1
|
Khanijou JK, Hee YT, Scipion CPM, Chen X, Selvarajoo K. Systems biology approach for enhancing limonene yield by re-engineering Escherichia coli. NPJ Syst Biol Appl 2024; 10:109. [PMID: 39353984 PMCID: PMC11445242 DOI: 10.1038/s41540-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Engineered microorganisms have emerged as viable alternatives for limonene production. However, issues such as low enzyme abundance or activities, and regulatory feedback/forward inhibition may reduce yields. To understand the underlying metabolism, we adopted a systems biology approach for an engineered limonene-producing Escherichia coli strain K-12 MG1655. Firstly, we generated time-series metabolomics data and, secondly, developed a dynamic model based on enzyme dynamics to track the native metabolic networks and the engineered mevalonate pathway. After several iterations of model fitting with experimental profiles, which also included 13C-tracer studies, we performed in silico knockouts (KOs) of all enzymes to identify bottleneck(s) for optimal limonene yields. The simulations indicated that ALDH/ADH (aldehyde dehydrogenase/alcohol dehydrogenase) and LDH (lactate dehydrogenase) suppression, and HK (hexokinase) enhancement would increase limonene yields. Experimental confirmation was achieved, where ALDH-ADH and LDH KOs, and HK overexpression improved limonene yield by 8- to 11-fold. Our systems biology approach can guide microbial strain re-engineering for optimal target production.
Collapse
Affiliation(s)
- Jasmeet Kaur Khanijou
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Yan Ting Hee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Matrix, Singapore, 138671, Singapore
| | | | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Matrix, Singapore, 138671, Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, Singapore.
| |
Collapse
|
2
|
Helmy M, Selvarajoo K. Systems Biology to Understand and Regulate Human Retroviral Proinflammatory Response. Front Immunol 2021; 12:736349. [PMID: 34867957 PMCID: PMC8635014 DOI: 10.3389/fimmu.2021.736349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
The majority of human genome are non-coding genes. Recent research have revealed that about half of these genome sequences make up of transposable elements (TEs). A branch of these belong to the endogenous retroviruses (ERVs), which are germline viral infection that occurred over millions of years ago. They are generally harmless as evolutionary mutations have made them unable to produce viral agents and are mostly epigenetically silenced. Nevertheless, ERVs are able to express by still unknown mechanisms and recent evidences have shown links between ERVs and major proinflammatory diseases and cancers. The major challenge is to elucidate a detailed mechanistic understanding between them, so that novel therapeutic approaches can be explored. Here, we provide a brief overview of TEs, human ERVs and their links to microbiome, innate immune response, proinflammatory diseases and cancer. Finally, we recommend the employment of systems biology approaches for future HERV research.
Collapse
Affiliation(s)
- Mohamed Helmy
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Synthetic Biology Translational Research Program & SynCTI, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Kent Ridge, Singapore
| |
Collapse
|
3
|
Elevated pre-activation basal level of nuclear NF-κB in native macrophages accelerates LPS-induced translocation of cytosolic NF-κB into the cell nucleus. Sci Rep 2019; 9:4563. [PMID: 30872589 PMCID: PMC6418260 DOI: 10.1038/s41598-018-36052-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Signaling via Toll-like receptor 4 (TLR4) in macrophages constitutes an essential part of the innate immune response to bacterial infections. Detailed and quantified descriptions of TLR4 signal transduction would help to understand and exploit the first-line response of innate immune defense. To date, most mathematical modelling studies were performed on transformed cell lines. However, properties of primary macrophages differ significantly. We therefore studied TLR4-dependent activation of NF-κB transcription factor in bone marrow-derived and peritoneal primary macrophages. We demonstrate that the kinetics of NF-κB phosphorylation and nuclear translocation induced by a wide range of bacterial lipopolysaccharide (LPS) concentrations in primary macrophages is much faster than previously reported for macrophage cell lines. We used a comprehensive combination of experiments and mathematical modeling to understand the mechanisms of this rapid response. We found that elevated basal NF-κB in the nuclei of primary macrophages is a mechanism increasing native macrophage sensitivity and response speed to the infection. Such pre-activated state of macrophages accelerates the NF-κB translocation kinetics in response to low agonist concentrations. These findings enabled us to refine and construct a new model combining both NF-κB phosphorylation and translocation processes and predict the existence of a negative feedback loop inactivating phosphorylated NF-κB.
Collapse
|
4
|
Selvarajoo K. Complexity of Biochemical and Genetic Responses Reduced Using Simple Theoretical Models. Methods Mol Biol 2018; 1702:171-201. [PMID: 29119506 DOI: 10.1007/978-1-4939-7456-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Living systems are known to behave in a complex and sometimes unpredictable manner. Humans, for a very long time, have been intrigued by nature, and have attempted to understand biological processes and mechanisms using numerous experimental and mathematical techniques. In this chapter, we will look at simple theoretical models, using both linear and nonlinear differential equations, that realistically capture complex biochemical and genetic responses of living cells. Even for cases where cellular behaviors are stochastic, as for single-cell responses, randomness added to well-defined deterministic models has elegantly been shown to be useful. The data collectively present evidence for further exploration of the self-organizing rules and laws of living matter.
Collapse
Affiliation(s)
- Kumar Selvarajoo
- BioTrans, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
5
|
A systems biology approach to overcome TRAIL resistance in cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:142-154. [DOI: 10.1016/j.pbiomolbio.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/20/2022]
|
6
|
Shafaghati L, Razaghi-Moghadam Z, Mohammadnejad J. A Systems Biology Approach to Understanding Alcoholic Liver Disease Molecular Mechanism: The Development of Static and Dynamic Models. Bull Math Biol 2017; 79:2450-2473. [PMID: 28849551 DOI: 10.1007/s11538-017-0336-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/18/2017] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) is a complex disease characterized by damages to the liver and is the consequence of excessive alcohol consumption over years. Since this disease is associated with several pathway failures, pathway reconstruction and network analysis are likely to explicit the molecular basis of the disease. To this aim, in this paper, a network medicine approach was employed to integrate interactome (protein-protein interaction and signaling pathways) and transcriptome data to reconstruct both a static network of ALD and a dynamic model for it. Several data sources were exploited to assemble a set of ALD-associated genes which further was used for network reconstruction. Moreover, a comprehensive literature mining reveals that there are four signaling pathways with crosstalk (TLR4, NF- [Formula: see text]B, MAPK and Apoptosis) which play a major role in ALD. These four pathways were exploited to reconstruct a dynamic model of ALD. The results assure that these two models are consistent with a number of experimental observations. The static network of ALD and its dynamic model are the first models provided for ALD which offer potentially valuable information for researchers in this field.
Collapse
Affiliation(s)
- Leila Shafaghati
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Javad Mohammadnejad
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Hayashi K, Tabata S, Piras V, Tomita M, Selvarajoo K. Systems Biology Strategy Reveals PKCδ is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma. Front Immunol 2015; 5:659. [PMID: 25601862 PMCID: PMC4283611 DOI: 10.3389/fimmu.2014.00659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 01/08/2023] Open
Abstract
Cancer cells are highly variable and largely resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced treatment is gaining momentum due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. Nevertheless, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response differential equations approach, and predicted protein kinase C (PKC) as the most effective target, with over 95% capacity to kill human fibrosarcoma (HT1080) in TRAIL stimulation (1). Here, to validate the model prediction, which has significant implications for cancer treatment, we conducted experiments on two TRAIL-resistant cancer cell lines (HT1080 and HT29). Using PKC inhibitor bisindolylmaleimide I, we demonstrated that cell viability is significantly impaired with over 95% death of both cancer types, in consistency with our previous model. Next, we measured caspase-3, Poly (ADP-ribose) polymerase (PARP), p38, and JNK activations in HT1080, and confirmed cell death occurs through apoptosis with significant increment in caspase-3 and PARP activations. Finally, to identify a crucial PKC isoform, from 10 known members, we analyzed each isoform mRNA expressions in HT1080 cells and shortlisted the highest 4 for further siRNA knock-down (KD) experiments. From these KDs, PKCδ produced the most cancer cell death in conjunction with TRAIL. Overall, our approach combining model predictions with experimental validation holds promise for systems biology based cancer therapy.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan ; Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan ; Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| | - Vincent Piras
- Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan ; Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan ; Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| | - Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan ; Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| |
Collapse
|
8
|
A systems model of phosphorylation for inflammatory signaling events. PLoS One 2014; 9:e110913. [PMID: 25333362 PMCID: PMC4205014 DOI: 10.1371/journal.pone.0110913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/19/2014] [Indexed: 12/24/2022] Open
Abstract
Phosphorylation is a fundamental biochemical reaction that modulates protein activity in cells. While a single phosphorylation event is relatively easy to understand, multisite phosphorylation requires systems approaches for deeper elucidation of the underlying molecular mechanisms. In this paper we develop a mechanistic model for single- and multi-site phosphorylation. The proposed model is compared with previously reported studies. We compare the predictions of our model with experiments published in the literature in the context of inflammatory signaling events in order to provide a mechanistic description of the multisite phosphorylation-mediated regulation of Signal Transducer and Activator of Transcription 3 (STAT3) and Interferon Regulatory Factor 5 (IRF-5) proteins. The presented model makes crucial predictions for transcription factor phosphorylation events in the immune system. The model proposes potential mechanisms for T cell phenotype switching and production of cytokines. This study also provides a generic framework for the better understanding of a large number of multisite phosphorylation-regulated biochemical circuits.
Collapse
|
9
|
Hayashi K, Piras V, Tabata S, Tomita M, Selvarajoo K. A systems biology approach to suppress TNF-induced proinflammatory gene expressions. Cell Commun Signal 2013; 11:84. [PMID: 24199619 PMCID: PMC3832246 DOI: 10.1186/1478-811x-11-84] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/01/2013] [Indexed: 01/15/2023] Open
Abstract
Background Tumor necrosis factor (TNF) is a widely studied cytokine (ligand) that induces proinflammatory signaling and regulates myriad cellular processes. In major illnesses, such as rheumatoid arthritis and certain cancers, the expression of TNF is elevated. Despite much progress in the field, the targeted regulation of TNF response for therapeutic benefits remains suboptimal. Here, to effectively regulate the proinflammatory response induced by TNF, a systems biology approach was adopted. Results We developed a computational model to investigate the temporal activations of MAP kinase (p38), nuclear factor (NF)-κB, and the kinetics of 3 groups of genes, defined by early, intermediate and late phases, in murine embryonic fibroblast (MEF) and 3T3 cells. To identify a crucial target that suppresses, and not abolishes, proinflammatory genes, the model was tested in several in silico knock out (KO) conditions. Among the candidate molecules tested, in silico RIP1 KO effectively regulated all groups of proinflammatory genes (early, middle and late). To validate this result, we experimentally inhibited TNF signaling in MEF and 3T3 cells with RIP1 inhibitor, Necrostatin-1 (Nec-1), and investigated 10 genes (Il6, Nfkbia, Jun, Tnfaip3, Ccl7, Vcam1, Cxcl10, Mmp3, Mmp13, Enpp2) belonging to the 3 major groups of upregulated genes. As predicted by the model, all measured genes were significantly impaired. Conclusions Our results demonstrate that Nec-1 modulates TNF-induced proinflammatory response, and may potentially be used as a therapeutic target for inflammatory diseases such as rheumatoid arthritis and osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | - Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University, 14-1 Baba-cho, Tsuruoka, Japan.
| |
Collapse
|
10
|
Sharp GC, Ma H, Saunders PTK, Norman JE. A computational model of lipopolysaccharide-induced nuclear factor kappa B activation: a key signalling pathway in infection-induced preterm labour. PLoS One 2013; 8:e70180. [PMID: 23936158 PMCID: PMC3736540 DOI: 10.1371/journal.pone.0070180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/16/2013] [Indexed: 11/19/2022] Open
Abstract
Preterm birth is the single biggest cause of significant neonatal morbidity and mortality, and the incidence is rising. Development of new therapies to treat and prevent preterm labour is seriously hampered by incomplete understanding of the molecular mechanisms that initiate labour at term and preterm. Computational modelling provides a new opportunity to improve this understanding. It is a useful tool in (i) identifying gaps in knowledge and informing future research, and (ii) providing the basis for an in silico model of parturition in which novel drugs to prevent or treat preterm labour can be "tested". Despite their merits, computational models are rarely used to study the molecular events initiating labour. Here, we present the first attempt to generate a dynamic kinetic model that has relevance to the molecular mechanisms of preterm labour. Using published data, we model an important candidate signalling pathway in infection-induced preterm labour: that of lipopolysaccharide (LPS) -induced activation of Nuclear Factor kappa B. This is the first model of this pathway to explicitly include molecular interactions upstream of Nuclear Factor kappa B activation. We produced a formalised graphical depiction of the pathway and built a kinetic model based on ordinary differential equations. The kinetic model accurately reproduced published in vitro time course plots of Lipopolysaccharide-induced Nuclear Factor kappa B activation in mouse embryo fibroblasts. In this preliminary work we have provided proof of concept that it is possible to build computational models of signalling pathways that are relevant to the regulation of labour, and suggest that models that are validated with wet-lab experiments have the potential to greatly benefit the field.
Collapse
Affiliation(s)
- Gemma C Sharp
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
11
|
Decoding the Signaling Mechanism of Toll-Like Receptor 4 Pathways in Wild Type and Knockouts. E-CELL SYSTEM 2013. [DOI: 10.1007/978-1-4614-6157-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Abstract
The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.
Collapse
Affiliation(s)
- Vincent Piras
- Institute for Advanced Biosciences, Keio University Tsuruoka, Yamagata, Japan ; Graduate School of Media and Governance, Keio University Fujisawa, Kanagawa, Japan
| | | | | |
Collapse
|
13
|
Günel A. Modelling the interactions between TLR4 and IFNβ pathways. J Theor Biol 2012; 307:137-48. [PMID: 22575970 DOI: 10.1016/j.jtbi.2012.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/06/2023]
Abstract
Bacterial lipopolysaccharide (LPS) association with their connate receptor TLR4 triggers Type I interferon signaling cascade through its MyD88 independent downstream. Compared to plethora of reported empirical data on both TLR4 and Type I interferon pathways, there is no known model to decipher crosstalk mechanisms between these two crucial innate immune pathogen activated pathways regulating vital transcriptional factors such as nuclear factor-κB (NFκB), IFNβ, the interferon-stimulated gene factor-3 (ISGF3) and an important cancer drug target protein kinase-R (PKR). Innate immune system is based on a sensitive balance of intricate interactions. In elucidating these interactions, in silico integration of pathways has great potential. Attempts confined to single pathway may not be effective in truly addressing source of real systems behavior. This is the first report combining toll-like receptor-4 (TLR4) and interferon beta (IFNβ) pathways in a single in silico model, analyzing their interactions, pinpointing the source of delay in PKR late phase activity and limiting the transcription of IFN and PKR by using a method including an statistical physics technique in reaction equations. The model quite successfully recapitulates published interferon regulatory factor-3 (IRF3) and IFNβ data from mouse macrophages and PKR data from mouse embryonic fibroblast cell lines. The simulations end up with an estimate of IRF3, IFNβ, ISGF3 dose dependent profiles mimicking nonlinear dose response characteristic of the system. Involvement of concomitant PKR downstream can unravel elusive mechanisms in specific profiles like NFκB regulation.
Collapse
Affiliation(s)
- Aylin Günel
- Istanbul Technical University Informatics Institute, Maslak, 34469, Istanbul, Turkiye.
| |
Collapse
|
14
|
Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab 2012; 15:137-49. [PMID: 22244528 PMCID: PMC3278569 DOI: 10.1016/j.cmet.2011.12.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/01/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022]
Abstract
The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in environments providing ubiquitous access to palatable, high-fat foods, making it difficult to achieve and maintain weight loss. Consequently, mechanisms by which nutritional environments interact with central homeostatic circuits to influence the threshold for defended adiposity represent critical targets for therapeutic intervention.
Collapse
Affiliation(s)
- Karen K Ryan
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
15
|
Piras V, Hayashi K, Tomita M, Selvarajoo K. Enhancing apoptosis in TRAIL-resistant cancer cells using fundamental response rules. Sci Rep 2011; 1:144. [PMID: 22355661 PMCID: PMC3216625 DOI: 10.1038/srep00144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022] Open
Abstract
The tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induces apoptosis in malignant cells, while leaving other cells mostly unharmed. However, several carcinomas remain resistant to TRAIL. To investigate the resistance mechanisms in TRAIL-stimulated human fibrosarcoma (HT1080) cells, we developed a computational model to analyze the temporal activation profiles of cell survival (IκB, JNK, p38) and apoptotic (caspase-8 and -3) molecules in wildtype and several (FADD, RIP1, TRAF2 and caspase-8) knock-down conditions. Based on perturbation-response approach utilizing the law of information (signaling flux) conservation, we derived response rules for population-level average cell response. From this approach, i) a FADD-independent pathway to activate p38 and JNK, ii) a crosstalk between RIP1 and p38, and iii) a crosstalk between p62 and JNK are predicted. Notably, subsequent simulations suggest that targeting a novel molecule at p62/sequestosome-1 junction will optimize apoptosis through signaling flux redistribution. This study offers a valuable prospective to sensitive TRAIL-based therapy.
Collapse
Affiliation(s)
- Vincent Piras
- Institute for Advanced Biosciences, Keio University,
Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and
Governance, Keio University, Fujisawa, 252-8520,
Japan
- These authors contributed equally to this work
| | - Kentaro Hayashi
- Institute for Advanced Biosciences, Keio University,
Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and
Governance, Keio University, Fujisawa, 252-8520,
Japan
- These authors contributed equally to this work
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University,
Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and
Governance, Keio University, Fujisawa, 252-8520,
Japan
| | - Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University,
Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and
Governance, Keio University, Fujisawa, 252-8520,
Japan
| |
Collapse
|
16
|
Selvarajoo K. Macroscopic law of conservation revealed in the population dynamics of Toll-like receptor signaling. Cell Commun Signal 2011; 9:9. [PMID: 21507223 PMCID: PMC3103489 DOI: 10.1186/1478-811x-9-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/20/2011] [Indexed: 11/23/2022] Open
Abstract
Stimulating the receptors of a single cell generates stochastic intracellular signaling. The fluctuating response has been attributed to the low abundance of signaling molecules and the spatio-temporal effects of diffusion and crowding. At population level, however, cells are able to execute well-defined deterministic biological processes such as growth, division, differentiation and immune response. These data reflect biology as a system possessing microscopic and macroscopic dynamics. This commentary discusses the average population response of the Toll-like receptor (TLR) 3 and 4 signaling. Without requiring detailed experimental data, linear response equations together with the fundamental law of information conservation have been used to decipher novel network features such as unknown intermediates, processes and cross-talk mechanisms. For single cell response, however, such simplicity seems far from reality. Thus, as observed in any other complex systems, biology can be considered to possess order and disorder, inheriting a mixture of predictable population level and unpredictable single cell outcomes.
Collapse
Affiliation(s)
- Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University, Baba-Cho, 14-1, Tsuruoka, Yamagata, 997-0035 Japan.
| |
Collapse
|
17
|
Gutiérrez J, St Laurent G, Urcuqui-Inchima S. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space. Theor Biol Med Model 2010; 7:7. [PMID: 20230643 PMCID: PMC2907738 DOI: 10.1186/1742-4682-7-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/15/2010] [Indexed: 12/30/2022] Open
Abstract
Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes. Conclusions Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space.
Collapse
Affiliation(s)
- Jayson Gutiérrez
- Grupo de Física y Astrofísica Computacional (FACom), Instituto de Física, Universidad de Antioquia, Medellin, Colombia.
| | | | | |
Collapse
|
18
|
Selvarajoo K, Tomita M, Tsuchiya M. Can complex cellular processes be governed by simple linear rules? J Bioinform Comput Biol 2009; 7:243-68. [PMID: 19226669 DOI: 10.1142/s0219720009003947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 01/07/2023]
Abstract
Complex living systems have shown remarkably well-orchestrated, self-organized, robust, and stable behavior under a wide range of perturbations. However, despite the recent generation of high-throughput experimental datasets, basic cellular processes such as division, differentiation, and apoptosis still remain elusive. One of the key reasons is the lack of understanding of the governing principles of complex living systems. Here, we have reviewed the success of perturbation-response approaches, where without the requirement of detailed in vivo physiological parameters, the analysis of temporal concentration or activation response unravels biological network features such as causal relationships of reactant species, regulatory motifs, etc. Our review shows that simple linear rules govern the response behavior of biological networks in an ensemble of cells. It is daunting to know why such simplicity could hold in a complex heterogeneous environment. Provided physical reasons can be explained for these phenomena, major advancement in the understanding of basic cellular processes could be achieved.
Collapse
Affiliation(s)
- Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University, Baba-Cho, 14-1, Tsuruoka, Yamagata, 997-0035, Japan.
| | | | | |
Collapse
|
19
|
Helmy M, Gohda J, Inoue JI, Tomita M, Tsuchiya M, Selvarajoo K. Predicting novel features of toll-like receptor 3 signaling in macrophages. PLoS One 2009; 4:e4661. [PMID: 19252739 PMCID: PMC2645505 DOI: 10.1371/journal.pone.0004661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/26/2009] [Indexed: 11/19/2022] Open
Abstract
The Toll-like receptor (TLR) 3 plays a critical role in mammalian innate immune response against viral attacks by recognizing double-stranded RNA (dsRNA) or its synthetic analog polyinosinic-polycytidylic acid (poly (I∶C)). This leads to the activation of MAP kinases and NF-κB which results in the induction of type I interferons and proinflammatory cytokines to combat the viral infection. To understand the complex interplay of the various intracellular signaling molecules in the regulation of NF-κB and MAP kinases, we developed a computational TLR3 model based upon perturbation-response approach. We curated literature and databases to determine the TLR3 signaling topology specifically for murine macrophages. For initial model creation, we used wildtype temporal activation profiles of MAP kinases and NF-κB and, for model testing, used TRAF6 KO and TRADD KO data. From dynamic simulations we predict i) the existence of missing intermediary steps between extracellular poly (I∶C) stimulation and intracellular TLR3 binding, and ii) the presence of a novel pathway which is essential for JNK and p38, but not NF-κB, activation. Our work shows activation dynamics of signaling molecules can be used in conjunction with perturbation-response models to decipher novel signaling features of complicated immune pathways.
Collapse
Affiliation(s)
- Mohamed Helmy
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, School of Media and Governance, Keio University, Fujisawa, Japan
| | - Jin Gohda
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jun-ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masa Tsuchiya
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- * E-mail: (MT); (KS)
| | - Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- * E-mail: (MT); (KS)
| |
Collapse
|
20
|
Schulthess FT, Paroni F, Sauter NS, Shu L, Ribaux P, Haataja L, Strieter RM, Oberholzer J, King CC, Maedler K. CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metab 2009; 9:125-39. [PMID: 19187771 DOI: 10.1016/j.cmet.2009.01.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 11/05/2008] [Accepted: 01/14/2009] [Indexed: 12/20/2022]
Abstract
In type 1 and type 2 diabetes (T1/T2DM), beta cell destruction by apoptosis results in decreased beta cell mass and progression of the disease. In this study, we found that the interferon gamma-inducible protein 10 plays an important role in triggering beta cell destruction. Islets isolated from patients with T2DM secreted CXCL10 and contained 33.5-fold more CXCL10 mRNA than islets from control patients. Pancreatic sections from obese nondiabetic individuals and patients with T2DM and T1DM expressed CXCL10 in beta cells. Treatment of human islets with CXCL10 decreased beta cell viability, impaired insulin secretion, and decreased insulin mRNA. CXCL10 induced sustained activation of Akt, JNK, and cleavage of p21-activated protein kinase 2 (PAK-2), switching Akt signals from proliferation to apoptosis. These effects were not mediated by the commonly known CXCL10 receptor CXCR3 but through TLR4. Our data suggest CXCL10 as a binding partner for TLR4 and as a signal toward beta cell failure in diabetes.
Collapse
Affiliation(s)
- Fabienne T Schulthess
- Larry L. Hillblom Islet Research Center, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Signaling flux redistribution at toll-like receptor pathway junctions. PLoS One 2008; 3:e3430. [PMID: 18927610 PMCID: PMC2561291 DOI: 10.1371/journal.pone.0003430] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 09/21/2008] [Indexed: 01/07/2023] Open
Abstract
Various receptors on cell surface recognize specific extracellular molecules and trigger signal transduction altering gene expression in the nucleus. Gain or loss-of-function mutations of one molecule have shown to affect alternative signaling pathways with a poorly understood mechanism. In Toll-like receptor (TLR) 4 signaling, which branches into MyD88- and TRAM-dependent pathways upon lipopolysaccharide (LPS) stimulation, we investigated the gain or loss-of-function mutations of MyD88. We predict, using a computational model built on the perturbation-response approach and the law of mass conservation, that removal and addition of MyD88 in TLR4 activation, enhances and impairs, respectively, the alternative TRAM-dependent pathway through signaling flux redistribution (SFR) at pathway branches. To verify SFR, we treated MyD88-deficient macrophages with LPS and observed enhancement of TRAM-dependent pathway based on increased IRF3 phosphorylation and induction of Cxcl10 and Ifit2. Furthermore, increasing the amount of MyD88 in cultured cells showed decreased TRAM binding to TLR4. Investigating another TLR4 pathway junction, from TRIF to TRAF6, RIP1 and TBK1, the removal of MyD88-dependent TRAF6 increased expression of TRAM-dependent Cxcl10 and Ifit2. Thus, we demonstrate that SFR is a novel mechanism for enhanced activation of alternative pathways when molecules at pathway junctions are removed. Our data suggest that SFR may enlighten hitherto unexplainable intracellular signaling alterations in genetic diseases where gain or loss-of-function mutations are observed.
Collapse
|
22
|
Ulrichts P, Peelman F, Beyaert R, Tavernier J. MAPPIT analysis of TLR adaptor complexes. FEBS Lett 2007; 581:629-36. [PMID: 17258210 DOI: 10.1016/j.febslet.2007.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/22/2006] [Accepted: 01/11/2007] [Indexed: 11/19/2022]
Abstract
Toll-like receptors (TLRs) are crucial components of the innate immune system, coupling pathogen recognition to a cellular response. We used the MAPPIT mammalian two-hybrid technique to investigate protein-protein interactions in the early steps in TLR signalling. A partial TLR-adaptor interaction map was constructed confirming several known but also documenting novel interactions. We show that the TLR adaptor Mal is critical for linking Myeloid Differentiation primary response protein 88 (MyD88) to TLR2 and TLR4. Analysis of the contributions of the different sub-domains of MyD88-adaptor-like protein (Mal) and MyD88 in adaptor homo- and hetero-dimerisation provides an initial mechanistic insight in this bridging function of Mal.
Collapse
Affiliation(s)
- Peter Ulrichts
- Flanders Institute for Biotechnology (VIB), Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|