1
|
Sanzhaeva U, Xu X, Guggilapu P, Tseytlin M, Khramtsov VV, Driesschaert B. Imaging of Enzyme Activity by Electron Paramagnetic Resonance: Concept and Experiment Using a Paramagnetic Substrate of Alkaline Phosphatase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Urikhan Sanzhaeva
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Xuan Xu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Lane Department of Computer Science and Electrical Engineering; West Virginia University; Morgantown WV 26505 USA
| | - Priyaankadevi Guggilapu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
| | - Mark Tseytlin
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Valery V. Khramtsov
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Benoit Driesschaert
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
- Current address: Department of Pharmaceutical Sciences; West Virginia University; School of Pharmacy; Morgantown WV 26506 USA
| |
Collapse
|
2
|
Sanzhaeva U, Xu X, Guggilapu P, Tseytlin M, Khramtsov VV, Driesschaert B. Imaging of Enzyme Activity by Electron Paramagnetic Resonance: Concept and Experiment Using a Paramagnetic Substrate of Alkaline Phosphatase. Angew Chem Int Ed Engl 2018; 57:11701-11705. [PMID: 30003653 PMCID: PMC6327950 DOI: 10.1002/anie.201806851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/18/2022]
Abstract
Enzyme activities are well established biomarkers of many pathologies. Imaging enzyme activity directly in vivo may help to gain insight into the pathogenesis of various diseases but remains extremely challenging. In this communication, we report the use of EPR imaging (EPRI) in combination with a specially designed paramagnetic enzymatic substrate to map alkaline phosphatase activity with a high selectivity, thereby demonstrating the potential of EPRI to map enzyme activity.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Xuan Xu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Priyaankadevi Guggilapu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
| | - Mark Tseytlin
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
- Current address: Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
| |
Collapse
|
3
|
Teixeira LGD, Malavolta L, Bersanetti PA, Schreier S, Carmona AK, Nakaie CR. Paramagnetic bradykinin analogues as substrates for angiotensin I-converting enzyme: Pharmacological and conformation studies. Bioorg Chem 2016; 69:159-166. [PMID: 27837711 DOI: 10.1016/j.bioorg.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 11/27/2022]
Abstract
This study uses EPR, CD, and fluorescence spectroscopy to examine the structure of bradykinin (BK) analogues attaching the paramagnetic amino acid-type Toac (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 3, 7, and 9. The data were correlated with the potencies in muscle contractile experiments and the substrate properties towards the angiotensin I-converting enzyme (ACE). A study of the biological activities in guinea pig ileum and rat uterus indicated that only Toac0-BK partially maintained its native biological potency among the tested peptides. This and its counterpart, Toac3-BK, maintained the ability to act as ACE substrates. These results indicate that peptides bearing Toac probe far from the ACE cleavage sites were more susceptible to hydrolysis by ACE. The results also emphasize the existence of a finer control for BK-receptor interaction than for BK binding at the catalytic site of this metallodipetidase. The kinetic kcat/Km values decreased from 202.7 to 38.9μM-1min-1 for BK and Toac3-BK, respectively. EPR, CD, and fluorescence experiments reveal a direct relationship between the structure and activity of these paramagnetic peptides. In contrast to the turn-folded structures of the Toac-internally labeled peptides, more extended conformations were displayed by N- or C-terminally Toac-labeled analogues. Lastly, this work supports the feasibility of monitoring the progress of the ACE-hydrolytic process of Toac-attached peptides by examining time-dependent EPR spectral variations.
Collapse
Affiliation(s)
- Luis Gustavo Deus Teixeira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo, School of Medical Sciences, 01221-020 Sao Paulo, SP, Brazil
| | | | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, Universidade de Sao Paulo, 05513-970 Sao Paulo, SP, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil.
| |
Collapse
|
4
|
Teixeira LGD, Malavolta L, Bersanetti PA, Schreier S, Carmona AK, Nakaie CR. Conformational Properties of Seven Toac-Labeled Angiotensin I Analogues Correlate with Their Muscle Contraction Activity and Their Ability to Act as ACE Substrates. PLoS One 2015; 10:e0136608. [PMID: 26317625 PMCID: PMC4552746 DOI: 10.1371/journal.pone.0136608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the other spectroscopic techniques. Lastly, we demonstrated the feasibility of monitoring the progress of ACE-catalyzed hydrolysis of TOAC-labeled peptides by following time-dependent changes in their EPR spectra.
Collapse
Affiliation(s)
- Luis Gustavo D Teixeira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Sao Paulo, Brazil
| | - Patrícia A Bersanetti
- Department of Health and Informatics, Universidade Federal de São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects. Biophys Rev 2012; 4:45-66. [PMID: 22347893 PMCID: PMC3271205 DOI: 10.1007/s12551-011-0064-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023] Open
Abstract
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.
Collapse
|
6
|
Vieira RFF, Casallanovo F, Marín N, Paiva ACM, Schreier S, Nakaie CR. Conformational properties of angiotensin II and its active and inactive TOAC-labeled analogs in the presence of micelles. Electron paramagnetic resonance, fluorescence, and circular dichroism studies. Biopolymers 2009; 92:525-37. [DOI: 10.1002/bip.21295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Nardi DT, Casare MS, Teixeira LGD, Nascimento N, Nakaie CR. Effect of gamma radiation on the structural and biological properties of Angiotensin II. Int J Radiat Biol 2009; 84:937-44. [DOI: 10.1080/09553000802460164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Lindfors HE, de Koning PE, Drijfhout JW, Venezia B, Ubbink M. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. JOURNAL OF BIOMOLECULAR NMR 2008; 41:157-67. [PMID: 18560762 PMCID: PMC2480485 DOI: 10.1007/s10858-008-9248-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 05/13/2008] [Indexed: 05/15/2023]
Abstract
Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints.
Collapse
Affiliation(s)
- Hanna E. Lindfors
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Peter E. de Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Brigida Venezia
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Functional assessment of angiotensin II and bradykinin analogues containing the paramagnetic amino acid TOAC. Int Immunopharmacol 2008; 8:293-9. [DOI: 10.1016/j.intimp.2007.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 11/18/2022]
|
10
|
|