1
|
Zhao X, Yang J, Wang H, Xu H, Zhou Y, Duan L. MicroRNAs in Plants Development and Stress Resistance. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255181 DOI: 10.1111/pce.15546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/22/2025]
Abstract
Plant growth and development are governed by a rigorously timed sequence of ontogenetic programmes. MicroRNAs (miRNAs), a class of short noncoding RNAs, function as master regulators of gene expression by targeting mRNAs for cleavage or direct translational inhibition at the posttranscriptional level in eukaryotes. Numerous miRNA molecules that control significant agronomic properties in plants have been found. On the one hand, miRNAs target transcription factors (TFs) to determine plant structure, such as root development, internode elongation, leaf morphogenesis, sex determination and nutrient transition. On the other hand, miRNAs alter expression levels to adapt to biological and abiotic stresses, including fungi, bacteria, viruses, drought, waterlogging, high temperature, low temperature, salinity, nutrient deficiencies, heavy metals and other abiotic stresses. To fully understand the role of miRNAs in plants, we review the regulatory role of miRNAs in plant development and stress resistance. Beyond that, we propose that the novel miRNA in review can be effectively further studied with artificial miRNA (amiRNA) or short tandem target mimics (STTM) and miRNA delivery in vitro can be used to improve crop yield and agricultural sustainability.
Collapse
Affiliation(s)
- Xi Zhao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jia Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haiyan Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haidong Xu
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
2
|
Akgul B, Aydinoglu F. Evaluation of zma-miR408 and its target genes function on maize (Zea mays) leaf growth response to cold stress by VIGS-based STTM approach. Gene 2025; 938:149161. [PMID: 39674290 DOI: 10.1016/j.gene.2024.149161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
miR408 is a conserved plant miRNA family that is known to regulate genes involved in copper metabolism. However, the function of miR408 in maize leaf growth regulation under cold stress isn't defined. In this study, endogenous maize miR408 was transiently silenced by using virus-induced gene silencing (VIGS) combined with short tandem target mimic (STTM) approaches. To this end, STTM-miR408a/b was designed, synthesized, and applied to maize seedlings. Subsequently, STTM-miR408a/b (STTM) and mock-treated (M) seedlings were subjected to cold stress (C) and the growth response of the seedlings was monitored. Finally, STTM-miR408a/b-treatment successfully downregulated the expression of endogenous mir408a/b and upregulated their putative targets Basic Blue Protein (BBP) and Blue Copper Protein (BCP) antagonistically in the STTM and STTM_C groups compared to M and M_C groups. On the other hand, their putative target Laccase (LAC22) gene was upregulated in the STTM group compared to the M group, but there were no significant expression differences between the M_C and STTM_C groups. The elongation rate of the STTM-miR408a/b-treated second and third leaves was reduced by 10% and 19% resulting in 19% and 11% shortening, respectively. Furthermore, the activity of catalase (CAT) and glutathione reductase (GR) was decreased by 57% in STTM, M_C, and STTM_C, and 29% and 28% in the M_C and STTM_C groups and ascorbate peroxidase (APX) was increased by 15% in M_C and STTM_C groups, respectively. These findings illuminated the maize leaf growth response to cold via regulation of expression of miR408 and its target genes and antioxidant system.
Collapse
Affiliation(s)
- Burak Akgul
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| | - Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
3
|
Puchta-Jasińska M, Bolc P, Pietrusińska-Radzio A, Motor A, Boczkowska M. Small Interfering RNAs as Critical Regulators of Plant Life Process: New Perspectives on Regulating the Transcriptomic Machinery. Int J Mol Sci 2025; 26:1624. [PMID: 40004087 PMCID: PMC11855876 DOI: 10.3390/ijms26041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Small interfering RNAs (siRNAs) are a distinct class of regulatory RNAs in plants and animals. Gene silencing by small interfering RNAs is one of the fundamental mechanisms for regulating gene expression. siRNAs are critical regulators during developmental processes. siRNAs have similar structures and functions to small RNAs but are derived from double-stranded RNA and may be involved in directing DNA methylation of target sequences. siRNAs are a less well-studied class than the miRNA group, and researchers continue to identify new classes of siRNAs that appear at specific developmental stages and in particular tissues, revealing a more complex mode of siRNA action than previously thought. This review characterizes the siRNA classes and their biogenesis process and focuses on presenting their known functions in the regulation of plant development and responses to biotic and abiotic stresses. The review also highlights the exciting potential for future research in this field, proposing methods for detecting plant siRNAs and a bioinformatic pathway for identifying siRNAs and their functions.
Collapse
Affiliation(s)
- Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | | | | | | |
Collapse
|
4
|
Balhara R, Verma D, Kaur R, Singh K. MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:999. [PMID: 39448923 PMCID: PMC11515528 DOI: 10.1186/s12870-024-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs. RESULTS Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress. CONCLUSIONS The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
Collapse
Affiliation(s)
- Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Wang J, Zhao S, Zhang Y, Lu X, Du J, Wang C, Wen W, Guo X, Zhao C. Investigating the genetic basis of maize ear characteristics: a comprehensive genome-wide study utilizing high-throughput phenotypic measurement method and system. FRONTIERS IN PLANT SCIENCE 2023; 14:1248446. [PMID: 37701799 PMCID: PMC10493325 DOI: 10.3389/fpls.2023.1248446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
The morphology of maize ears plays a critical role in the breeding of new varieties and increasing yield. However, the study of traditional ear-related traits alone can no longer meet the requirements of breeding. In this study, 20 ear-related traits, including size, shape, number, and color, were obtained in 407 maize inbred lines at two sites using a high-throughput phenotypic measurement method and system. Significant correlations were found among these traits, particularly the novel trait ear shape (ES), which was correlated with traditional traits: kernel number per row and kernel number per ear. Pairwise comparison tests revealed that the inbred lines of tropical-subtropical were significantly different from other subpopulations in row numbers per ear, kernel numbers per ear, and ear color. A genome-wide association study identified 275, 434, and 362 Single nucleotide polymorphisms (SNPs) for Beijing, Sanya, and best linear unbiased prediction scenarios, respectively, explaining 3.78% to 24.17% of the phenotypic variance. Furthermore, 58 candidate genes with detailed functional descriptions common to more than two scenarios were discovered, with 40 genes being associated with color traits on chromosome 1. After analysis of haplotypes, gene expression, and annotated information, several candidate genes with high reliability were identified, including Zm00001d051328 for ear perimeter and width, zma-MIR159f for ear shape, Zm00001d053080 for kernel width and row number per ear, and Zm00001d048373 for the blue color channel of maize kernels in the red-green-blue color model. This study emphasizes the importance of researching novel phenotypic traits in maize by utilizing high-throughput phenotypic measurements. The identified genetic loci enrich the existing genetic studies related to maize ears.
Collapse
Affiliation(s)
- Jinglu Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shuaihao Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Zhang
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xianju Lu
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianjun Du
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chuanyu Wang
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Weiliang Wen
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xinyu Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunjiang Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Rawal HC, Ali S, Mondal TK. Role of non-coding RNAs against salinity stress in Oryza species: Strategies and challenges in analyzing miRNAs, tRFs and circRNAs. Int J Biol Macromol 2023; 242:125172. [PMID: 37268077 DOI: 10.1016/j.ijbiomac.2023.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Salinity is an imbalanced concentration of mineral salts in the soil or water that causes yield loss in salt-sensitive crops. Rice plant is vulnerable to soil salinity stress at seedling and reproductive stages. Different non-coding RNAs (ncRNAs) post-transcriptionally regulate different sets of genes during different developmental stages under varying salinity tolerance levels. While microRNAs (miRNAs) are well known small endogenous ncRNAs, tRNA-derived RNA fragments (tRFs) are an emerging class of small ncRNAs derived from tRNA genes with a demonstrated regulatory role, like miRNAs, in humans but unexplored in plants. Circular RNA (circRNA), another ncRNA produced by back-splicing events, acts as target mimics by preventing miRNAs from binding with their target mRNAs, thereby reducing the miRNA's action upon its target. Same may hold true between circRNAs and tRFs. Hence, the work done on these ncRNAs was reviewed and no reports were found for circRNAs and tRFs under salinity stress in rice, either at seedling or reproductive stages. Even the reports on miRNAs are restricted to seedling stage only, in spite of severe effects on rice crop production due to salt stress during reproductive stage. Moreover, this review sheds light on strategies to predict and analyze these ncRNAs in an effective manner.
Collapse
Affiliation(s)
- Hukam Chand Rawal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India; School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.
| |
Collapse
|
7
|
Chen Y, Yang W, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice ( Oryza rufipogon Griff.) Responding to Salt Stress. Int J Mol Sci 2023; 24:ijms24044069. [PMID: 36835475 PMCID: PMC9960954 DOI: 10.3390/ijms24044069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Rice (Oryza sativa) is a staple food for more than half of the world's population, and its production is critical for global food security. Moreover, rice yield decreases when exposed to abiotic stresses, such as salinity, which is one of the most detrimental factors for rice production. According to recent trends, as global temperatures continue to rise due to climate change, more rice fields may become saltier. Dongxiang wild rice (Oryza rufipogon Griff., DXWR) is a progenitor of cultivated rice and has a high tolerance to salt stress, making it useful for studying the regulatory mechanisms of salt stress tolerance. However, the regulatory mechanism of miRNA-mediated salt stress response in DXWR remains unclear. In this study, miRNA sequencing was performed to identify miRNAs and their putative target genes in response to salt stress in order to better understand the roles of miRNAs in DXWR salt stress tolerance. A total of 874 known and 476 novel miRNAs were identified, and the expression levels of 164 miRNAs were found to be significantly altered under salt stress. The stem-loop quantitative real-time PCR (qRT-PCR) expression levels of randomly selected miRNAs were largely consistent with the miRNA sequencing results, suggesting that the sequencing results were reliable. The gene ontology (GO) analysis indicated that the predicted target genes of salt-responsive miRNAs were involved in diverse biological pathways of stress tolerance. This study contributes to our understanding of DXWR salt tolerance mechanisms regulated by miRNAs and may ultimately improve salt tolerance in cultivated rice breeding using genetic methods in the future.
Collapse
Affiliation(s)
- Yong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Wanling Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Rifang Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yaling Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- Correspondence: (J.X.); (F.Z.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (J.X.); (F.Z.)
| |
Collapse
|
8
|
Gómez-Martín C, Zhou H, Medina JM, Aparicio-Puerta E, Hackenberg M, Shi B. Comprehensive, integrative genomic analysis of microRNA expression profiles in different tissues of two wheat cultivars with different traits. Funct Integr Genomics 2022; 23:15. [PMID: 36562829 DOI: 10.1007/s10142-022-00920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Wheat is one of the most important food sources on Earth. MicroRNAs (miRNA) play important roles in wheat productivity. To identify wheat miRNAs, we constructed and sequenced sRNA libraries from leaves and roots of two wheat cultivars (RAC875 and Kukri) with many different traits. Given that available miRNA wheat complement in the plant-specific database PmiREN ( https://pmiren.com ) does not include root tissues and root-associated miRNAs might thus be missing, we performed first the prediction of novel miRNAs using the sRNAbench tool. We found a total of 150 putatively novel miRNA genes with expression of both arms from 289 unique mature sequences and nearly 30% of all miRNA reads in roots corresponded to novel miRNAs. In contrast, this figure in leaves dropped to under 3%, confirming the undersampling of roots in the complement of known miRNAs. By using 120 publicly available wheat datasets, 598 Zea mays small RNA libraries, 64 plant species genomes, wheat degradome library, and functional enrichment analysis, a subset of novel miRNAs were confirmed as bona-fide miRNAs. Of the total 605 miRNAs identified in this study inclusive of 316 known miRNAs, 528 miRNAs were shared by both cultivars, 429 miRNAs were shared by both root tissues and 329 miRNAs were shared by both leaf tissues. In addition, 32 miRNAs were specific to Kukri while 45 miRNAs were specific to RAC875. These miRNAs had diverse functions, such as regulation of gene transcription, protein translation, energy metabolism, and cell cycle progression. Our data provide a genome-wide miRNA expression profile in these two wheat cultivars and help functional studies of wheat genomics.
Collapse
Affiliation(s)
- Cristina Gómez-Martín
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hui Zhou
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - José Maria Medina
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain.,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Ernesto Aparicio-Puerta
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain.,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University of Granada, 18071, Granada, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071, Granada, Spain
| | - Michael Hackenberg
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain. .,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University of Granada, 18071, Granada, Spain. .,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071, Granada, Spain.
| | - Bujun Shi
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
9
|
Reprogramming of Fundamental miRNA and Gene Expression during the Barley- Piriformospora indica Interaction. J Fungi (Basel) 2022; 9:jof9010024. [PMID: 36675845 PMCID: PMC9865155 DOI: 10.3390/jof9010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The interactions between plants and microorganisms, which are widely present in the microbial-dominated rhizosphere, have been studied. This association is highly beneficial to the organisms involved, as plants benefit soil microorganisms by providing them with metabolites, while microorganisms promote plant growth and development by promoting nutrient uptake and/or protecting the plant from biotic and abiotic stresses. Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of a wide range of host plants and establishes various benefits for the plants. In this work, an interaction between barley and the P. indica was established to elucidate microRNA (miRNA)-based regulatory changes in miRNA profiles and gene expression that occurred during the symbiosis. Growth promotion and vigorous root development were confirmed in barley colonized by P. indica. The genome-wide expression profile analysis of miRNAs in barley root showed that 7,798,928, 6,418,039 and 7,136,192 clean reads were obtained from the libraries of mock, 3 dai and 7 dai roots, respectively. Sequencing of the barley genome yielded in 81 novel miRNA and 450 differently expressed genes (DEGs). Additionally, 11, 24, 6 differentially expressed microRNAs (DEMs) in barley were found in the three comparison groups, including 3 dai vs. mock, 7 dai vs. mock and 7 dai vs. 3 dai, respectively. The predicted target genes of these miRNAs are mainly involved in transcription, cell division, auxin signal perception and transduction, photosynthesis and hormone stimulus. Transcriptome analysis of P. indica identified 667 and 594 differentially expressed genes (DEG) at 3 dai and 7 dai. Annotation and GO (Gene Ontology) analysis indicated that the DEGs with the greatest changes were concentrated in oxidoreductase activity, ion transmembrane transporter activity. It implies that reprogramming of fundamental miRNA and gene expression occurs both in barley and P. indica. Analysis of global changes in miRNA profiles of barley colonized with P. indica revealed that several putative endogenous barley miRNAs expressed upon colonization belonging to known micro RNA families involved in growth and developmental regulation.
Collapse
|
10
|
ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo K-Tuple Nucleotide Compositional Features. Int J Mol Sci 2022; 23:ijms23031612. [PMID: 35163534 PMCID: PMC8835813 DOI: 10.3390/ijms23031612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational method for prediction of miRNAs associated with abiotic stresses. Three types of datasets were used for prediction, i.e., miRNA, Pre-miRNA, and Pre-miRNA + miRNA. The pseudo K-tuple nucleotide compositional features were generated for each sequence to transform the sequence data into numeric feature vectors. Support vector machine (SVM) was employed for prediction. The area under receiver operating characteristics curve (auROC) of 70.21, 69.71, 77.94 and area under precision-recall curve (auPRC) of 69.96, 65.64, 77.32 percentages were obtained for miRNA, Pre-miRNA, and Pre-miRNA + miRNA datasets, respectively. Overall prediction accuracies for the independent test set were 62.33, 64.85, 69.21 percentages, respectively, for the three datasets. The SVM also achieved higher accuracy than other learning methods such as random forest, extreme gradient boosting, and adaptive boosting. To implement our method with ease, an online prediction server “ASRmiRNA” has been developed. The proposed approach is believed to supplement the existing effort for identification of abiotic stress-responsive miRNAs and Pre-miRNAs.
Collapse
|
11
|
RNA-seq for revealing the function of the transcriptome. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Jafari M, Shiran B, Rabiei G, Ravash R, Sayed Tabatabaei BE, Martínez-Gómez P. Identification and verification of seed development related miRNAs in kernel almond by small RNA sequencing and qPCR. PLoS One 2021; 16:e0260492. [PMID: 34851991 PMCID: PMC8635354 DOI: 10.1371/journal.pone.0260492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Many studies have investigated the role of miRNAs on the yield of various plants, but so far, no report is available on the identification and role of miRNAs in fruit and seed development of almonds. In this study, preliminary analysis by high-throughput sequencing of short RNAs of kernels from the crosses between almond cultivars 'Sefid' × 'Mamaee' (with small and large kernels, respectively) and 'Sefid' × 'P. orientalis' (with small kernels) showed that the expressions of several miRNAs such as Pdu-miR395a-3p, Pdu-miR8123-5p, Pdu-miR482f, Pdu-miR6285, and Pdu-miR396a were significantly different. These miRNAs targeted genes encoding different proteins such as NYFB-3, SPX1, PGSIP3 (GUX2), GH3.9, and BEN1. The result of RT-qPCR revealed that the expression of these genes showed significant differences between the crosses and developmental stages of the seeds, suggesting that these genes might be involved in controlling kernel size because the presence of these miRNAs had a negative effect on their target genes. Pollen source can influence kernel size by affecting hormonal signaling and metabolic pathways through related miRNAs, a phenomenon known as xenia.
Collapse
Affiliation(s)
- Marjan Jafari
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Gholamreza Rabiei
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Roudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
13
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
14
|
Silva WTAF, Otto SP, Immler S. Evolution of plasticity in production and transgenerational inheritance of small RNAs under dynamic environmental conditions. PLoS Genet 2021; 17:e1009581. [PMID: 34038409 PMCID: PMC8186813 DOI: 10.1371/journal.pgen.1009581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 06/08/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
In a changing environment, small RNAs (sRNAs) play an important role in the post-transcriptional regulation of gene expression and can vary in abundance depending on the conditions experienced by an individual (phenotypic plasticity) and its parents (non-genetic inheritance). Many sRNAs are unusual in that they can be produced in two ways, either using genomic DNA as the template (primary sRNAs) or existing sRNAs as the template (secondary sRNAs). Thus, organisms can evolve rapid plastic responses to their current environment by adjusting the amplification rate of sRNA templates. sRNA levels can also be transmitted transgenerationally by the direct transfer of either sRNAs or the proteins involved in amplification. Theory is needed to describe the selective forces acting on sRNA levels, accounting for the dual nature of sRNAs as regulatory elements and templates for amplification and for the potential to transmit sRNAs and their amplification agents to offspring. Here, we develop a model to study the dynamics of sRNA production and inheritance in a fluctuating environment. We tested the selective advantage of mutants capable of sRNA-mediated phenotypic plasticity within resident populations with fixed levels of sRNA transcription. Even when the resident was allowed to evolve an optimal constant rate of sRNA production, plastic amplification rates capable of responding to environmental conditions were favored. Mechanisms allowing sRNA transcripts or amplification agents to be inherited were favored primarily when parents and offspring face similar environments and when selection acts before the optimal level of sRNA can be reached within the organism. Our study provides a clear set of testable predictions for the evolution of sRNA-related mechanisms of phenotypic plasticity and transgenerational inheritance.
Collapse
Affiliation(s)
| | - Sarah P. Otto
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Simone Immler
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
15
|
Al Rawi N, Elmabrouk N, Abu Kou R, Mkadmi S, Rizvi Z, Hamdoon Z. The role of differentially expressed salivary microRNA in oral squamous cell carcinoma. A systematic review. Arch Oral Biol 2021; 125:105108. [PMID: 33756383 DOI: 10.1016/j.archoralbio.2021.105108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study aims to systematically review the role of differentially expressed microRNA (miRNA) in saliva as potential biomarkers in oral cancer patients. DESIGN PubMed, Scopus and EBSCO online data bases were used as well as manual searching to extract studies from January 2008 up to October 2020. RESULTS A total of 14 studies that met the eligibility criteria were included. All selected studies were of case-control type. A total of 25 differentially expressed miRNAs were identified. Thirteen of these miRNAs (Let-7a, miR 27, miR 34, miR 92, miR 124, miR 125a, miR 136, miR139 miR 145, miR 146a, miR 200a, miR 205 and miR 375) were downregulated and other twelve (miR 9, miR 21, miR 31, miR 122, miR 134, miR 184, miR 191, miR 196a, miR 196b, miR 412, miR 512 and miR 8392) were upregulated. Four miRNAs were evaluated in more than one study (miR21, miR31, miR125 and miR 200). CONCLUSION According to these results, salivary miRNA can aid in diagnosis and prognosis of oral squamous cell carcinoma (OSCC). However, controlled clinical trials with a large sample size are required to validate the differentially expressed miRNAs of the present review.
Collapse
Affiliation(s)
- Natheer Al Rawi
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates.
| | - Neibal Elmabrouk
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Rawan Abu Kou
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Sara Mkadmi
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Zuha Rizvi
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Zaid Hamdoon
- Dept Oral & Craniofacial Health Science, College of Dental Medicine, University of Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Sega P, Kruszka K, Bielewicz D, Karlowski W, Nuc P, Szweykowska-Kulinska Z, Pacak A. Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses. BMC Genomics 2021; 22:165. [PMID: 33750301 PMCID: PMC7941915 DOI: 10.1186/s12864-021-07481-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/25/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are 20-30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. RESULTS In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, Bonferroni adjusted p-value < 0.05) are represented by 15 molecules in shoot and 13 in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13% from the average of the unique small RNA expressed under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01%). More than 80% of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3'-5' exonuclease). This suggests that most small RNAs may be generated upon nucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools. CONCLUSIONS Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.
Collapse
Affiliation(s)
- Pawel Sega
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
17
|
Çakır Ö, Arıkan B, Karpuz B, Turgut-Kara N. Expression analysis of miRNAs and their targets related to salt stress in Solanum lycopersicum H-2274. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1870871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Özgür Çakır
- Department of Molecular Biology and Genetics, Science Faculty, İstanbul University, Istanbul, Turkey
| | - Burcu Arıkan
- Department of Molecular Biology and Genetics, Science Faculty, İstanbul University, Istanbul, Turkey
| | - Burcu Karpuz
- Programme of Molecular Biology and Genetics, Institute of Science, Istanbul University, Istanbul, Turkey
| | - Neslihan Turgut-Kara
- Department of Molecular Biology and Genetics, Science Faculty, İstanbul University, Istanbul, Turkey
| |
Collapse
|
18
|
Genome-Wide Identification of Copper Stress-Regulated and Novel MicroRNAs in Mulberry Leaf. Biochem Genet 2021; 59:589-603. [PMID: 33389282 DOI: 10.1007/s10528-020-10021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/28/2020] [Indexed: 01/15/2023]
Abstract
Copper (Cu) is an essential trace element for plant growth and development. It is widely involved in respiration, photosynthesis, pollen formation, and other biological processes. Therefore, low or excessive copper causes damage to plants. Mulberry is an essential perennial economic tree. At present, research on the abiotic stress responses in mulberry is mainly focused on the identification of resistant germplasm resources and cloning of resistant genes. In contrast, studies on the resistance function of microRNAs and the regulatory gene responses to stress are rare. In this study, small RNA libraries (control and copper stressed) were constructed from mulberry leaf RNA. High-throughput sequencing and screening were employed, a total of 65 known miRNAs and 78 predicted novel mature miRNAs were identified, among which 40 miRNAs were differentially expressed under copper stress. Subsequently, expression patterns were verified for 14 miRNAs by real-time fluorescence quantitative PCR (qPCR). The target genes of miRNAs were validated by 5' RLM-RACE. Our results provide the bases for further study on the molecular mechanism of copper stress regulation in mulberry.
Collapse
|
19
|
Hajiahmadi Z, Abedi A, Wei H, Sun W, Ruan H, Zhuge Q, Movahedi A. Identification, evolution, expression, and docking studies of fatty acid desaturase genes in wheat (Triticum aestivum L.). BMC Genomics 2020; 21:778. [PMID: 33167859 PMCID: PMC7653692 DOI: 10.1186/s12864-020-07199-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Backgrounds Fatty acid desaturases (FADs) introduce a double bond into the fatty acids acyl chain resulting in unsaturated fatty acids that have essential roles in plant development and response to biotic and abiotic stresses. Wheat germ oil, one of the important by-products of wheat, can be a good alternative for edible oils with clinical advantages due to the high amount of unsaturated fatty acids. Therefore, we performed a genome-wide analysis of the wheat FAD gene family (TaFADs). Results 68 FAD genes were identified from the wheat genome. Based on the phylogenetic analysis, wheat FADs clustered into five subfamilies, including FAB2, FAD2/FAD6, FAD4, DES/SLD, and FAD3/FAD7/FAD8. The TaFADs were distributed on chromosomes 2A-7B with 0 to 10 introns. The Ka/Ks ratio was less than one for most of the duplicated pair genes revealed that the function of the genes had been maintained during the evolution. Several cis-acting elements related to hormones and stresses in the TaFADs promoters indicated the role of these genes in plant development and responses to environmental stresses. Likewise, 72 SSRs and 91 miRNAs in 36 and 47 TaFADs have been identified. According to RNA-seq data analysis, the highest expression in all developmental stages and tissues was related to TaFAB2.5, TaFAB2.12, TaFAB2.15, TaFAB2.17, TaFAB2.20, TaFAD2.1, TaFAD2.6, and TaFAD2.8 genes while the highest expression in response to temperature stress was related to TaFAD2.6, TaFAD2.8, TaFAB2.15, TaFAB2.17, and TaFAB2.20. Furthermore, docking simulations revealed several residues in the active site of TaFAD2.6 and TaFAD2.8 in close contact with the docked oleic acid that could be useful in future site-directed mutagenesis studies to increase the catalytic efficiency of them and subsequently improve agronomic quality and tolerance of wheat against environmental stresses. Conclusions This study provides comprehensive information that can lead to the detection of candidate genes for wheat genetic modification. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07199-1.
Collapse
Affiliation(s)
- Zahra Hajiahmadi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, 4199613776, Iran
| | - Amin Abedi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, 4199613776, Iran
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Honghua Ruan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
20
|
Fu F, Girma G, Mengiste T. Global mRNA and microRNA expression dynamics in response to anthracnose infection in sorghum. BMC Genomics 2020; 21:760. [PMID: 33143636 PMCID: PMC7641857 DOI: 10.1186/s12864-020-07138-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Anthracnose is a damaging disease of sorghum caused by the fungal pathogen Colletotrichum sublineolum. Genome-wide mRNA and microRNA (miRNA) profiles of resistant and susceptible sorghum genotypes were studied to understand components of immune responses, and fungal induced miRNA and target gene networks. RESULTS A total of 18 mRNA and 12 miRNA libraries from resistant and susceptible sorghum lines were sequenced prior to and after inoculation with C. sublineolum. Significant differences in transcriptomes of the susceptible and resistant genotypes were observed with dispersion distance and hierarchical cluster tree analyses. Of the total 33,032 genes predicted in the sorghum genome, 19,593 were induced by C. sublineolum, and 15,512 were differentially expressed (DEGs) between the two genotypes. The resistant line was marked by significant reprogramming of the transcriptome at 24 h post inoculation (hpi), and a decrease at 48 hpi, whereas the susceptible line displayed continued changes in gene expression concordant with elevated fungal growth in the susceptible genotype. DEGs encode proteins implicated in diverse functions including photosynthesis, synthesis of tetrapyrrole, carbohydrate and secondary metabolism, immune signaling, and chitin binding. Genes encoding immune receptors, MAPKs, pentatricopeptide repeat proteins, and WRKY transcription factors were induced in the resistant genotype. In a parallel miRNA profiling, the susceptible line displayed greater number of differentially expressed miRNAs than the resistant line indicative of a widespread suppression of gene expression. Interestingly, we found 75 miRNAs, including 36 novel miRNAs, which were differentially expressed in response to fungal inoculation. The expression of 50 miRNAs was significantly different between resistant and susceptible lines. Subsequently, for 35 differentially expressed miRNAs, the corresponding 149 target genes were identified. Expression of 56 target genes were significantly altered after inoculation, showing inverse expression with the corresponding miRNAs. CONCLUSIONS We provide insights into genome wide dynamics of mRNA and miRNA profiles, biological and cellular processes underlying host responses to fungal infection in sorghum. Resistance is correlated with early transcriptional reprogramming of genes in various pathways. Fungal induced genes, miRNAs and their targets with a potential function in host responses to anthracnose were identified, opening avenues for genetic dissection of resistance mechanisms.
Collapse
Affiliation(s)
- Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
- Present address: Agriculture and Agri-Food Canada, Plant Gene Resources of Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
21
|
Shan T, Fu R, Xie Y, Chen Q, Wang Y, Li Z, Song X, Li P, Wang B. Regulatory Mechanism of Maize (Zea mays L.) miR164 in Salt Stress Response. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420070133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Gao X, Zhang Q, Zhao Y, Yang J, He H, Jia G. The lre-miR159a-LrGAMYB pathway mediates resistance to grey mould infection in Lilium regale. MOLECULAR PLANT PATHOLOGY 2020; 21:749-760. [PMID: 32319186 PMCID: PMC7214475 DOI: 10.1111/mpp.12923] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 05/04/2023]
Abstract
Grey mould is one of the most determinative factors of lily growth and plays a major role in limiting lily productivity. MicroRNA159 (miR159) is a highly conserved microRNA in plants, and participates in the regulation of plant development and stress responses. Our previous studies revealed that lre-miR159a participates in the response of Lilium regale to Botrytis elliptica according to deep sequencing analyses; however, the response mechanism remains unknown. Here, lre-miR159a and its target LrGAMYB gene were isolated from L. regale. Transgenic Arabidopsis overexpressing lre-MIR159a exhibited larger leaves and smaller necrotic spots on inoculation with Botrytis than those of wild-type and overexpressing LrGAMYB plants. The lre-MIR159a overexpression also led to repressed expression of two targets of miR159, AtMYB33 and AtMYB65, and enhanced accumulation of hormone-related genes, including AtPR1, AtPR2, AtNPR1, AtPDF1.2, and AtLOX for both the jasmonic acid and salicylic acid pathways. Moreover, lower levels of H2 O2 and O2- were observed in lre-MIR159a transgenic Arabidopsis, which reduced the damage from reactive oxygen species accumulation. Taken together, these results indicate that lre-miR159a positively regulates resistance to grey mould by repressing the expression of its target LrGAMYB gene and activating a defence response.
Collapse
Affiliation(s)
- Xue Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological EnvironmentBeijing Forestry UniversityBeijingPR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of EducationBeijing Forestry UniversityBeijingPR China
| | - Qian Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological EnvironmentBeijing Forestry UniversityBeijingPR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of EducationBeijing Forestry UniversityBeijingPR China
| | - Yu‐Qian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological EnvironmentBeijing Forestry UniversityBeijingPR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of EducationBeijing Forestry UniversityBeijingPR China
| | - Jie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological EnvironmentBeijing Forestry UniversityBeijingPR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of EducationBeijing Forestry UniversityBeijingPR China
| | - Heng‐Bin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological EnvironmentBeijing Forestry UniversityBeijingPR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of EducationBeijing Forestry UniversityBeijingPR China
| | - Gui‐Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological EnvironmentBeijing Forestry UniversityBeijingPR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of EducationBeijing Forestry UniversityBeijingPR China
| |
Collapse
|
23
|
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 2020; 15:e0230958. [PMID: 32294092 PMCID: PMC7159242 DOI: 10.1371/journal.pone.0230958] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Sushant Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
24
|
Li T, Wang YH, Liu JX, Feng K, Xu ZS, Xiong AS. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit Rev Biotechnol 2019; 39:680-692. [DOI: 10.1080/07388551.2019.1608153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Ramesh SV, Govindasamy V, Rajesh MK, Sabana AA, Praveen S. Stress-responsive miRNAome of Glycine max (L.) Merrill: molecular insights and way forward. PLANTA 2019; 249:1267-1284. [PMID: 30798358 DOI: 10.1007/s00425-019-03114-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Analysis of stress-associated miRNAs of Glycine max (L.) Merrill reveals wider ramifications of small RNA-mediated (conserved and legume-specific miRNAs) gene regulatory foot prints in molecular adaptive responses. MicroRNAs (miRNAs) are indispensable components of gene regulatory mechanism of plants. Soybean is a crop of immense commercial potential grown worldwide for its edible oil and soy meal. Intensive research efforts, using the next generation sequencing and bioinformatics techniques, have led to the identification and characterization of numerous small RNAs, especially microRNAs (miRNAs), in soybean. Furthermore, studies have unequivocally demonstrated the significance of miRNAs during the developmental processes and various stresses in soybean. In this review, we summarize the current state of understanding of miRNA-based abiotic and biotic stress responses in soybean. In addition, the molecular insights gained from the stress-related soybean miRNAs have been compared to the miRNAs of other crops, especially legumes, and the core commonalities have been highlighted, though differences among them were not ignored. Nature of response of soybean-derived conserved miRNAs during various stresses was also analyzed to gain deeper insights regarding sRNAome-based defense responses. This review further provides way forward in legume small RNA transcriptomics based on the adaptive responses of soybean and other legume-derived miRNAs.
Collapse
Affiliation(s)
- S V Ramesh
- ICAR-Indian Institute of Soybean Research (ICAR-IISR), Indore, Madhya Pradesh, 452001, India.
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India.
| | - V Govindasamy
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| | - M K Rajesh
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - A A Sabana
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - Shelly Praveen
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| |
Collapse
|
26
|
Jiu S, Leng X, Haider MS, Dong T, Guan L, Xie Z, Li X, Shangguan L, Fang J. Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180735. [PMID: 30800341 PMCID: PMC6366190 DOI: 10.1098/rsos.180735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/24/2018] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play important roles in plant growth, development and stress responses. With more copper (Cu) and copper containing compounds used as bactericides and fungicides in plants, Cu stress has become one of the serious environmental problems that affect plant growth and development. In order to uncover the hidden response mechanisms of Cu stress, two small RNA libraries were constructed from Cu-treated and water-treated (Control) leaves of 'Summer Black' grapevine. Following high-throughput sequencing and filtering, a total of 158 known and 98 putative novel miRNAs were identified in the two libraries. Among these, 100 known and 47 novel miRNAs were identified as differentially expressed under Cu stress. Subsequently, the expression patterns of nine Cu-responsive miRNAs were validated by quantitative real-time PCR (qRT-PCR). There existed some consistency in expression levels of Cu-responsive miRNAs between high throughput sequencing and qRT-PCR assays. The targets prediction of miRNAs indicates that miRNA may regulate some transcription factors, including AP2, SBP, NAC, MYB and ARF during Cu stress. The target genes for two known and two novel miRNAs showed specific cleavage sites at the 10th and/or 11th nucleotide from the 5'-end of the miRNA corresponding to their miRNA complementary sequences. The findings will lay the foundation for exploring the role of the regulation of miRNAs in response to Cu stress and provide valuable gene information for breeding some Cu-tolerant grapevine cultivars.
Collapse
Affiliation(s)
- Songtao Jiu
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Le Guan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhenqiang Xie
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaopeng Li
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lingfei Shangguan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
27
|
Cao J, Gulyás Z, Kalapos B, Boldizsár Á, Liu X, Pál M, Yao Y, Galiba G, Kocsy G. Identification of a redox-dependent regulatory network of miRNAs and their targets in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:85-99. [PMID: 30260414 DOI: 10.1093/jxb/ery339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species and antioxidants have an important role in the regulation of plant growth and development under both optimal and stress conditions. In this study, we investigate a possible redox control of miRNAs in wheat (Triticum aestivum ssp. aestivum). Treatment of seedlings with 10 mM H2O2 via the roots for 24 h resulted in decreased glutathione content, increased half-cell reduction potential of the glutathione disulphide/glutathione redox pair, and greater ascorbate peroxidase activity compared to the control plants. These changes were accompanied by alterations in the miRNA transcript profile, with 70 miRNAs being identified with at least 1.5-fold difference in their expression between control and treated (0, 3, 6 h) seedlings. Degradome sequencing identified 86 target genes of these miRNAs, and 6722 possible additional target genes were identified using bioinformatics tools. The H2O2-responsiveness of 1647 target genes over 24 h of treatment was also confirmed by transcriptome analysis, and they were mainly found to be related to the control of redox processes, transcription, and protein phosphorylation and degradation. In a time-course experiment (0-24 h of treatment) a correlation was found between the levels of glutathione, other antioxidants, and the transcript levels of the H2O2-responsive miRNAs and their target mRNAs. This relationship together with bioinformatics modelling of the regulatory network indicated glutathione-related redox control of miRNAs and their targets, which allows the adjustment of the metabolism to changing environmental conditions.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
28
|
Chen K, Yu Y, Sun K, Xiong H, Yu C, Chen P, Chen J, Gao G, Zhu A. The miRNAome of ramie (Boehmeria nivea L.): identification, expression, and potential roles of novel microRNAs in regulation of cadmium stress response. BMC PLANT BIOLOGY 2018; 18:369. [PMID: 30577815 PMCID: PMC6303851 DOI: 10.1186/s12870-018-1561-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/22/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie (Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation. RESULTS Four small RNA libraries of Cd-stressed and non-stressed leaves and roots of ramie were constructed. Using small RNA-sequencing, 73 novel miRNAs were identified. Genome-wide expression analysis revealed that a set of miRNAs was differentially regulated in response to Cd stress. In silico target prediction identified 426 potential miRNA targets that include several uptake or transport factors for heavy metal ions. The reliability of small RNA sequencing and the relationship between the expression levels of miRNAs and their target genes were confirmed by quantitative PCR (q-PCR). We showed that the expression patterns of miRNAs obtained by q-PCR were consistent with those obtained from small RNA sequencing. Moreover, we demonstrated that the expression of six randomly selected target genes was inversely related to that of their corresponding miRNAs, indicating that the miRNAs regulate Cd stress response in ramie. CONCLUSIONS This study enriches the number of Cd-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in ramie during Cd stress.
Collapse
Affiliation(s)
- Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yongting Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Kai Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Heping Xiong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
29
|
Li Y, Wang W, Wang T, Wouters MA, Yin Y, Jiao Z, Ma L, Zhang F. Regulation through MicroRNAs in Response to Low-Energy N + Ion Irradiation in Oryza sativa. Radiat Res 2018; 191:189-200. [PMID: 30499385 DOI: 10.1667/rr15125.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MicroRNAs (miRNAs) are a non-coding regulatory RNAs that play significant roles in plant growth and development, especially in the stress response. Low-energy ion radiation, a type of environmental stress, can cause multiple biological effects. To understand the roles of miRNAs in response to low-energy N+ ion radiation in Oryza sativa, high-throughput sequencing of small RNAs was carried out to detect the expression of miRNAs in the shoots of the rice after 2 × 1017 N+/cm2 irradiation. The differentially expressed 28 known miRNAs were identified, 17 of these identified miRNAs were validated by real-time quantitative fluorescent PCR (q-PCR), including 9 up-regulated miRNAs (miR1320-3p, miR1320-5p, miR156b-3p, miR156c-5p, miR156c-3p/g-3p, miR1561-5p, miR398b and miR6250) and 8 down-regulated miRNAs (miR156a/e/i, miR156k, miR160f-5p, miR166j-5p, miR1846e and miR399d). In addition, 45 novel radiationresponsive miRNAs were predicted, and 8 of them were verified by q-PCR. The target genes of radiation-responsive miRNAs were predicted and gene function enrichment analysis was performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of 9 targets of 4 known miRNA families (miR156, miR399, miR1320 and miR398) and 2 targets of 2 novel miRNAs were quantified by q-PCR, and a strong negative regulation relation between miRNAs and their targets were observed. Those targets including SQUAMOSA promoterbinding-like protein (SPL) genes, copper/zinc superoxide dismutase (Cu/Zn-SOD), copper chaperone for SOD (CCS1) and electron transporter/ heat-shock protein binding protein (HSP), which are involved in growth and defense against various stresses, especially associated with reactive oxygen species (ROS) scavenging. This work provides important information for understanding the ROS generation and elimination mechanisms closely related to miRNAs in rice seedlings after low-energy N+ radiation exposure.
Collapse
Affiliation(s)
- Yalin Li
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| | - Weidong Wang
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| | - Tao Wang
- b School of Nursing, Zhengzhou University, Zhengzhou 450000, China
| | - Merridee A Wouters
- c Olivia Newton John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Bundoora 3086, Australia
| | - Yue Yin
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| | - Zhen Jiao
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China.,d Zhengzhou Research Base State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Lixia Ma
- e School of Statistics, Henan University of Finance and Economics, Zhengzhou 450000, China
| | - Fengqiu Zhang
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
30
|
Shukla PS, Borza T, Critchley AT, Hiltz D, Norrie J, Prithiviraj B. Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS One 2018; 13:e0206221. [PMID: 30372454 PMCID: PMC6205635 DOI: 10.1371/journal.pone.0206221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/09/2018] [Indexed: 11/25/2022] Open
Abstract
Ascophyllum nodosum extract (ANE) contains bioactive compounds that improve the growth of Arabidopsis in experimentally-induced saline conditions; however, the molecular mechanisms through which ANE elicits tolerance to salinity remain largely unexplored. Micro RNAs (miRNAs) are key regulators of gene expression, playing crucial roles in plant growth, development, and stress tolerance. Next generation sequencing of miRNAs from leaves of control Arabidopsis and from plants subjected to three treatments (ANE, NaCl and ANE+NaCl) was used to identify ANE-responsive miRNA in the absence and presence of saline conditions. Differential gene expression analysis revealed that ANE had a strong effect on miRNAs expression in both conditions. In the presence of salinity, ANE tended to reduce the up-regulation or the down-regulation trend induced caused by NaCl in miRNAs such as ath-miR396a-5p, ath-miR399, ath-miR2111b and ath-miR827. To further uncover the effects of ANE, the expression of several target genes of a number of ANE-responsive miRNAs was analyzed by qPCR. NaCl, but not ANE, down-regulated miR396a-5p, which negatively regulated the expression of AtGRF7 leading to a higher expression of AtDREB2a and AtRD29 in the presence of ANE+NaCl, as compared to ANE alone. ANE+NaCl initially reduced and then enhanced the expression of ath-miR169g-5p, while the expression of the target genes AtNFYA1 and ATNFYA2, known to be involved in the salinity tolerance mechanism, was increased as compared to ANE or to NaCl treatments. ANE and ANE+NaCl modified the expression of ath-miR399, ath-miR827, ath-miR2111b, and their target genes AtUBC24, AtWAK2, AtSYG1 and At3g27150, suggesting a role of ANE in phosphate homeostasis. In vivo and in vitro experiments confirmed the improved growth of Arabidopsis in presence of ANE, in saline conditions and in phosphate-deprived medium, further substantiating the influence of ANE on a variety of essential physiological processes in Arabidopsis including salinity tolerance and phosphate uptake.
Collapse
Affiliation(s)
- Pushp Sheel Shukla
- Marine Bio-products Research Laboratory, Dalhousie University, Department of Plant, Food and Environmental Sciences, Truro, Nova Scotia, Canada
| | - Tudor Borza
- Marine Bio-products Research Laboratory, Dalhousie University, Department of Plant, Food and Environmental Sciences, Truro, Nova Scotia, Canada
| | - Alan T. Critchley
- Research and Development, Acadian Seaplants Limited, Dartmouth, Nova Scotia, Canada
| | - David Hiltz
- Research and Development, Acadian Seaplants Limited, Dartmouth, Nova Scotia, Canada
| | - Jeff Norrie
- Research and Development, Acadian Seaplants Limited, Dartmouth, Nova Scotia, Canada
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Dalhousie University, Department of Plant, Food and Environmental Sciences, Truro, Nova Scotia, Canada
| |
Collapse
|
31
|
Neeragunda Shivaraj Y, Barbara P, Gugi B, Vicré-Gibouin M, Driouich A, Ramasandra Govind S, Devaraja A, Kambalagere Y. Perspectives on Structural, Physiological, Cellular, and Molecular Responses to Desiccation in Resurrection Plants. SCIENTIFICA 2018; 2018:9464592. [PMID: 30046509 PMCID: PMC6036803 DOI: 10.1155/2018/9464592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 05/21/2023]
Abstract
Resurrection plants possess a unique ability to counteract desiccation stress. Desiccation tolerance (DT) is a very complex multigenic and multifactorial process comprising a combination of physiological, morphological, cellular, genomic, transcriptomic, proteomic, and metabolic processes. Modification in the sugar composition of the hemicellulosic fraction of the cell wall is detected during dehydration. An important change is a decrease of glucose in the hemicellulosic fraction during dehydration that can reflect a modification of the xyloglucan structure. The expansins might also be involved in cell wall flexibility during drying and disrupt hydrogen bonds between polymers during rehydration of the cell wall. Cleavages by xyloglucan-modifying enzymes release the tightly bound xyloglucan-cellulose network, thus increasing cell wall flexibility required for cell wall folding upon desiccation. Changes in hydroxyproline-rich glycoproteins (HRGPs) such as arabinogalactan proteins (AGPs) are also observed during desiccation and rehydration processes. It has also been observed that significant alterations in the process of photosynthesis and photosystem (PS) II activity along with changes in the antioxidant enzyme system also increased the cell wall and membrane fluidity resulting in DT. Similarly, recent data show a major role of ABA, LEA proteins, and small regulatory RNA in regulating DT responses. Current progress in "-omic" technologies has enabled quantitative monitoring of the plethora of biological molecules in a high throughput routine, making it possible to compare their levels between desiccation-sensitive and DT species. In this review, we present a comprehensive overview of structural, physiological, cellular, molecular, and global responses involved in desiccation tolerance.
Collapse
Affiliation(s)
- Yathisha Neeragunda Shivaraj
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Plancot Barbara
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Bruno Gugi
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Sharatchandra Ramasandra Govind
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Akash Devaraja
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Yogendra Kambalagere
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| |
Collapse
|
32
|
Koter MD, Święcicka M, Matuszkiewicz M, Pacak A, Derebecka N, Filipecki M. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 268:18-29. [PMID: 29362080 DOI: 10.1016/j.plantsci.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 05/20/2023]
Abstract
Cyst-forming plant-parasitic nematodes are pests threatening many crops. By means of their secretions cyst nematodes induce the developmental and metabolic reprogramming of host cells that lead to the formation of a syncytium, which is the sole food source for growing nematodes. The in depth micro RNA (miRNA) dynamics in the syncytia induced by Globodera rostochiensis in tomato roots was studied. The miRNAomes were obtained from syncytia covering the early and intermediate developmental stages, and were the subject of differential expression analysis. The expression of 1235 miRNAs was monitored. The fold change (log2FC) ranged from -7.36 to 8.38, indicating that this transcriptome fraction was very variable. Moreover, we showed that the DE (differentially expressed) miRNAs do not fully overlap between the selected time points, suggesting infection stage specific regulation by miRNA. The correctness of RNA-seq expression profiling was confirmed by qRT-PCR (quantitative Real Time Polymerase Chain Reaction) for seven miRNA species. Down- and up-regulated miRNA species, including their isomiRs, were further used to identify their potential targets. Among them there are a large number of transcription factors linked to different aspects of plant development belonging to gene families, such as APETALA2 (AP2), SQUAMOSA (MADS-box), MYB, GRAS, and AUXIN RESPONSE FACTOR (ARF). The substantial portion of potential target genes belong to the NB-LRR and RLK (RECEPTOR-LIKE KINASE) families, indicating the involvement of miRNA mediated regulation in defense responses. We also collected the evidence for target cleavage in the case of 29 miRNAs using one of three alternative methods: 5' RACE (5' Rapid Amplification of cDNA Ends), a search of tasiRNA within our datasets, and the meta-analysis of tomato degradomes in the GEO (Gene Expression Omnibus) database. Eight target transcripts showed a negative correlation with their respective miRNAs at two or three time points. These results indicate a large regulatory potential for miRNAs in tuning the development and defense responses.
Collapse
Affiliation(s)
- Marek D Koter
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
33
|
|
34
|
Yang J, Zhang TY, Liao QS, He L, Li J, Zhang HM, Chen X, Li J, Yang J, Li JB, Chen JP. Chinese Wheat Mosaic Virus-Induced Gene Silencing in Monocots and Dicots at Low Temperature. FRONTIERS IN PLANT SCIENCE 2018; 9:1627. [PMID: 30487803 PMCID: PMC6247046 DOI: 10.3389/fpls.2018.01627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/18/2018] [Indexed: 05/21/2023]
Abstract
Virus-induced gene silencing (VIGS) is an important tool for functional genomics studies in plants. With this method, it is possible to target most endogenous genes and downregulate the messenger RNA (mRNA) in a sequence-specific manner. Chinese wheat mosaic virus (CWMV) has a bipartite, single-strand positive RNA genome, and can infect both wheat and Nicotiana benthamiana, and the optimal temperature for systemic infection in plants is 17°C. To assess the potential of the virus as a vector for gene silencing at low temperature, a fragment of the N. benthamiana or wheat phytoene desaturase (PDS) gene was expressed from a modified CWMV RNA2 clone and the resulting photo bleaching in infected plants was used as a reporter for silencing. Downregulation of PDS mRNA was also measured by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR). In experiments using fragments of PDS ranging from 500 to 1500 nucleotides, insert length influenced the stability and the efficiency of VIGS. The CWMV induced silencing system was also used to suppress miR165/166 and miR3134a through expression of miRNA target mimics. The relative expression levels of mature miR165/166 and miR3134a decreased whereas the transcript levels of their target genes increased. Interestingly, we also found the CWMV-induced silencing system was more efficient compare with the vector based on Barley stripe mosaic virus (BSMV) or Foxtail mosaic virus (FoMV) in wheat or the vector based on TRV in N. benthamiana at 17°C. In summary, the CWMV vector is effective in silencing endogenous genes and miRNAs at 17°C, thereby providing a powerful tool for gene function analysis in both N. benthamiana and wheat at low temperature.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tian-Ye Zhang
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Sheng Liao
- College of Life Science, Zhejiang SCI-Tech University, Hangzhou, China
| | - Long He
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Juang Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, Ministry of Agriculture, Beijing, China
- Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Heng-Mu Zhang, Jian-Ping Chen,
| | - Xuan Chen
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, Ministry of Agriculture, Beijing, China
- Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jin Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, Ministry of Agriculture, Beijing, China
- Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jin-Bang Li
- Nanyang Academy of Agricultural Sciences, Nanyang, China
| | - Jian-Ping Chen
- Institute of Plant Virology, Ningbo University, Ningbo, China
- *Correspondence: Heng-Mu Zhang, Jian-Ping Chen,
| |
Collapse
|
35
|
Shin SJ, Lee JH, Kwon HB. Genome-wide identification and characterization of drought responsive MicroRNAs in Solanum tuberosum L. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0586-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Identification and characterization of durum wheat microRNAs in leaf and root tissues. Funct Integr Genomics 2017; 17:583-598. [PMID: 28321518 DOI: 10.1007/s10142-017-0551-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 10/19/2022]
Abstract
MicroRNAs are a class of post-transcriptional regulators of plant developmental and physiological processes and responses to environmental stresses. Here, we present the study regarding the annotation and characterization of MIR genes conducted in durum wheat. We characterized the miRNAome of leaf and root tissues at tillering stage under two environmental conditions: irrigated with 100% (control) and 55% of evapotranspiration (early water stress). In total, 90 microRNAs were identified, of which 32 were classified as putative novel and species-specific miRNAs. In addition, seven microRNA homeologous groups were identified in each of the two genomes of the tetraploid durum wheat. Differential expression analysis highlighted a total of 45 microRNAs significantly differentially regulated in the pairwise comparisons leaf versus root. The miRNA families, miR530, miR395, miR393, miR5168, miR396 and miR166, miR171, miR319, and miR167, were the most expressed in leaves in comparison to roots. Putative microRNA targets were predicted for both five and three prime sequences derived from the stem-loop of the MIR gene. Gene ontology analysis showed significant overrepresented gene categories in microRNA targets belonging to transcription factors, phenylpropanoids, oxydases, and lipid binding-protein. This work represents one of the first genome wide characterization of MIR genes in durum wheat, identifying leaf and root tissue-specific microRNAs. This genomic identification of microRNAs together with the analysis of their expression profiles is a well-accepted starting point leading to a better comprehension of the role of MIR genes in the genus Triticum.
Collapse
|
37
|
Shao MR, Kumar Kenchanmane Raju S, Laurie JD, Sanchez R, Mackenzie SA. Stress-responsive pathways and small RNA changes distinguish variable developmental phenotypes caused by MSH1 loss. BMC PLANT BIOLOGY 2017; 17:47. [PMID: 28219335 PMCID: PMC5319189 DOI: 10.1186/s12870-017-0996-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/08/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Proper regulation of nuclear-encoded, organelle-targeted genes is crucial for plastid and mitochondrial function. Among these genes, MutS Homolog 1 (MSH1) is notable for generating an assortment of mutant phenotypes with varying degrees of penetrance and pleiotropy. Stronger phenotypes have been connected to stress tolerance and epigenetic changes, and in Arabidopsis T-DNA mutants, two generations of homozygosity with the msh1 insertion are required before severe phenotypes begin to emerge. These observations prompted us to examine how msh1 mutants contrast according to generation and phenotype by profiling their respective transcriptomes and small RNA populations. RESULTS Using RNA-seq, we analyze pathways that are associated with MSH1 loss, including abiotic stresses such as cold response, pathogen defense and immune response, salicylic acid, MAPK signaling, and circadian rhythm. Subtle redox and environment-responsive changes also begin in the first generation, in the absence of strong phenotypes. Using small RNA-seq we further identify miRNA changes, and uncover siRNA trends that indicate modifications at the chromatin organization level. In all cases, the magnitude of changes among protein-coding genes, transposable elements, and small RNAs increases according to generation and phenotypic severity. CONCLUSION Loss of MSH1 is sufficient to cause large-scale regulatory changes in pathways that have been individually linked to one another, but rarely described all together within a single mutant background. This study enforces the recognition of organelles as critical integrators of both internal and external cues, and highlights the relationship between organelle and nuclear regulation in fundamental aspects of plant development and stress signaling. Our findings also encourage further investigation into potential connections between organelle state and genome regulation vis-á-vis small RNA feedback.
Collapse
Affiliation(s)
- Mon-Ray Shao
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | | | - John D. Laurie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Robersy Sanchez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Sally A. Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|
38
|
Kumar S, Verma S, Trivedi PK. Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update. FRONTIERS IN PLANT SCIENCE 2017; 8:285. [PMID: 28344582 PMCID: PMC5344913 DOI: 10.3389/fpls.2017.00285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/16/2017] [Indexed: 05/14/2023]
Abstract
Plants require several essential mineral nutrients for their growth and development. These nutrients are required to maintain physiological processes and structural integrity in plants. The root architecture has evolved to absorb nutrients from soil and transport them to other parts of the plant. Nutrient deficiency affects several physiological and biological processes in plants and leads to reduction in crop productivity and yield. To compensate this adversity, plants have developed adaptive mechanisms to enhance the acquisition, conservation, and mobilization of these nutrients under deficient or adverse conditions. In addition, plants have evolved an intricate nexus of complex signaling cascades, which help in nutrient sensing and uptake as well as to maintain nutrient homeostasis. In recent years, small non-coding RNAs such as micro RNAs (miRNAs) and endogenous small interfering RNAs have emerged as important component in regulating plant stress responses. A set of these small RNAs (sRNAs) have been implicated in regulating various processes involved in nutrient uptake, assimilation, and deficiency. In response to phosphorus (P) and sulphur (S) deficiencies, role of sRNAs, miR395 and miR399, have been identified to be instrumental; however, many more miRNAs might be involved in regulating the plant response to these nutrient stresses. These sRNAs modulate expression of target genes in response to P and S deficiencies and regulate their uptake and utilization for proper growth and development of the plant. This review summarizes the current understanding of uptake, sensing, and signaling of P and S and highlights the regulatory role of sRNAs in adaptive responses to these nutrient stresses in plants.
Collapse
Affiliation(s)
- Smita Kumar
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Centre of Bio-Medical ResearchSanjay Gandhi Post-Graduate Institute of Medical Sciences Lucknow, India
- *Correspondence: Prabodh K. Trivedi, ; Smita Kumar,
| | - Saurabh Verma
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Prabodh K. Trivedi
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- *Correspondence: Prabodh K. Trivedi, ; Smita Kumar,
| |
Collapse
|
39
|
Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, Feng Y, Song X, Li P, Wang B. Identification of Salt Tolerance-related microRNAs and Their Targets in Maize ( Zea mays L.) Using High-throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:864. [PMID: 28603532 PMCID: PMC5445174 DOI: 10.3389/fpls.2017.00864] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/09/2017] [Indexed: 05/23/2023]
Abstract
To identify the known and novel microRNAs (miRNAs) and their targets that are involved in the response and adaptation of maize (Zea mays) to salt stress, miRNAs and their targets were identified by a combined analysis of the deep sequencing of small RNAs (sRNA) and degradome libraries. The identities were confirmed by a quantitative expression analysis with over 100 million raw reads of sRNA and degradome sequences. A total of 1040 previously known miRNAs were identified from four maize libraries, with 762 and 726 miRNAs derived from leaves and roots, respectively, and 448 miRNAs that were common between the leaves and roots. A total of 37 potential new miRNAs were selected based on the same criteria in response to salt stress. In addition to known miR167 and miR164 species, novel putative miR167 and miR164 species were also identified. Deep sequencing of miRNAs and the degradome [with quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses of their targets] showed that more than one species of novel miRNA may play key roles in the response to salinity in maize. Furthermore, the interaction between miRNAs and their targets may play various roles in different parts of maize in response to salinity.
Collapse
Affiliation(s)
- Rong Fu
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Mi Zhang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Yinchuan Zhao
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Xuechuan He
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Chenyun Ding
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Shuangkuai Wang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Yan Feng
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTai’an, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| | - Ping Li
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| | - Baohua Wang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| |
Collapse
|
40
|
Zhao F, Wang C, Han J, Zhu X, Li X, Wang X, Fang J. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level. Funct Integr Genomics 2016; 17:213-235. [PMID: 27696076 DOI: 10.1007/s10142-016-0514-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.
Collapse
Affiliation(s)
- Fanggui Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
41
|
Hackenberg M, Rueda A, Gustafson P, Langridge P, Shi BJ. Generation of different sizes and classes of small RNAs in barley is locus, chromosome and/or cultivar-dependent. BMC Genomics 2016; 17:735. [PMID: 27633252 PMCID: PMC5025612 DOI: 10.1186/s12864-016-3023-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Various small RNA (sRNA) sizes and varieties have been identified, but their relationship as well as relationship with their origins and allocations have not been well understood or investigated. Results By comparing sRNAs generated from two barley cultivars, Golden Promise (GP) and Pallas, we identified that the generation of different sizes and types of sRNAs in barley was locus-, chromosome- and/or cultivar-dependent. 20-nt sRNAs mainly comprising miRNAs and chloroplast-derived sRNAs were significantly over-expressed in Pallas vs. GP on chromosomes 3H and 6H. MiRNAs-enriched 21-nt sRNAs were significantly over-expressed in Pallas vs. GP only on chromosome 4H. On chromosome 5H this size of sRNAs was significantly under-expressed in Pallas, so were 22-nt sRNAs mainly comprising miRNAs and repeat-derived sRNAs. 24-nt sRNAs mostly derived from repeats were evenly distributed in all chromosomes and expressed similarly between GP and Pallas. Unlike other sizes of sRNAs, 24-nt sRNAs were little conserved in other plant species. Abundant sRNAs were mostly generated from 3’ terminal regions of chromosome 1H and 5’ terminal regions of chromosome 5H. Over-expressed miRNAs in GP vs. Pallas primarily function in stress responses and iron-binding. Conclusions Our study indicates that 23−24-nt sRNAs may be linked to repressive chromatin modifications and function in genome stability while 20−21-nt sRNAs may be important for the cultivar specificity. This study provides a novel insight into the mechanism of sRNA expression and function in barley. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3023-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Hackenberg
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain
| | - Antonio Rueda
- Genomics and Bioinformatics Platform of Andalusia (GBPA), Edificio INSUR, Calle Albert Einstein, 41092, Seville, Spain
| | - Perry Gustafson
- USDA-ARS, 206 Curtis Hall, University of Missouri, Columbia, MO, 65211-7020, USA
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bu-Jun Shi
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
42
|
Lian S, Cho WK, Kim SM, Choi H, Kim KH. Time-Course Small RNA Profiling Reveals Rice miRNAs and Their Target Genes in Response to Rice Stripe Virus Infection. PLoS One 2016; 11:e0162319. [PMID: 27626631 PMCID: PMC5023111 DOI: 10.1371/journal.pone.0162319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
It has been known that many microRNAs (miRNAs) are involved in the regulation for the plant development and defense mechanism by regulating the expression of the target gene. Several previous studies has demonstrated functional roles of miRNAs in antiviral defense mechanisms. In this study, we employed high-throughput sequencing technology to identify rice miRNAs upon rice stripe virus (RSV) infection at three different time points. Six libraries from mock and RSV-infected samples were subjected for small RNA sequencing. Bioinformatic analyses revealed 374 known miRNAs and 19 novel miRNAs. Expression of most identified miRNAs was not dramatically changed at 3 days post infection (dpi) and 7 dpi by RSV infection. However, many numbers of miRNAs were up-regulated in mock and RSV-infected samples at 15 dpi by RSV infection. Moreover, expression profiles of identified miRNAs revealed that only few numbers of miRNAs were strongly regulated by RSV infection. In addition, 15 resistance genes were targets of six miRNAs suggesting that those identified miRNAs and 15 NBS-LRR resistance genes might be involved in RSV infection. Taken together, our results provide novel insight into the dynamic expression profiles of rice miRNAs upon RSV infection and clues for the understanding of the regulatory roles of miRNAs via time-course.
Collapse
Affiliation(s)
- Sen Lian
- College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Min Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
43
|
Wu FY, Tang CY, Guo YM, Yang MK, Yang RW, Lu GH, Yang YH. Comparison of miRNAs and Their Targets in Seed Development between Two Maize Inbred Lines by High-Throughput Sequencing and Degradome Analysis. PLoS One 2016; 11:e0159810. [PMID: 27463682 PMCID: PMC4962988 DOI: 10.1371/journal.pone.0159810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/10/2016] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in plant growth, development, and response to environment. For identifying and comparing miRNAs and their targets in seed development between two maize inbred lines (i.e. PH6WC and PH4CV), two sRNAs and two degradome libraries were constructed. Through high-throughput sequencing and miRNA identification, 55 conserved and 24 novel unique miRNA sequences were identified in two sRNA libraries; moreover, through degradome sequencing and analysis, 137 target transcripts corresponding to 38 unique miRNA sequences were identified in two degradome libraries. Subsequently, 16 significantly differentially expressed miRNA sequences were verified by qRT-PCR, in which 9 verified sequences obviously target 30 transcripts mainly involved with regulation in flowering and development in embryo. Therefore, the results suggested that some miRNAs (e.g. miR156, miR171, miR396 and miR444) related reproductive development might differentially express in seed development between the PH6WC and PH4CV maize inbred lines in this present study.
Collapse
Affiliation(s)
- Feng-Yao Wu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-Min Guo
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Min-Kai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
44
|
Xie J, Fan L. Nicotine biosynthesis is regulated by two more layers: Small and long non-protein-coding RNAs. PLANT SIGNALING & BEHAVIOR 2016; 11:e1184811. [PMID: 27172239 PMCID: PMC4973799 DOI: 10.1080/15592324.2016.1184811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 05/08/2023]
Abstract
In recent years, many small RNAs and long non-protein-coding RNAs (lncRNAs) have been identified and characterized. They have been proved to play essential regulatory roles in gene expression in both primary and secondary metabolisms. In nature, many plants produce alkaloids. However, there are only few reports on the involvement of non-coding RNAs in alkaloid biosynthesis. Nicotine is major alkaloid in tobacco plants. Its biosynthesis and regulation in tobacco (Nicotiana tabacum) have been well studied; and major structural genes involved in the nicotine biosynthesis and transcriptional regulators related to its biosynthesis have been identified and characterized. In our recent studies, we identified a microRNA (nta-miRX27) and also a lncRNA (nta-eTMX27) as an endogenous target mimicry (eTM) in tobacco targeting the nicotine biosynthesis key gene QPT2 encoding quinolinate phosphoribosyltransferase (QPT) and thereby regulating the nicotine content. Their regulatory pattern leads us to conclude that nicotine biosynthesis is regulated by 2 more layers besides previously known mechanisms. Future study on the relationship between the non-coding RNAs and transcription factors in nicotine biosynthesis was discussed in this article.
Collapse
Affiliation(s)
- Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Longjiang Fan
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Staroske N, Conrad U, Kumlehn J, Hensel G, Radchuk R, Erban A, Kopka J, Weschke W, Weber H. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2675-87. [PMID: 26951372 PMCID: PMC4861016 DOI: 10.1093/jxb/erw102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.
Collapse
Affiliation(s)
- Nicole Staroske
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Udo Conrad
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Götz Hensel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Ruslana Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Winfriede Weschke
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Hans Weber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| |
Collapse
|
46
|
Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hemerly AS. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. PLANT MOLECULAR BIOLOGY 2016; 90:561-74. [PMID: 26821805 DOI: 10.1007/s11103-016-0435-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/07/2016] [Indexed: 05/02/2023]
Abstract
A wide range of rhizosphere diazotrophic bacteria are able to establish beneficial associations with plants, being able to associate to root surfaces or even endophytically colonize plant tissues. In common, both associative and endophytic types of colonization can result in beneficial outcomes to the plant leading to plant growth promotion, as well as increase in tolerance against biotic and abiotic stresses. An intriguing question in such associations is how plant cell surface perceives signals from other living organisms, thus sorting pathogens from beneficial ones, to transduce this information and activate proper responses that will finally culminate in plant adaptations to optimize their growth rates. This review focuses on the recent advances in the understanding of genetic and epigenetic controls of plant-bacteria signaling and recognition during beneficial associations with associative and endophytic diazotrophic bacteria. Finally, we propose that "soil-rhizosphere-rhizoplane-endophytes-plant" could be considered as a single coordinated unit with dynamic components that integrate the plant with the environment to generate adaptive responses in plants to improve growth. The homeostasis of the whole system should recruit different levels of regulation, and recognition between the parties in a given environment might be one of the crucial factors coordinating these adaptive plant responses.
Collapse
Affiliation(s)
- T L G Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - H G F Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - F Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - P C G Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil
| | - A S Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. L-29ss, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-599, Brazil.
| |
Collapse
|
47
|
Song JB, Gao S, Wang Y, Li BW, Zhang YL, Yang ZM. miR394 and its target gene LCR are involved in cold stress response in Arabidopsis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2015.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie F, Zhang B. A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep 2016; 6:19736. [PMID: 26813144 PMCID: PMC4728436 DOI: 10.1038/srep19736] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022] Open
Abstract
The present study functionally identified a new microRNA (microRNA ovual line 5, miRNVL5) with its target gene GhCHR from cotton (Gossypium hirsutum). The sequence of miRNVL5 precursor is 104 nt long, with a well developed secondary structure. GhCHR contains two DC1 and three PHD Cys/His-rich domains, suggesting that GhCHR encodes a zinc-finger domain-containing transcription factor. miRNVL5 and GhCHR express at various developmental stages of cotton. Under salt stress (50-400 mM NaCl), miRNVL5 expression was repressed, with concomitant high expression of GhCHR in cotton seedlings. Ectopic expression of GhCHR in Arabidopsis conferred salt stress tolerance by reducing Na(+) accumulation in plants and improving primary root growth and biomass. Interestingly, Arabidopsis constitutively expressing miRNVL5 showed hypersensitivity to salt stress. A GhCHR orthorlous gene At2g44380 from Arabidopsis that can be cleaved by miRNVL5 was identified by degradome sequencing, but no confidential miRNVL5 homologs in Arabidopsis have been identified. Microarray analysis of miRNVL5 transgenic Arabidopsis showed six downstream genes (CBF1, CBF2, CBF3, ERF4, AT3G22920, and AT3G49200), which were induced by salt stress in wild-type but repressed in miRNVL5-expressing Arabidopsis. These results indicate that miRNVL5 is involved in regulation of plant response to salt stress.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hou Qing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhao Sheng Zhou
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.,Department of Plant Science, College of Life Science, Henan Agricultural University, Henan 450002, China
| | - Di Sun
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.,Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, TA 77843, USA
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
49
|
Margaria P, Miozzi L, Ciuffo M, Rosa C, Axtell MJ, Pappu HR, Turina M. Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Res 2016; 211:38-45. [PMID: 26432447 DOI: 10.1016/j.virusres.2015.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022]
Abstract
Viral small RNAs (vsRNAs) are one of the key elements involved in RNA silencing-based defense against viruses in plants. We analyzed the vsRNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot virus (PolRSV) (Tospovirus, Bunyaviridae). VsRNAs were abundant in both hosts, but a different size profile was observed, with an abundance peak at 21 in N. benthamiana and at 22 nt in tomato. VsRNAs mapping to the PolRSV L genomic segment were under-represented in both hosts, while S and M segments were differentially and highly targeted in N. benthamiana and tomato, respectively. Differences in preferential targeting of single ORFs were observed, with over-representation of NSs ORF-derived reads in N. benthamiana. Intergenic regions (IGRs)-mapping vsRNAs were under-represented, while enrichment of vsRNAs reads mapping to the NSs positive sense strand was observed in both hosts. Comparison with a previous study on tomato spotted wilt virus (TSWV) under the same experimental conditions, showed that the relative accumulation of PolRSV-specific and endogenous sRNAs was similar to the one observed for silencing suppressor-deficient TSWV strains, suggesting possible different properties of PolRSV NSs silencing suppressor compared to that of TSWV.
Collapse
Affiliation(s)
- Paolo Margaria
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy; Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Miozzi
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Marina Ciuffo
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Department of Biology, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, PO Box 646430, Pullman, WA 99164, USA
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy.
| |
Collapse
|
50
|
Duan H, Lu X, Lian C, An Y, Xia X, Yin W. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica. FRONTIERS IN PLANT SCIENCE 2016; 7:1184. [PMID: 27582743 PMCID: PMC4988358 DOI: 10.3389/fpls.2016.01184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/22/2016] [Indexed: 05/20/2023]
Abstract
MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA(*) sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries.
Collapse
|