1
|
Zhao J, Tang K, Jiang G, Yang X, Cui M, Wan C, Ouyang Z, Zheng Y, Liu Z, Wang M, Zhao X, Chang G. Dynamic transcriptomic and regulatory networks underpinning the transition from fetal primordial germ cells to spermatogonia in mice. Cell Prolif 2025; 58:e13755. [PMID: 39329203 PMCID: PMC11839193 DOI: 10.1111/cpr.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The transition from fetal primordial germ cells (PGCs) to spermatogonia (SPG) is critical for male germ cell development; however, the detailed transcriptomic dynamics and regulation underlying this transition remain poorly understood. Here by interrogating the comprehensive transcriptome atlas dataset of mouse male germ cells and gonadal cells development, we elucidated the regulatory networks underlying this transition. Our single-cell transcriptome analysis revealed that the transition from PGCs to SPG was characterized by global hypertranscription. A total of 315 highly active regulators were identified to be potentially involved in this transition, among which a non-transcription factor (TF) regulator TAGLN2 was validated to be essential for spermatogonial stem cells (SSCs) maintenance and differentiation. Metabolism profiling analysis also revealed dynamic changes in metabolism-related gene expression during PGC to SPG transition. Furthermore, we uncovered that intricate cell-cell communication exerted potential functions in the regulation of hypertranscription in germ cells by collaborating with stage-specific active regulators. Collectively, our work extends the understanding of molecular mechanisms underlying male germ cell development, offering insights into the recapitulation of germ cell generation in vitro.
Collapse
Affiliation(s)
- Jiexiang Zhao
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Kang Tang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Gurong Jiang
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
- Maoming People's HospitalMaomingGuangdongPR China
| | - Zhaoxiang Ouyang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Zhaoting Liu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Mei Wang
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Xiao‐Yang Zhao
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhouGuangdongPR China
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong Joint Laboratory for Psychiatric Disorders
- Department of Gynecology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Gang Chang
- Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenGuangdongPR China
| |
Collapse
|
2
|
Haeger G, Wirges J, Bongaerts J, Schörken U, Siegert P. Perspectives of aminoacylases in biocatalytic synthesis of N-acyl-amino acids surfactants. Appl Microbiol Biotechnol 2024; 108:495. [PMID: 39453420 PMCID: PMC11511702 DOI: 10.1007/s00253-024-13328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Many industrial processes are performed using harmful chemicals. The current technical synthesis of N-acyl-amino acids relies on acyl chlorides, which are typically obtained from phosgene chemistry. A greener alternative is the application of whole cells or enzymes to carry out synthesis in an environmentally friendly manner. Aminoacylases belong to the hydrolase family and the resolution of racemic mixtures of N-acetyl-amino acids is a well-known industrial process. Several new enzymes accepting long-chain fatty acids as substrates were discovered in recent years. This article reviews the synthetic potential of aminoacylases to produce biobased N-acyl-amino acid surfactants. The focus lays on a survey of the different types of aminoacylases available for synthesis and their reaction products. The enzymes are categorized according to their protein family classification and their biochemical characteristics including substrate spectra, reaction optima and process stability, both in hydrolysis and under process conditions suitable for synthesis. Finally, the benefits and future challenges of enzymatic N-acyl-amino acid synthesis with aminoacylases will be discussed. KEY POINTS: • Enzymatic synthesis of N-acyl-amino acids, biobased surfactants by aminoacylases.
Collapse
Affiliation(s)
- Gerrit Haeger
- Novo Nordisk, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jessika Wirges
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Ulrich Schörken
- Faculty of Applied Natural Sciences, TH Köln University of Applied Sciences - Leverkusen Campus, 51379, Leverkusen, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany.
| |
Collapse
|
3
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
4
|
Abstract
Many potentially toxic electrophilic xenobiotics and some endogenous compounds are detoxified by conversion to the corresponding glutathione S-conjugate, which is metabolized to the N-acetylcysteine S-conjugate (mercapturate) and excreted. Some mercapturate pathway components, however, are toxic. Bioactivation (toxification) may occur when the glutathione S-conjugate (or mercapturate) is converted to a cysteine S-conjugate that undergoes a β-lyase reaction. If the sulfhydryl-containing fragment produced in this reaction is reactive, toxicity may ensue. Some drugs and halogenated workplace/environmental contaminants are bioactivated by this mechanism. On the other hand, cysteine S-conjugate β-lyases occur in nature as a means of generating some biologically useful sulfhydryl-containing compounds.
Collapse
|
5
|
Naconsie M, Lertpanyasampatha M, Viboonjun U, Netrphan S, Kuwano M, Ogasawara N, Narangajavana J. Cassava root membrane proteome reveals activities during storage root maturation. JOURNAL OF PLANT RESEARCH 2016; 129:51-65. [PMID: 26547558 DOI: 10.1007/s10265-015-0761-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 06/05/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.
Collapse
Affiliation(s)
- Maliwan Naconsie
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand
| | - Manassawe Lertpanyasampatha
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand
| | - Unchera Viboonjun
- Deparment of Plant Science, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Supatcharee Netrphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Rangsit, Pathumthani, 10210, Thailand
| | - Masayoshi Kuwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jarunya Narangajavana
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Ryazantsev S, Tischenko V, Nguyen C, Abramov V, Zav'yalov V. Three-dimensional structure of the human myeloma IgG2. PLoS One 2013; 8:e64076. [PMID: 23762236 PMCID: PMC3676413 DOI: 10.1371/journal.pone.0064076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/08/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunoglobulin G, subclass 2 (hIgG2), plays an important role in immunity to bacterial pathogens and in numerous pathological conditions. However, there is a lack of information regarding the three-dimensional (3D) structure of the hIgG2 molecule. We used electron microscopy (EM), differential scanning microcalorimetry (DSC) and fluorescence for structural analysis of the hIgG2. DSC and fluorescence indicated two types of interaction between CH1 domain of Fab (antigen-binding fragment/subunit) and CH2 domain of Fc (complement fixation fragment/subunit) simultaneously present in the sample: close interaction, which increases the thermostability of both, CH1 and CH2 domains, and weak (or no) interaction, which is typical for most IgGs but not hIgG2. Thermodynamics could not determine if both types of interactions are present within a single molecule. To address this question, EM was used. We employed a single-particle reconstruction and negative staining approach to reveal the three-dimensional structure of the hIgG2. A three-dimensional model of hIgG2 was created at 1.78 nm resolution. The hIgG2 is asymmetrical: one Fab subunit is in close proximity to the upper portion of the Fc subunit (CH2 domain) and the other Fab is distant from Fc. The plane of Fab subunits is nearly perpendicular to Fc. EM structure of the hIgG2 is in good agreement with thermodynamic data: a Fab distant from Fc should exhibit a lower melting temperature while a Fab interacting with Fc should exhibit a higher melting temperature. Both types of Fab subunits exist within one molecule resembling an A/B hIgG2 isoform introduced earlier on physicochemical level by Dillon et al. (2008). In such an arrangement, the access to the upper portion of Fc subunit is partially blocked by a Fab subunit. That might explain for instance why hIgG2 mildly activates complement and binds poorly to Fc receptors. Understanding of the three-dimensional structure of the hIgG2 should lead to better design of antibody-based therapeutics.
Collapse
Affiliation(s)
- Sergey Ryazantsev
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | | | |
Collapse
|
7
|
Selivanova OM, Galzitskaya OV. Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein. BIOCHEMISTRY (MOSCOW) 2013; 77:1237-47. [PMID: 23240561 DOI: 10.1134/s0006297912110028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review we analyze the main works on amyloid formation of insulin. There are many environmental factors affecting the formation of insulin amyloid fibrils (and other amyloidogenic proteins) such as: protein concentration, pH, ionic strength of solution, medium composition (anions, cations), presence of denaturants (urea, guanidine chloride) or stabilizers (saccharose), temperature regime, agitation. Since polymorphism is potentially crucial for human diseases and may underlie the natural variability of some amyloid diseases, in this review we focus attention on polymorphism that is an important biophysical difference between native protein folding suggesting correspondence between the amino acid sequence and unique folding state, and formation of amyloid fibrils, when the same amino acid sequence can form amyloid fibrils of different morphology. At present, according to the literature data, we can choose three ways of polymerization of insulin molecules depending on the nucleus size. The first suggests that fibrillogenesis can occur through assembly of insulin monomers. The second suggests that precursors of fibrils are dimers, and the third assumes that precursors of fibrils are oligomers. Additional experimental works and new methods of investigation and assessment of results are needed to clarify the general picture of insulin amyloid formation.
Collapse
Affiliation(s)
- O M Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
8
|
Tsirulnikov K, Abuladze N, Vahi R, Hasnain H, Phillips M, Ryan CM, Atanasov I, Faull KF, Kurtz I, Pushkin A. Aminoacylase 3 binds to and cleaves the N-terminus of the hepatitis C virus core protein. FEBS Lett 2012; 586:3799-804. [PMID: 23010594 DOI: 10.1016/j.febslet.2012.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 01/13/2023]
Abstract
Aminoacylase 3 (AA3) mediates deacetylation of N-acetyl aromatic amino acids and mercapturic acids. Deacetylation of mercapturic acids of exo- and endobiotics are likely involved in their toxicity. AA3 is predominantly expressed in kidney, and to a lesser extent in liver, brain, and blood. AA3 has been recently reported to interact with the hepatitis C virus core protein (HCVCP) in the yeast two-hybrid system. Here we demonstrate that AA3 directly binds to HCVCP (K(d) ~10 μM) that may by implicated in HCV pathogenesis. AA3 also revealed a weak endopeptidase activity towards the N-terminus of HCVCP.
Collapse
Affiliation(s)
- Kirill Tsirulnikov
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Long PM, Stradecki HM, Minturn JE, Wesley UV, Jaworski DM. Differential aminoacylase expression in neuroblastoma. Int J Cancer 2011; 129:1322-30. [PMID: 21128244 DOI: 10.1002/ijc.25798] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/09/2010] [Indexed: 12/18/2022]
Abstract
Neuroblastoma, a cancer of the sympathetic nervous system, is the most common extracranial solid tumor in children. MYCN amplification and increased BDNF/TrkB signaling are features of high-risk tumors; yet, only ˜25% of malignant tumors display these features. Thus, the identification of additional biomarkers and therapeutic targets is essential. As aminoacylase 1 (ACY1), an amino acid deacetylase, is a putative tumor suppressor in small cell lung and renal cell carcinomas, we investigated whether it or the other family members aspartoacylase (ASPA, aminoacylase 2) or aminoacylase 3 (ACY3) could serve a similar function in neuroblastoma. Aminoacylase expression was examined in TrkB-positive, MYCN-amplified (SMS-KCNR and SK-N-BE) and TrkB-negative, non-MYCN-amplified (SK-N-AS, SK-N-SH, SH-SY5Y and SH-EP) neuroblastoma cell lines. Each aminoacylase exhibited distinct spatial localization (i.e., cytosolic ACY1, membrane-associated ASPA and nuclear ACY3). When SK-N-SH cells were treated with neural differentiation agents (e.g., retinoic acid and cAMP) in media containing 10% serum, ACY1 was the only aminoacylase whose expression was upregulated. ASPA was primarily expressed in SH-EP cells of a glial sublineage. ACY3 was more highly expressed in the TrkB-positive, MYCN-amplified lines. All three aminoacylases were expressed in normal human adrenal gland, a common site of neuroblastoma origin, but only ACY1 and ACY3 displayed detectable expression in primary neuroblastoma tumor. Bioinformatics data mining of Kaplan-Meier survival revealed that high ACY3 expression is correlated with poor prognosis, whereas low expression of ACY1 or ASPA is correlated with poor prognosis. These data suggest that aminoacylase expression is dysregulated in neuroblastoma.
Collapse
Affiliation(s)
- Patrick M Long
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-L-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: N(α)-acetyl-L-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates.
Collapse
|
11
|
Abstract
Many potentially toxic electrophiles react with glutathione to form glutathione S-conjugates in reactions catalyzed or enhanced by glutathione S-transferases. The glutathione S-conjugate is sequentially converted to the cysteinylglycine-, cysteine- and N-acetyl-cysteine S-conjugate (mercapturate). The mercapturate is generally more polar and water soluble than the parent electrophile and is readily excreted. Excretion of the mercapturate represents a detoxication mechanism. Some endogenous compounds, such as leukotrienes, prostaglandin (PG) A2, 15-deoxy-Δ12,14-PGJ2, and hydroxynonenal can also be metabolized to mercapturates and excreted. On occasion, however, formation of glutathione S- and cysteine S-conjugates are bioactivation events as the metabolites are mutagenic and/or cytotoxic. When the cysteine S-conjugate contains a strong electron-withdrawing group attached at the sulfur, it may be converted by cysteine S-conjugate β-lyases to pyruvate, ammonium and the original electrophile modified to contain an –SH group. If this modified electrophile is highly reactive then the enzymes of the mercapturate pathway together with the cysteine S-conjugate β-lyases constitute a bioactivation pathway. Some endogenous halogenated environmental contaminants and drugs are bioactivated by this mechanism. Recent studies suggest that coupling of enzymes of the mercapturate pathway to cysteine S-conjugate β-lyases may be more common in nature and more widespread in the metabolism of electrophilic xenobiotics than previously realized.
Collapse
|
12
|
Tsirulnikov K, Abuladze N, Newman D, Ryazantsev S, Wolak T, Magilnick N, Koag MC, Kurtz I, Pushkin A. Mouse aminoacylase 3: a metalloenzyme activated by cobalt and nickel. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:1049-57. [PMID: 19362172 PMCID: PMC2735877 DOI: 10.1016/j.bbapap.2009.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 01/07/2023]
Abstract
Aminoacylase 3 (AA3) deacetylates N-acetyl-aromatic amino acids and mercapturic acids including N-acetyl-1,2-dichlorovinyl-L-cysteine (Ac-DCVC), a metabolite of a xenobiotic trichloroethylene. Previous studies did not demonstrate metal-dependence of AA3 despite a high homology with a Zn(2+)-metalloenzyme aminoacylase 2 (AA2). A 3D model of mouse AA3 was created based on homology with AA2. The model showed a putative metal binding site formed by His21, Glu24 and His116, and Arg63, Asp68, Asn70, Arg71, Glu177 and Tyr287 potentially involved in catalysis/substrate binding. The mutation of each of these residues to alanine inactivated AA3 except Asn70 and Arg71, therefore the corrected 3D model of mouse AA3 was created. Wild type (wt) mouse AA3 expressed in E. coli contained approximately 0.35 zinc atoms per monomer. Incubation with Co(2+) and Ni(2+) activated wt-AA3. In the cobalt-activated AA3 zinc was replaced with cobalt. Metal removal completely inactivated wt-AA3, whereas addition of Zn(2+), Mn(2+) or Fe(2+) restored initial activity. Co(2+) and to a lesser extent Ni(2+) increased activity several times in comparison with intact wt-AA3. Co(2+) drastically increased the rate of deacetylation of Ac-DCVC and significantly increased the toxicity of Ac-DCVC in the HEK293T cells expressing wt-AA3. The results indicate that AA3 is a metalloenzyme significantly activated by Co(2+) and Ni(2+).
Collapse
Affiliation(s)
- Kirill Tsirulnikov
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|