1
|
Safdar A, He F, Shen D, Hamid MI, Khan SA, Tahir HAS, Dou D. PcLRR-RK3, an LRR receptor kinase is required for growth and in-planta infection processes in Phytophthora capsici. Mycology 2024; 15:471-484. [PMID: 39247892 PMCID: PMC11376283 DOI: 10.1080/21501203.2024.2305720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/10/2024] [Indexed: 09/10/2024] Open
Abstract
Receptor protein kinases (RPKs) critically provide the basic infrastructure to sense, perceive, and conduct the signalling events at the cell surface of organisms. The importance of LRR-RLKs has been well studied in plants, but much less information has been reported in oomycetes. In this work, we have silenced the PcLRR-RK3 and characterised its functional importance in Phytophthora capsici. PcLRR-RK3 was predicted to encode signal peptides, leucine-rich repeats, transmembrane, and kinase domains. PcLRR-RK3-silenced transformants showed impaired colony growth, decreased deformed sporangia, and reduced zoospores count. The mycelium of silenced transformants did not penetrate within the host tissues and showed defects in the pathogenicity of P. capsici. Interestingly, gene silencing also weakens the ability of zoospores germination and penetration into host tissues and fails to produce necrotic lesions. Furthermore, PcLRR-RK3 localisation was found to be the plasma membrane of the cell. Altogether, our results revealed that PcLRR-RK3 was required for the regulation of vegetative growth, zoospores penetration, and establishment into host leaf tissues.
Collapse
Affiliation(s)
- Asma Safdar
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Feng He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Imran Hamid
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sajid Aleem Khan
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Abdul Samad Tahir
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Germain H, Joly DL, Mireault C, Plourde MB, Letanneur C, Stewart D, Morency M, Petre B, Duplessis S, Séguin A. Infection assays in Arabidopsis reveal candidate effectors from the poplar rust fungus that promote susceptibility to bacteria and oomycete pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:191-200. [PMID: 27868319 PMCID: PMC6638046 DOI: 10.1111/mpp.12514] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 05/03/2023]
Abstract
Fungi of the Pucciniales order cause rust diseases which, altogether, affect thousands of plant species worldwide and pose a major threat to several crops. How rust effectors-virulence proteins delivered into infected tissues to modulate host functions-contribute to pathogen virulence remains poorly understood. Melampsora larici-populina is a devastating and widespread rust pathogen of poplar, and its genome encodes 1184 identified small secreted proteins that could potentially act as effectors. Here, following specific criteria, we selected 16 candidate effector proteins and characterized their virulence activities and subcellular localizations in the leaf cells of Arabidopsis thaliana. Infection assays using bacterial (Pseudomonas syringae) and oomycete (Hyaloperonospora arabidopsidis) pathogens revealed subsets of candidate effectors that enhanced or decreased pathogen leaf colonization. Confocal imaging of green fluorescent protein-tagged candidate effectors constitutively expressed in stable transgenic plants revealed that some protein fusions specifically accumulate in nuclei, chloroplasts, plasmodesmata and punctate cytosolic structures. Altogether, our analysis suggests that rust fungal candidate effectors target distinct cellular components in host cells to promote parasitic growth.
Collapse
Affiliation(s)
- Hugo Germain
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQCCanadaG9A 5H7
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaSainte‐FoyQCCanadaG1V 4C7
| | - David L. Joly
- Département de BiologieUniversité de MonctonMonctonNBCanadaE1A 3E9
| | - Caroline Mireault
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQCCanadaG9A 5H7
| | - Mélodie B. Plourde
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQCCanadaG9A 5H7
| | - Claire Letanneur
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQCCanadaG9A 5H7
| | - Donald Stewart
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaSainte‐FoyQCCanadaG1V 4C7
| | - Marie‐Josée Morency
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaSainte‐FoyQCCanadaG1V 4C7
| | - Benjamin Petre
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
- Centre INRA Nancy LorraineINRA, UMR 1136 Interactions Arbres/Microorganismes, INRA/Université de LorraineChampenoux54280France
| | - Sébastien Duplessis
- Centre INRA Nancy LorraineINRA, UMR 1136 Interactions Arbres/Microorganismes, INRA/Université de LorraineChampenoux54280France
| | - Armand Séguin
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaSainte‐FoyQCCanadaG1V 4C7
| |
Collapse
|
3
|
Popescu SC, Brauer EK, Dimlioglu G, Popescu GV. Insights into the Structure, Function, and Ion-Mediated Signaling Pathways Transduced by Plant Integrin-Linked Kinases. FRONTIERS IN PLANT SCIENCE 2017; 8:376. [PMID: 28421082 PMCID: PMC5376563 DOI: 10.3389/fpls.2017.00376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/06/2017] [Indexed: 05/04/2023]
Abstract
Kinases facilitate detection of extracellular signals and set in motion cellular responses for plant adaptation and survival. Some of the energy utilized for kinase signal processing is produced through the activity of ion transporters. Additionally, the synergy between cellular ions and signal transduction influences plant response to pathogens, and their growth and development. In plants, the signaling elements that connect cell wall and membrane sensors with ion homeostasis and transport-mediated processes are largely unknown. Current research indicates that plant Integrin-Linked Kinases (ILKs), a subfamily Raf-like MAP2K Kinases, may have evolved to fulfill this role. In this review, we explore new findings on plant ILKs placing a particular focus on the connection between ILKs proteins unique structural features and ILKs functions. The ankyrin repeat motifs and the kinase domains of ILKs in Arabidopsis and land plants lineage, respectively, are analyzed and discussed as potential determinants of ILKs' metal ion cofactor specificity and their enzymatic and interaction activities. Further, ILKs regulation through gene expression, subcellular localization, and ions and ion transporters is reviewed in the context of recent studies. Finally, using evidence from literature and interactomics databanks, we infer ILKs-dependent cellular pathways and highlight their potential in transmitting multiple types of signals originating at the interface between the cell wall and plasma membrane.
Collapse
Affiliation(s)
- Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Plant Pathology, and Entomology, Mississippi State University, StarkvilleMS, USA
| | - Elizabeth K. Brauer
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, OttawaON, Canada
| | - Gizem Dimlioglu
- Department of Biochemistry, Molecular Biology, Plant Pathology, and Entomology, Mississippi State University, StarkvilleMS, USA
| | - George V. Popescu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, StarkvilleMS, USA
| |
Collapse
|
4
|
Germain H, Gray-Mitsumune M, Houde J, Benhamman R, Sawasaki T, Endo Y, Matton DP. The Solanum chacoense ovary receptor kinase 11 (ScORK11) undergoes tissue-dependent transcriptional, translational and post-translational regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:261-268. [PMID: 23800661 DOI: 10.1016/j.plaphy.2013.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
Using a subtraction screen to isolate weakly expressed transcripts from ovule and ovary libraries, we uncovered 30 receptor-like kinases that were predominantly expressed in ovary and fruit tissues following fertilization [1]. Here we describe the analysis of Solanum chacoense ovule receptor kinase 11 (ScORK11), a member of the large LRR III receptor kinase subfamily that localizes to the plasma membrane. In situ analyses demonstrated that ScORK11 gene expression was mainly restricted to the ovule integument, the embryo sac and the pericarp of the fruit. Tight regulation of ScORK11 expression at the mRNA level was also accompanied by both translational and post-translational regulation of protein levels.
Collapse
Affiliation(s)
- Hugo Germain
- Département de chimie et physique, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada.
| | | | | | | | | | | | | |
Collapse
|
5
|
Spatial and temporal distribution of mineral nutrients and sugars throughout the lifespan of Hibiscus rosa-sinensis L. flower. Open Life Sci 2011. [DOI: 10.2478/s11535-011-0025-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractAlthough the physiological and molecular mechanisms of flower development and senescence have been extensively investigated, a whole-flower partitioning study of mineral concentrations has not been carried out. In this work, the distribution of sucrose, total reducing sugars, dry and fresh weight and macro and micronutrients were analysed in Hibiscus rosa-sinensis L. petals, stylestigma including stamens and ovary at different developmental stages (bud, open and senescent flowers). Total reducing sugars showed the highest value in petals of bud flowers, then fell during the later stages of flower development whereas sucrose showed the highest value in petals of senescent flowers. In petals, nitrogen and phosphorus content increased during flower opening, then nitrogen level decreased in senescent flowers. The calcium, phosphorus and boron concentrations were highest in ovary tissues whatever the developmental stage. Overall, the data presented suggests that the high level of total reducing sugars prior the onset of flower opening contributes to support petal cells expansion, while the high amount of sucrose at the time of petal wilting may be viewed as a result of senescence. Furthermore, this study discusses how the accumulation of particular mineral nutrients can be considered in a tissue specific manner for the activation of processes directly connected with reproduction.
Collapse
|
6
|
Ivanov R, Fobis-Loisy I, Gaude T. When no means no: guide to Brassicaceae self-incompatibility. TRENDS IN PLANT SCIENCE 2010; 15:387-394. [PMID: 20621670 DOI: 10.1016/j.tplants.2010.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 05/29/2023]
Abstract
More than half of the flowering plants have a sophisticated mechanism for self-pollen rejection, named self-incompatibility (SI). In Brassicaceae, recognition specificity is achieved by the interaction of the stigmatic S-RECEPTOR KINASE (SRK) and its ligand S-LOCUS CYSTEINE-RICH PROTEIN (SCR). Recent years have seen significant advances in understanding the SI response. Progress has been made on elucidating the regulation and function of proteins that act as either molecular partners of SRK or modulators of SI. Thus, modules controlling the specificity of the central receptor-ligand interaction have been identified on both SRK and SCR proteins. A role for intracellular protein trafficking in SI has also been demonstrated. Here, we integrate the novel findings into the existing model to present the current understanding of SI signaling.
Collapse
Affiliation(s)
- Rumen Ivanov
- UMR 5667 CNRS-INRA-ENS Lyon-UCB Lyon I, IFR 128 BioSciences Gerland-Lyon Sud, Reproduction et Développement des Plantes, ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|