 6.7% of samples (2/30 cases), which was significantly lower than prior to chemotherapy (83.3%, 25/30 cases, P<0.05). p-AKT and HSP70 expression levels were found to be correlated with TCNR after chemotherapy (P<0.05). After chemotherapy, p-AKT and HSP70 expression levels demonstrated a positive correlation with TCNR. Tumor property changes, as uncovered by imaging, were significantly inversely correlated with tumor cell p-AKT and HSP70 expression after chemotherapy. Therefore, osteosarcoma properties, as determined through X-ray imaging, were closely related to p-AKT and HSP70 expression in osteosarcoma cells after neoadjuvant chemotherapy. The effect of chemotherapy can be evaluated by observing the above examination results.
Collapse
Affiliation(s)
- Feng Ji
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ran Lv
- Department of Medical Oncology, Liaocheng Tumor Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ting Zhao
- Department of Radiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
16
|
Gianfrancesco O, Warburton A, Collier DA, Bubb VJ, Quinn JP. Novel brain expressed RNA identified at the MIR137 schizophrenia-associated locus. Schizophr Res 2017; 184:109-115. [PMID: 27913161 PMCID: PMC5477099 DOI: 10.1016/j.schres.2016.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies (GWAS) have identified a locus on chromosome 1p21.3 to be highly associated with schizophrenia. A microRNA, MIR137, within this locus has been proposed as the gene causally associated with schizophrenia, due to its known role as a regulator of neuronal development and function. However, the involvement of other genes within this region, including DPYD (dihydropyrimidine dehydrogenase), is also plausible. In this communication, we describe a previously uncharacterised, brain-expressed RNA, EU358092, within the schizophrenia-associated region at 1p21.3. As we observed for MIR137, EU358092 expression was modulated in response to psychoactive drug treatment in the human SH-SY5Y neuroblastoma cell line. Bioinformatic analysis of publically available CNS expression data indicates that MIR137 and EU358092 are often co-expressed in vivo. A potential regulatory domain for expression of EU358092 is identified by bioinformatic analysis and its regulatory function is confirmed by reporter gene assays. These data suggest a potentially important role for EU358092 in the aetiology of schizophrenia, either individually or in combination with other genes at this locus.
Collapse
Affiliation(s)
- Olympia Gianfrancesco
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - Alix Warburton
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | | | - Vivien J Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
17
|
Pasban-Aliabadi H, Esmaeili-Mahani S, Abbasnejad M. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways. Rejuvenation Res 2017; 20:125-133. [PMID: 27814668 DOI: 10.1089/rej.2016.1836] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by progressive and selective death of dopaminergic neurons. Multifunctional neuropeptide orexin-A is involved in many biological events of the body. It has been shown that orexin-A has protective effects in neurodegenerative disease such as PD. However, its cellular mechanisms have not yet been fully clarified. Here, we investigated the intracellular signaling pathway of orexin-A neuroprotection in 6-hydroxydopamine (6-OHDA)-induced SH-SY5H cells damage as an in vitro model of PD. The cells were incubated with 150 μM 6-OHDA, and the viability was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Mitochondrial membrane potential and intracellular calcium were measured by fluorescent probes. Western blotting was also used to determine cyclooxygenase type 2 (COX-2), nuclear factor erythroid 2 related factor 2 (Nrf2), and HSP70 protein levels. The data showed that 6-OHDA has decreasing effects on cell viability, Nrf2, and HSP70 protein expression and increases the level of mitochondrial membrane potential, intracellular calcium, and COX-2 protein. Orexin-A (500 pM) significantly attenuated the 6-OHDA-induced cell damage. Furthermore, Orexin-A significantly prevented the mentioned effects of 6-OHDA on SH-SY5Y cells. Orexin 1 receptor antagonist (SB3344867), PKC, and PI3-kinase (PI3K) inhibitors (chelerythrin and LY294002, respectively) could suppress the orexin-A neuroprotective effect. In contrast, blockage of PKA by a selective inhibitor (KT5720) had no effects on the orexin protection. The results suggest that orexin-A protective effects against 6-OHDA-induced neurotoxicity are performed via its receptors, PKC and PI3K signaling pathways.
Collapse
Affiliation(s)
- Hamzeh Pasban-Aliabadi
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| | - Saeed Esmaeili-Mahani
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran .,2 Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences , Kerman, Iran
| | - Mehdi Abbasnejad
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| |
Collapse
|
18
|
Zhang Y, Wu J, Weng L, Li X, Yu L, Xu Y. Valproic acid protects against MPP+-mediated neurotoxicity in SH-SY5Y Cells through autophagy. Neurosci Lett 2017; 638:60-68. [DOI: 10.1016/j.neulet.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
|
19
|
Can 'calpain-cathepsin hypothesis' explain Alzheimer neuronal death? Ageing Res Rev 2016; 32:169-179. [PMID: 27306474 DOI: 10.1016/j.arr.2016.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
Neurons are highly specialized post-mitotic cells, so their homeostasis and survival depend on the tightly-regulated, continuous protein degradation, synthesis, and turnover. In neurons, autophagy is indispensable to facilitate recycling of long-lived, damaged proteins and organelles in a lysosome-dependent manner. Since lysosomal proteolysis under basal conditions performs an essential housekeeping function, inhibition of the proteolysis exacerbates level of neurodegeneration. The latter is characterized by an accumulation of abnormal proteins or organelles within autophagic vacuoles which reveal as 'granulo-vacuolar degenerations' on microscopy. Heat-shock protein70.1 (Hsp70.1), as a means of molecular chaperone and lysosomal stabilizer, is a potent survival protein that confers neuroprotection against diverse stimuli, but its depletion induces neurodegeneration via autophagy failure. In response to hydroxynonenal generated from linoleic or arachidonic acids by the reactive oxygen species, a specific oxidative injury 'carbonylation' occurs at the key site Arg469 of Hsp70.1. Oxidative stress-induced carbonylation of Hsp70.1, in coordination with the calpain-mediated cleavage, leads to lysosomal destabilization/rupture and release of cathepsins with the resultant neuronal death. Hsp70.1 carbonylation which occurs anywhere in the brain is indispensable for neuronal death, but extent of calpain activation should be more crucial for determining the cell death fate. Importantly, not only acute ischemia during stroke but also chronic ischemia due to ageing may cause calpain activation. Here, role of Hsp70.1-mediated lysosomal rupture is discussed by comparing ischemic and Alzheimer neuronal death. A common neuronal death cascade may exist between cerebral ischemia and Alzheimer's disease.
Collapse
|
20
|
Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans. BMC Pharmacol Toxicol 2016; 17:54. [PMID: 27802836 PMCID: PMC5090951 DOI: 10.1186/s40360-016-0097-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein (hsp) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. METHODS We exposed wild type and selected hsp mutant worms to Mn (30 min) and next evaluated further the most susceptible strains. We analyzed survival, protein carbonylation (as a marker of oxidative stress) and Parkinson's disease related gene expression immediately after Mn exposure. Lastly, we observed dopaminergic neurons in wild type worms and in hsp-70 mutants following Mn treatment. Analysis of the data was performed by one-way or two way ANOVA, depending on the case, followed by post-hoc Bonferroni test if the overall p value was less than 0.05. RESULTS We verified that the loss of hsp-70, hsp-3 and chn-1 increased the vulnerability to Mn, as exposed mutant worms showed lower survival rate and increased protein oxidation. The importance of hsp-70 against Mn toxicity was then corroborated in dopaminergic neurons, where Mn neurotoxicity was aggravated. The lack of hsp-70 also blocked the transcriptional upregulation of pink1, a gene that has been linked to Parkinson's disease. CONCLUSIONS Taken together, our data suggest that Mn exposure modulates heat shock protein expression, particularly HSP-70, in C. elegans. Furthermore, loss of hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus potentially exacerbating the vulnerability to this metal.
Collapse
|
21
|
Sun R, Zhang S, Hu W, Lu X, Lou N, Yang Z, Chen S, Zhang X, Yang H. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia. Am J Physiol Cell Physiol 2016; 311:C101-15. [DOI: 10.1152/ajpcell.00344.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia.
Collapse
Affiliation(s)
- Rulin Sun
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Santao Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Xing Lu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China; and
| | - Zhende Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China; and
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| |
Collapse
|
22
|
Chang CY, Li JR, Wu CC, Ou YC, Chen WY, Kuan YH, Wang WY, Chen CJ. Valproic acid sensitizes human glioma cells to gefitinib-induced autophagy. IUBMB Life 2015; 67:869-879. [PMID: 26488897 DOI: 10.1002/iub.1445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/04/2015] [Indexed: 12/29/2022]
Abstract
Autophagy and apoptosis represent important cellular processes involved in cancer cell killing mechanisms. Epidermal growth factor receptor inhibitor gefitinib and valproic acid have been implicated in the treatment of malignancies including glioma involving autophagic and apoptotic mechanisms. Therefore, it is interesting to investigate whether a combination of gefitinib and valproic acid shows better cancer cell killing effect on human glioma cells. We found that a nontoxic concentration of valproic acid sensitized U87 and T98G glioma cells to gefitinib cytotoxicity by inhibiting cell growth and long-term clonogenic survival. The augmented consequences were accompanied by the formation of autophagic vacuoles, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), and degradation of p62. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 but not broad-spectrum caspase inhibitor attenuated gefitinib/valproic acid-induced growth inhibition. Gefitinib/valproic acid-induced autophagy was accompanied by the activation of liver kinase-B1 (LKB1)/AMP-activated protein kinase (AMPK)/ULK1. Silencing of AMPK and ULK1 suppressed gefitinib/valproic acid-induced autophagy and growth inhibition. Mechanistic studies showed that gefitinib/valproic acid increased intracellular reactive oxygen species generation and N-acetyl cysteine attenuated gefitinib/valproic acid-caused autophagy and growth inhibition. In addition to demonstrating the autophagic mechanisms of gefitinib/valproic acid, the results of this study further suggest that intracellular oxidative stress and the LKB1/AMPK signaling might be a potential target for the development of therapeutic strategy against glioma.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung, Taiwan
- Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Financial and Computational Mathematics, Providence University, Taichung, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Nursing, HungKuang University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Molecular signatures of mood stabilisers highlight the role of the transcription factor REST/NRSF. J Affect Disord 2015; 172:63-73. [PMID: 25451397 PMCID: PMC4271744 DOI: 10.1016/j.jad.2014.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The purpose of this study was to address the affects of mood modifying drugs on the transcriptome, in a tissue culture model, using qPCR arrays as a cost effective approach to identifying regulatory networks and pathways that might coordinate the cell response to a specific drug. METHODS We addressed the gene expression profile of 90 plus genes associated with human mood disorders using the StellARray™ qPCR gene expression system in the human derived SH-SY5Y neuroblastoma cell line. RESULTS Global Pattern Recognition (GPR) analysis identified a total of 9 genes (DRD3(⁎), FOS(†), JUN(⁎), GAD1(⁎†), NRG1(⁎), PAFAH1B3(⁎), PER3(⁎), RELN(⁎) and RGS4(⁎)) to be significantly regulated in response to cellular challenge with the mood stabilisers sodium valproate ((⁎)) and lithium ((†)). Modulation of FOS and JUN highlights the importance of the activator protein 1 (AP-1) transcription factor pathway in the cell response. Enrichment analysis of transcriptional networks relating to this gene set also identified the transcription factor neuron restrictive silencing factor (NRSF) and the oestrogen receptor as an important regulatory mechanism. LIMITATIONS Cell line models offer a window of what might happen in vivo but have the benefit of being human derived and homogenous with regard to cell type. CONCLUSIONS This data highlights transcription factor pathways, acting synergistically or separately, in the modulation of specific neuronal gene networks in response to mood stabilising drugs. This model can be utilised in the comparison of the action of multiple drug regimes or for initial screening purposes to inform optimal drug design.
Collapse
|
24
|
Targeting histone deacetylases: a novel approach in Parkinson's disease. PARKINSONS DISEASE 2015; 2015:303294. [PMID: 25694842 PMCID: PMC4324954 DOI: 10.1155/2015/303294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/03/2015] [Indexed: 12/29/2022]
Abstract
The worldwide prevalence of movement disorders is increasing day by day. Parkinson's disease (PD) is the most common movement disorder. In general, the clinical manifestations of PD result from dysfunction of the basal ganglia. Although the exact underlying mechanisms leading to neural cell death in this disease remains unknown, the genetic causes are often established. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the neurological disease conditions. The acetylation and deacetylation of histone proteins are carried out by opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the recent past, studies with HDAC inhibitors result in beneficial effects in both in vivo and in vitro models of PD. Various clinical trials have also been initiated to investigate the possible therapeutic potential of HDAC inhibitors in patients suffering from PD. The possible mechanisms assigned for these neuroprotective actions of HDAC inhibitors involve transcriptional activation of neuronal survival genes and maintenance of histone acetylation homeostasis, both of which have been shown to be dysregulated in PD. In this review, the authors have discussed the putative role of HDAC inhibitors in PD and associated abnormalities and suggest new directions for future research in PD.
Collapse
|
25
|
Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, Du G. Inflammatory response in Parkinson's disease (Review). Mol Med Rep 2014; 10:2223-33. [PMID: 25215472 DOI: 10.3892/mmr.2014.2563] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/01/2014] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common age‑related neurodegenerative diseases, which results from a number of environmental and inherited factors. PD is characterized by the slow progressive degeneration of dopaminergic (DA) neurons in the substantia nigra. The nigrostriatal DA neurons are particularly vulnerable to inflammatory attack. Neuroinflammation is an important contributor to the pathogenesis of age‑related neurodegenerative disorders, such as PD, and as such anti‑inflammatory agents are becoming a novel therapeutic focus. This review will discuss the current knowledge regarding inflammation and review the roles of intracellular inflammatory signaling pathways, which are specific inflammatory mediators in PD. Finally, possible therapeutic strategies are proposed, which may downregulate inflammatory processes and inhibit the progression of PD.
Collapse
Affiliation(s)
- Junqiang Yan
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Qizhi Fu
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Liniu Cheng
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Mingming Zhai
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wenjuan Wu
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Lina Huang
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
26
|
Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson's disease. Mol Neurobiol 2014; 51:209-19. [PMID: 24946750 DOI: 10.1007/s12035-014-8769-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
α-Synuclein aggregation contributes to the Parkinson's disease (PD) pathology in multiple ways-the two most important being the activation of neuroinflammation and mitochondrial dysfunction. Our recent studies have shown the beneficial effects of a heat shock protein (HSP) inducer, carbenoxolone (Cbx), in reducing the aggregation of α-synuclein in a rotenone-based rat model of PD. The present study was designed to explore its ability to attenuate the α-synuclein-mediated alterations in neuroinflammation and mitochondrial functions. The PD model was generated by the rotenone administration (2 mg/kg b.wt.) to the male SD rats for a period of 5 weeks. Cbx (20 mg/kg b.wt.) co-administration was seen to reduce the activation of astrocytes incited by rotenone. Subsequently, the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β was inhibited. Further, the expression level of various inflammatory mediators such as COX-2, iNOS, and NF-κB was also reduced following Cbx co-treatment. Cbx was also shown to reduce the rotenone-induced decline in activity of mitochondrial complexes-I, -II, and -IV. Protection of mitochondrial functions and reduction in neuroinflammation lead to the lesser production of ROS and subsequently reduced oxidative stress. This was reflected by the increase in both the cytosolic and mitochondrial GSH levels as well as SOD activity during Cbx co-treatment. Thus, Cbx reduces the inflammatory response and improves the mitochondrial dysfunctions by reducing α-synuclein aggregation. In addition, it also reduces the associated oxidative stress. Due to its ability to target the multiple pathways implicated in the PD, Cbx can serve as a highly beneficial prophylactic agent.
Collapse
|
27
|
Shukla AK, Pragya P, Chaouhan HS, Tiwari AK, Patel DK, Abdin MZ, Chowdhuri DK. Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson's disease. PLoS One 2014; 9:e98886. [PMID: 24887138 PMCID: PMC4041817 DOI: 10.1371/journal.pone.0098886] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders with limited clinical interventions. A number of epidemiological as well as case-control studies have revealed an association between pesticide exposure, especially of paraquat (PQ) and occurrence of PD. Hsp70, a molecular chaperone by function, has been shown as one of the modulators of neurological disorders. However, paucity of information regarding the protective role of Hsp70 on PQ-induced PD like symptoms led us to hypothesize that modulation of hsp70 expression in the dopaminergic neurons would improve the health of these cells. We took advantage of Drosophila, which is a well-established model for neurological research and also possesses genetic tools for easy manipulation of gene expression with limited ethical concern. Over-expression of hsp70 was found to reduce PQ-induced oxidative stress along with JNK and caspase-3 mediated dopaminergic neuronal cell death in exposed organism. Further, anti-apoptotic effect of hsp70 was shown to confer better homeostasis in the dopaminergic neurons of PQ-exposed organism as evidenced by their improved locomotor performance and survival. The study has merit in the context of human concern since we observed protection of dopaminergic neurons in PQ-exposed organism by over-expressing a human homologue of hsp70, HSPA1L, in these cells. The effect was parallel to that observed with Drosophila hsp70. These findings reflect the potential therapeutic applicability of hsp70 against PQ-induced PD like symptoms in an organism.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Prakash Pragya
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Hitesh Singh Chaouhan
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anand Krishna Tiwari
- School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujrat, India
| | - Devendra Kumar Patel
- Analytical Section, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | | | - Debapratim Kar Chowdhuri
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Thakur P, Nehru B. Long-term heat shock proteins (HSPs) induction by carbenoxolone improves hallmark features of Parkinson's disease in a rotenone-based model. Neuropharmacology 2014; 79:190-200. [DOI: 10.1016/j.neuropharm.2013.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 01/24/2023]
|
29
|
Chen S, Wu H, Klebe D, Hong Y, Zhang J. Valproic acid: a new candidate of therapeutic application for the acute central nervous system injuries. Neurochem Res 2014; 39:1621-33. [PMID: 24482021 DOI: 10.1007/s11064-014-1241-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/12/2014] [Accepted: 01/15/2014] [Indexed: 12/13/2022]
Abstract
Acute central nervous system (CNS) injuries, including stroke, traumatic brain injury (TBI), and spinal cord injury (SCI), are common causes of human disabilities and deaths, but the pathophysiology of these diseases is not fully elucidated and, thus, effective pharmacotherapies are still lacking. Valproic acid (VPA), an inhibitor of histone deacetylation, is mainly used to treat epilepsy and bipolar disorder with few complications. Recently, the neuroprotective effects of VPA have been demonstrated in several models of acute CNS injuries, such as stroke, TBI, and SCI. VPA protects the brain from injury progression via anti-inflammatory, anti-apoptotic, and neurotrophic effects. In this review, we focus on the emerging neuroprotective properties of VPA and explore the underlying mechanisms. In particular, we discuss several potential related factors in VPA research and present the opportunity to administer VPA as a novel neuropective agent.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | | | | | | | | |
Collapse
|
30
|
Wu D, Li Q, Zhu X, Wu G, Cui S. Valproic acid protection against the brachial plexus root avulsion-induced death of motoneurons in rats. Microsurgery 2013; 33:551-9. [PMID: 23843283 DOI: 10.1002/micr.22130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 01/17/2023]
Abstract
In this study, the role of valproic acid (VPA) in protecting motoneuron after brachial plexus root avulsion was investigated in adult rats. Sixty rats were used in this study, and underwent the brachial plexus root avulsion injury, which was created by using a micro-hemostat forceps to pull out brachial plexus root from the intervertebral foramen. The animals were divided into two groups, VPA group administered with VPA dissolved in drinking water (300 mg/kg) daily, and control group had drinking water every day. The spinal cords (C5-T1) were harvested at day 1, 2, 3, 7, 14, and 28 for immunohistochemistry analysis, TUNEL staining, Nissl staining, and electron microscopy, respectively. The results showed that with VPA administration, the survival of motoneurons was promoted and the cell apoptosis was inhibited. The number of c-Jun and Bcl-2 positive motoneurons was increased immediately after avulsion both in control and VPA group, however, the percent of c-Jun positive motoneurons was decreased and the percent of Bcl-2 positive motoneurons was increased by VPA treatment significantly. Our results indicated that motoneurons were protected by VPA against cell death induced by brachial plexus root avulsion through c-Jun inhibition and Bcl-2 induction.
Collapse
Affiliation(s)
- Dianxiu Wu
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Qiang Li
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guangzhi Wu
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Shusen Cui
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease? Pharmacol Ther 2013; 140:34-52. [PMID: 23711791 DOI: 10.1016/j.pharmthera.2013.05.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?
Collapse
Affiliation(s)
- Ian F Harrison
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | |
Collapse
|
32
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
33
|
Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush. Neuroscience 2012; 224:282-93. [DOI: 10.1016/j.neuroscience.2012.07.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 12/21/2022]
|
34
|
Bates RC, Stith BJ, Stevens KE. Chronic central administration of valproic acid: Increased pro-survival phospho-proteins and growth cone associated proteins with no behavioral pathology. Pharmacol Biochem Behav 2012; 103:237-44. [PMID: 22960225 DOI: 10.1016/j.pbb.2012.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/19/2012] [Accepted: 08/26/2012] [Indexed: 01/10/2023]
Abstract
Valproic acid (VPA) is the most widely prescribed antiepileptic drug due to its ability to treat a broad spectrum of seizure types. However, potential complications of this drug include anticonvulsant polytherapy metabolism, organ toxicity and teratogenicity which limit its use in a variety of epilepsy patients. Direct delivery of VPA intracerebroventricularly (ICV) could circumvent the toxic effects normally seen with the oral route of administration. An additional potential benefit would be significantly reduced dosing while achieving high brain concentrations. Epileptogenic tissue from patients with intractable seizures has shown significant cell death which may be mitigated by maximizing cerebral VPA exposure. Here we show ICV administration of VPA localized to the periventricular zone increased pro-survival phospho-proteins (pAkt(Ser473), pAkt(Thr308), pGSK3β(Ser9), pErk1/2(Thr202/Tyr204)) and growth cone associated proteins (2G13p, GAP43) in a whole animal system. No significant changes in DCX, NeuN, synaptotagmin, and synaptophysin were detected. Assessment of possible behavioral alterations in rats receiving chronic central infusions of VPA was performed with the open field and elevated plus mazes. Neither paradigm revealed any detrimental effects of the drug infusion process.
Collapse
Affiliation(s)
- Ryan C Bates
- Medical Research Service, Veterans Affairs Medical Center, 1055 Clermont Street, Denver, CO 80220, USA.
| | | | | |
Collapse
|
35
|
Dimant H, Ebrahimi-Fakhari D, McLean PJ. Molecular chaperones and co-chaperones in Parkinson disease. Neuroscientist 2012; 18:589-601. [PMID: 22829394 DOI: 10.1177/1073858412441372] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parkinson disease, a progressive neurodegenerative disorder, is caused by the pathological accumulation of proteins, including the ubiquitous presynaptic protein α-synuclein. Alterations in the metabolism of α-synuclein have clearly been linked to neurodegeneration, and early steps in the pathological sequence of this protein include the formation of oligomers, fibrils, and small aggregates. Targeting these early steps of oligomerization is one of the main therapeutic approaches in the quest to develop disease-modifying agents. Molecular chaperones, molecules that can mediate the proper folding and refolding of client proteins, are vital to cell function and survival and thus have been explored as potential therapeutic agents. Important to Parkinson disease, chaperones are capable of preventing α-synuclein misfolding, oligomerization, and aggregate formation as shown in vitro and in Parkinson disease animal models. Furthermore, chaperones and associated co-chaperones are closely linked to pathways of protein degradation, like the ubiquitin-proteasome system and autophagy, and are thus able to remove irreversibly misfolded proteins. In this review, we summarize the role of molecular chaperones in Parkinson disease models and discuss the importance of preserving protein homeostasis to prevent neurodegeneration. We also review the growing number of exciting studies that have targeted molecular chaperone function as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hemi Dimant
- MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02219, USA
| | | | | |
Collapse
|
36
|
Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, Ghoorah D, Kong X, Lin Z, Wang T. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Crit Rev Toxicol 2012; 42:613-32. [PMID: 22574684 DOI: 10.3109/10408444.2012.680431] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The etiology of Parkinson's disease (PD) is attributed to both environmental and genetic factors. The development of PD reportedly involves mitochondrial impairment, oxidative stress, α-synuclein aggregation, dysfunctional protein degradation, glutamate toxicity, calcium overloading, inflammation and loss of neurotrophic factors. Based on a link between mitochondrial dysfunction and pesticide exposure, many laboratories, including ours, have recently developed parkinsonian models by utilization of rotenone, a well-known mitochondrial complex I inhibitor. Rotenone models for PD appear to mimic most clinical features of idiopathic PD and recapitulate the slow and progressive loss of dopaminergic (DA) neurons and the Lewy body formation in the nigral-striatal system. Notably, potential human parkinsonian pathogenetic and pathophysiological mechanisms have been revealed through these models. In this review, we summarized various rotenone-based models for PD and discussed the implied etiology of and treatment for PD.
Collapse
Affiliation(s)
- Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Christian Machado Ximenes J, Crisóstomo Lima Verde E, da Graça Naffah-Mazzacoratti M, Socorro de Barros Viana G. Valproic Acid, a Drug with Multiple Molecular Targets Related to Its Potential Neuroprotective Action. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.31016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Valproic acid-mediated neuroprotection in retinal ischemia injury via histone deacetylase inhibition and transcriptional activation. Exp Eye Res 2012; 94:98-108. [DOI: 10.1016/j.exer.2011.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 01/13/2023]
|
39
|
Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Toda H, Song N, Kitaichi Y, Inoue T, Koyama T. Effects of mood stabilizers on adult dentate gyrus-derived neural precursor cells. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:111-7. [PMID: 20888882 DOI: 10.1016/j.pnpbp.2010.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/25/2010] [Accepted: 09/26/2010] [Indexed: 01/20/2023]
Abstract
Neurogenesis in the adult dentate gyrus (DG) is considered to be partly involved in the action of mood stabilizers. However, it remains unclear how mood stabilizers affect neural precursor cells in adult DG. We have established a culture system of adult rat DG-derived neural precursor cells (ADP) and have shown that lithium, a mood stabilizer, and dexamethasone, an agonist of glucocorticoid receptor, reciprocally regulate ADP proliferation. Neurogenesis constitutes not only proliferation of neural precursor cells but also apoptosis and differentiation. To develop further understanding of mood stabilizer effects on neural precursor cells in adult DG, we investigated and compared the effects of four common mood stabilizers-lithium, valproate, carbamazepine, and lamotrigine-on ADP proliferation, apoptosis, and differentiation. ADP proliferation, decreased by dexamethasone, was examined using Alamar Blue assay. Using TUNEL assay, ADP apoptosis induced by staurosporine was examined. The differentiated ADP induced by retinoic acid was characterized by immunostaining with anti-GFAP or anti-Tuj1 antibody. Lithium and valproate, but not carbamazepine and lamotrigine, recovered ADP proliferation decreased by dexamethasone. All four mood stabilizers decreased ADP apoptosis. Retinoic acid differentiated ADP into both neurons and astrocytes. Lithium and carbamazepine increased the ratio of neurons and decreased that of astrocytes. However, valproate and lamotrigine increased the ratio of astrocytes and decreased that of neurons. Therefore, these four stabilizers exhibited both common and differential effects on ADP proliferation, apoptosis, and differentiation.
Collapse
Affiliation(s)
- Shuken Boku
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hwang BY, Appelboom G, Ayer A, Kellner CP, Kotchetkov IS, Gigante PR, Haque R, Kellner M, Connolly ES. Advances in neuroprotective strategies: potential therapies for intracerebral hemorrhage. Cerebrovasc Dis 2010; 31:211-22. [PMID: 21178344 DOI: 10.1159/000321870] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/25/2010] [Indexed: 12/14/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is associated with higher mortality and morbidity than any other form of stroke. However, there currently are no treatments proven to improve outcomes after ICH, and therefore, new effective therapies are urgently needed. Growing insight into ICH pathophysiology has led to the development of neuroprotective strategies that aim to improve the outcome through reduction of secondary pathologic processes. Many neuroprotectants target molecules or pathways involved in hematoma degradation, inflammation or apoptosis, and have demonstrated potential clinical benefits in experimental settings. We extensively reviewed the current understanding of ICH pathophysiology as well as promising experimental neuroprotective agents with particular focus on their mechanisms of action. Continued advances in ICH knowledge, increased understanding of neuroprotective mechanisms, and improvement in the ability to modulate molecular and pathologic events with multitargeting agents will lead to successful clinical trials and bench-to-bedside translation of neuroprotective strategies.
Collapse
Affiliation(s)
- Brian Y Hwang
- Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, N.Y. 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J Immunother 2010; 33:391-401. [PMID: 20386467 DOI: 10.1097/cji.0b013e3181d32f22] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is known that treatments with heat shock, some anticancer drugs, and ionizing radiation increase the expression of heat-shock proteins (HSPs) and natural killer group 2D (NKG2D) ligands in tumor cells. The increased HSPs may make the tumor cells resistant to apoptosis and reduction of HSPs may make the tumor cells more susceptible to natural killer (NK)-cell mediated lysis of tumor cells. In this study, we investigated whether quercetin which has inhibitory activities against heat-shock factor, protein kinase C, nuclear factor-kappaB, and phosphatidyl inositol 3-kinase, can modulate the expression of NKG2D ligands and suppress the HSPs in tumor cells. The results of this study showed that quercetin significantly induced the expression of several NKG2D ligands including major histocompatibility complex class I-related chain B, UL16-binding protein 1, and UL16-binding protein 2 in K562, SNU1, and SNU-C4 cells. The quercetin-treated K562, SNU1, and SNU-C4 cells showed an enhanced susceptibility to NK-92 cells through induction of NKG2D ligands. This increased expression of NKG2D ligands seemed to be due to the inhibition of the nuclear factor-kappaB and phosphatidyl inositol 3-kinase pathways. The findings of this study suggest that the induced NKG2D ligands with the decrease of HSP70 protein by quercetin may provide an attractive strategy to improve the effectiveness of NK cell-based cancer immunotherapy.
Collapse
|
42
|
Activation of p38 MAPK participates in brain ischemic tolerance induced by limb ischemic preconditioning by up-regulating HSP 70. Exp Neurol 2010; 224:347-55. [DOI: 10.1016/j.expneurol.2010.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/18/2010] [Accepted: 04/10/2010] [Indexed: 01/17/2023]
|
43
|
Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010; 2010. [PMID: 20798865 PMCID: PMC2926634 DOI: 10.1155/2010/479364] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/03/2010] [Accepted: 06/06/2010] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Antiepileptic properties have been attributed to inhibition of Gamma Amino Butyrate (GABA) transaminobutyrate and of ion channels. VPA was recently classified among the Histone Deacetylase Inhibitors, acting directly at the level of gene transcription by inhibiting histone deacetylation and making transcription sites more accessible. VPA is a widely used drug, particularly for children suffering from epilepsy. Due to the increasing number of clinical trials involving VPA, and interesting results obtained, this molecule will be implicated in an increasing number of therapies. However side effects of VPA are substantially described in the literature whereas they are poorly discussed in articles focusing on its therapeutic use. This paper aims to give an overview of the different clinical-trials involving VPA and its side effects encountered during treatment as well as its molecular properties.
Collapse
|
44
|
Lee Y, Kim D, Kim YH, Lee H, Lee CJ. Improvement of pentylenetetrazol-induced learning deficits by valproic acid in the adult zebrafish. Eur J Pharmacol 2010; 643:225-31. [PMID: 20599908 DOI: 10.1016/j.ejphar.2010.06.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Pentylenetetrazol (PTZ) has been shown to induce seizure-like behavior, learning deficits in passive avoidance response test, and an increase in hsp70 (heat shock protein 70) mRNA expression in the adult zebrafish; PTZ has been increasingly appreciated as an excellent model system for the study of seizures. In this study, we demonstrate that valproic acid (VPA), an antiepileptic drug, suppresses seizure-like behavior and improves learning ability in adult zebrafish treated with PTZ. Pretreatment with VPA significantly reduces rapid involuntary movement and abrupt changes in moving direction in the PTZ-treated zebrafish. PTZ-induced learning impairments were also improved in the zebrafish pretreated with 200 or 500 microM VPA. However, the scopolamine-induced impairments of learning ability were not improved by VPA pretreatment. It is worth noting that while the zebrafish treated with 500 microM VPA for 1-3 weeks learned the passive avoidance response, those treated with 1 or 2mM VPA for 3h didn't. Furthermore, the increased level of hsp70 expression induced by PTZ, a stress marker protein, was significantly reduced in the VPA-pretreated zebrafish brains. Collectively, our data show the antiepileptic effects of VPA in the adult zebrafish, which coincides with reduced hsp70 mRNA expression, rescued learning impairment under PTZ-treated conditions.
Collapse
Affiliation(s)
- Yunkyoung Lee
- Department of Biological Sciences, Institute of Molecular and Cellular Biology, Inha University, Incheon, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Fu J, Shao CJ, Chen FR, Ng HK, Chen ZP. Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro Oncol 2009; 12:328-40. [PMID: 20308311 DOI: 10.1093/neuonc/nop005] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Autophagy represents an alternative tumor-suppressing mechanism that overcomes the dramatic resistance of malignant gliomas to radiotherapy and proapoptotic-related chemotherapy. This study reports that valproic acid (VPA), a widely used anti-epilepsy drug, induces autophagy in glioma cells. Autophagy, crucial for VPA-induced cell death, is independent of apoptosis, even though apoptotic machinery is proficient. Oxidative stress induced by VPA occurs upstream of autophagy. Oxidative stress also activates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, whereas blocking this pathway inhibits autophagy and induces apoptosis. VPA-induced autophagy cannot be alleviated by inositol, suggesting a mechanism different from that for lithium. Moreover, VPA potentiates autophagic cell death, but not apoptosis, when combined with other autophagy inducers such as rapamycin, Ly294002, and temozolomide in glioma cells both in vitro and in vivo, which may warrant further investigation toward possible clinical application in patients with malignant gliomas.
Collapse
Affiliation(s)
- Jun Fu
- State Key Laboratory for Cancer Research in Southern China, Department of Neurosurgery/Neuro-Oncology, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Marinova Z, Ren M, Wendland JR, Leng Y, Liang MH, Yasuda S, Leeds P, Chuang DM. Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem 2009; 111:976-87. [PMID: 19765194 DOI: 10.1111/j.1471-4159.2009.06385.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuroprotective properties of the mood stabilizer valproic acid (VPA) are implicated in its therapeutic efficacy. Heat-shock protein 70 (HSP70) is a molecular chaperone, neuroprotective and anti-inflammatory agent. This study aimed to investigate underlying mechanisms and functional significance of HSP70 induction by VPA in rat cortical neurons. VPA treatment markedly up-regulated HSP70 protein levels, and this was accompanied by increased HSP70 mRNA levels and promoter hyperacetylation and activity. Other HDAC inhibitors--sodium butyrate, trichostatin A, and Class I HDAC-specific inhibitors MS-275 and apicidin, --all mimicked the ability of VPA to induce HSP70. Pre-treatment with phosphatidylinositol 3-kinase inhibitors or an Akt inhibitor attenuated HSP70 induction by VPA and other HDAC inhibitors. VPA treatment increased Sp1 acetylation, and a Sp1 inhibitor, mithramycin, abolished the induction of HSP70 by HDAC inhibitors. Moreover, VPA promoted the association of Sp1 with the histone acetyltransferases p300 and recruitment of p300 to the HSP70 promoter. Further, VPA-induced neuroprotection against glutamate excitotoxicity was prevented by blocking HSP70 induction. Taken together, the data suggest that the phosphatidylinositol 3-kinase/Akt pathway and Sp1 are likely involved in HSP70 induction by HDAC inhibitors, and induction of HSP70 by VPA in cortical neurons may contribute to its neuroprotective and therapeutic effects.
Collapse
Affiliation(s)
- Zoya Marinova
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1363, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 2009; 164:541-51. [PMID: 19682553 DOI: 10.1016/j.neuroscience.2009.08.014] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/31/2009] [Accepted: 08/02/2009] [Indexed: 12/21/2022]
Abstract
Ubiquitin proteasome system (UPS) and autophagy lysosome pathway (ALP) are the two most important routes for degradation of aggregated/misfolded proteins. Additionally, ALP is so far the only known route to clear entire organelles, such as mitochondria. We proposed that enhancement of ALP may be beneficial for some neurodegenerative disorders, such as Parkinson's disease (PD), in which the accumulation of aggregated/misfolded proteins and the dysfunction of mitochondria are the two major pathogenesis. Mitochondrial complex I inhibitor rotenone, which causes dysfunction mitochondria and UPS, has been considered as one of the neurotoxins related to PD. In this study, rotenone-exposed human neuronal SH-SY5Y cells were used as an in vitro model for us to determine whether autophagy enhancer rapamycin could protect against rotenone-induced injury and its underlying mechanisms. The observed results showed that rapamycin alleviated rotenone-induced apoptosis, whose effects were partially blocked when autophagy related gene 5 (Atg5) was suppressed by Atg5 small interference RNA (siRNA) transfection. Additionally, the results showed that rapamycin pretreatment diminished rotenone-induced accumulation of high molecular weight ubiquitinated bands, and reduced rotenone-induced increase of cytochrome c in cytosolic fraction and decreased mitochondrial marker cytochrome oxidase subunit IV (COX IV) in mitochondrial fraction. The changes in cytochrome c and COX IV indicated that the decreased translocation of cytochrome c from mitochondria to cytosol was probably due to the turn over of entire injured mitochondria. The results that lysosome and mitochondria were colocolized within the cells pretreated with rapamycin and that the mitochondria could be found within autophagy double membrane structures further supported that the damaged mitochondria might be cleared through autophagy, which process has been termed as "mitophagy." Our studies suggested that autophagy enhancer rapamycin is neuroprotective against rotenone-induced apoptosis through autophagy enhancement. We concluded that pharmacologically induction of autophagy by rapamycin may represent a useful therapeutic strategy as disease-modifiers in PD.
Collapse
Affiliation(s)
- T Pan
- Parkinson Disease Research Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
48
|
Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A. Valproic acid is neuroprotective in the rotenone rat model of Parkinson's disease: involvement of alpha-synuclein. Neurotox Res 2009; 17:130-41. [PMID: 19626387 DOI: 10.1007/s12640-009-9090-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/25/2009] [Accepted: 07/08/2009] [Indexed: 12/21/2022]
Abstract
Valproic acid (VPA), an established antiepileptic and antimanic drug, has recently emerged as a promising neuroprotective agent. Among its many cellular targets, VPA has been recently demonstrated to be an effective inhibitor of histone deacetylases. Accordingly, we have adopted a schedule of dietary administration (2% VPA added to the chow) that results in a significant inhibition of histone deacetylase activity and in an increase of histone H3 acetylation in brain tissues of 4 weeks-treated rats. We have tested this schedule of VPA treatment in an animal model of Parkinson's disease (PD), in which degeneration of nigro-striatal dopaminergic neurons is obtained through sub-chronic administration of the mitochondrial toxin, rotenone, via osmotic mini pumps implanted to rats. The decrease of the dopaminergic marker tyrosine hydroxylase in substantia nigra and striatum caused by 7 days toxin administration was prevented in VPA-fed rats. VPA treatment also significantly counteracted the death of nigral neurons and the 50% drop of striatal dopamine levels caused by rotenone administration. The PD-marker protein alpha-synuclein decreased, in its native form, in substantia nigra and striatum of rotenone-treated rats, while monoubiquitinated alpha-synuclein increased in the same regions. VPA treatment counteracted both these alpha-synuclein alterations. Furthermore, monoubiquitinated alpha-synuclein increased its localization in nuclei isolated from substantia nigra of rotenone-treated rats, an effect also prevented by VPA treatment. Nuclear localization of alpha-synuclein has been recently described in some models of PD and its neurodegenerative effect has been ascribed to histone acetylation inhibition. Thus, the ability of VPA to increase histone acetylation is a novel candidate mechanism for its neuroprotective action.
Collapse
Affiliation(s)
- Barbara Monti
- Department of Biology, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Dowdell KC, Pesnicak L, Hoffmann V, Steadman K, Remaley AT, Cohen JI, Straus SE, Rao VK. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the Fas -deficient MRL/lpr(-/-) murine model of autoimmune lymphoproliferative syndrome (ALPS). Exp Hematol 2009; 37:487-94. [PMID: 19217201 DOI: 10.1016/j.exphem.2008.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of apoptosis, often presenting in childhood. Similarly, MRL/lpr(-/-) mice homozygous for Fas mutations develop an ALPS-like disease with autoimmunity, lymphadenopathy, splenomegaly, and expansion of double-negative T cells. Currently, there are no proven therapies with adequate safety margins for sustained abolition of the lymphoproliferation associated with ALPS. We sought to test the ability of valproic acid (VPA), a histone deacetylase inhibitor, to induce apoptosis and inhibit lymphoproliferation. MATERIALS AND METHODS Human peripheral blood mononuclear cells from patients with ALPS and normal controls were tested in vitro to determine the efficacy of VPA at inducing cell death. VPA was used in vivo to control lymphoproliferation in MRL/lpr(-/-) mice, a model for ALPS. RESULTS VPA induced cell death in vitro, and was partially inhibited by the pan caspase inhibitor, Z-VAD-FMK. MRL/lpr(-/-) mice treated with VPA for 8 weeks showed significant reductions in spleen and lymph node weights and cellularity compared to controls. A concomitant decrease in double-negative T cells was observed in the spleen, lymph nodes, and peripheral blood. Serum levels of VPA peaked 1 hour after injection, and a 2.5-fold increase in histone acetylation was observed in the spleen at 4 hours after injection. CONCLUSION Based on our data, VPA is effective at reducing lymphoproliferation in mice, and is currently being studied in a clinical trial as a lympholytic agent in patients with ALPS.
Collapse
Affiliation(s)
- Kennichi C Dowdell
- Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1888, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gurpur PB, Liu J, Burkin DJ, Kaufman SJ. Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:999-1008. [PMID: 19179609 DOI: 10.2353/ajpath.2009.080537] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Duchenne muscular dystrophy is a lethal neuromuscular disease that currently has no effective therapy. Transgenic overexpression of the alpha7 integrin in mdx/utrn(-/-) mice, a model of Duchenne muscular dystrophy ameliorates the disease. We have isolated and used alpha7(+/-) muscle cells expressing beta-galactosidase, driven by the endogenous alpha7 promoter, to identify compounds that increase alpha7 integrin levels. Valproic acid (VPA) was found to enhance alpha7 integrin levels, induce muscle hypertrophy, and inhibit apoptosis in myotubes by activating the Akt/mTOR/p70S6K pathway. This activation of the Akt pathway occurs within 1 hour of treatment and is mediated by phosphatidylinositol 3-OH kinase. To evaluate the potential use of VPA to treat muscular dystrophy, mdx/utrn(-/-) mice were injected with the drug. Treatment with VPA lowered collagen content and fibrosis, and decreased hind limb contractures. VPA-treated mice also had increased sarcolemmal integrity and decreased damage, decreased CD8-positive inflammatory cells, and higher levels of activated Akt in their muscles. Thus, VPA has important biological effects that may be applicable for the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Praveen B Gurpur
- Department of Cell and Developmental Biology, University of Illinois, B107 CLSL, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | | | | | |
Collapse
|