2
|
Nastase MV, Janicova A, Wygrecka M, Schaefer L. Signaling at the Crossroads: Matrix-Derived Proteoglycan and Reactive Oxygen Species Signaling. Antioxid Redox Signal 2017; 27:855-873. [PMID: 28510506 DOI: 10.1089/ars.2017.7165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Proteoglycans (PGs), besides their structural contribution, have emerged as dynamic components that mediate a multitude of cellular events. The various roles of PGs are attributed to their structure, spatial localization, and ability to act as ligands and receptors. Reactive oxygen species (ROS) are small mediators that are generated in physiological and pathological conditions. Besides their reactivity and ability to induce oxidative stress, a growing body of data suggests that ROS signaling is more relevant than direct radical damage in development of human pathologies. Recent Advances: Cell surface transmembrane PGs (syndecans, cluster of differentiation 44) represent receptors in diverse and complex transduction networks, which involve redox signaling with implications in cancer, fibrosis, renal dysfunction, or Alzheimer's disease. Through NADPH oxidase (NOX)-dependent ROS, the extracellular PG, hyaluronan is involved in osteoclastogenesis and cancer. The ROS sources, NOX1 and NOX4, increase biglycan-induced inflammation, while NOX2 is a negative regulator. CRITICAL ISSUES The complexity of the mechanisms that bring ROS into the light of PG biology might be the foundation of a new research area with significant promise for understanding health and disease. Important aspects need to be investigated in PG/ROS signaling: the discovery of specific targets of ROS, the precise ROS-induced chemical modifications of these targets, and the study of their pathological relevance. FUTURE DIRECTIONS As we become more and more aware of the interactions between PG and ROS signaling underlying intracellular communication and cell fate decisions, it is quite conceivable that this field will allow to identify new therapeutic targets.-Antioxid. Redox Signal. 27, 855-873.
Collapse
Affiliation(s)
- Madalina-Viviana Nastase
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany .,2 National Institute for Chemical-Pharmaceutical Research and Development , Bucharest, Romania
| | - Andrea Janicova
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- 3 Department of Biochemistry, Faculty of Medicine, Justus Liebig University , Giessen, Germany
| | - Liliana Schaefer
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany
| |
Collapse
|
3
|
Das S, Majid M, Baker AB. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater 2016; 42:56-65. [PMID: 27381525 DOI: 10.1016/j.actbio.2016.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED Non-healing ulcers are a common consequence of long-term diabetes and severe peripheral vascular disease. These non-healing wounds are a major source of morbidity in patients with diabetes and place a heavy financial burden on the healthcare system. Growth factor therapies are an attractive strategy for enhancing wound closure in non-healing wounds but have only achieved mixed results in clinical trials. Platelet derived growth factor-BB (PDGF-BB) is the only currently approved growth factor therapy for non-healing wounds. However, PDGF-BB therapy is not effective in many patients and requires high doses that increase the potential for side effects. In this work, we demonstrate that syndecan-4 delivered in a proteoliposomal formulation enhances PDGF-BB activity in diabetic wound healing. In particular, syndecan-4 proteoliposomes enhance the migration of keratinocytes derived from patients with diabetes. In addition, syndecan-4 proteoliposomes sensitize keratinocytes to PDGF-BB stimulation, enhancing the intracellular signaling response to PDGF-BB. We further demonstrated that co-therapy with syndecan-4 proteoliposomes enhanced wound closure in diabetic, hyperlipidemic ob/ob mice. Wounds treated with both syndecan-4 proteoliposomes and PDGF-BB had increased re-epithelization and angiogenesis in comparison to wounds treated with PDGF-BB alone. Moreover, the wounds treated with syndecan-4 proteoliposomes and PDGF-BB also had increased M2 macrophages and reduced M1 macrophages, suggesting syndecan-4 delivery induces immunomodulation within the healing wounds. Together our findings support that syndecan-4 proteoliposomes markedly improve PDGF-BB efficacy for wound healing and may be useful in enhancing treatments for non-healing wounds. STATEMENT OF SIGNIFICANCE Non-healing wounds are major healthcare issue for patients with diabetes and peripheral vascular disease. Growth factor therapies have potential for healing chronic wounds but have not been effective for many patients. PDGF-BB is currently the only approved growth factor for enhancing wound healing. However, it has not seen widespread adoption due to limited efficacy and high cost. In this work, we have developed an enhancing agent that improves the activity of PDGF-BB in promoting wound healing in animals with diabetes. This co-therapy may be useful in improving the efficacy of PDGFBB and enhance its safety through lowering the dose of growth factor needed to improve wound healing.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Marjan Majid
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, United States; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
11
|
Ikesue M, Matsui Y, Ohta D, Danzaki K, Ito K, Kanayama M, Kurotaki D, Morimoto J, Kojima T, Tsutsui H, Uede T. Syndecan-4 Deficiency Limits Neointimal Formation After Vascular Injury by Regulating Vascular Smooth Muscle Cell Proliferation and Vascular Progenitor Cell Mobilization. Arterioscler Thromb Vasc Biol 2011; 31:1066-74. [DOI: 10.1161/atvbaha.110.217703] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Syndecan-4 (Syn4) is a heparan sulfate proteoglycan and works as a coreceptor for various growth factors. We examined whether Syn4 could be involved in the development of neointimal formation in vivo.
Methods and Results—
Wild-type (WT) and Syn4-deficient (Syn4
−/−
) mice were subjected to wire-induced femoral artery injury.
Syn4
mRNA was upregulated after vascular injury in WT mice. Neointimal formation was attenuated in Syn4
−/−
mice, concomitantly with the reduction of Ki67-positive vascular smooth muscle cells (VSMCs). Basic-fibroblast growth factor– or platelet-derived growth factor-BB–induced proliferation, extracellular signal-regulated kinase activation, and expression of cyclin D1 and Bcl-2 were impaired in VSMCs from Syn4
−/−
mice. To examine the role of Syn4 in bone marrow (BM)–derived vascular progenitor cells (VPCs) and vascular walls, we generated chimeric mice by replacing the BM cells of WT and Syn4
−/−
mice with those of WT or Syn4
−/−
mice. Syn4 expressed by both vascular walls and VPCs contributed to the neointimal formation after vascular injury. Although the numbers of VPCs were compatible between WT and Syn4
−/−
mice, mobilization of VPCs from BM after vascular injury was defective in Syn4
−/−
mice.
Conclusion—
Syn4 deficiency limits neointimal formation after vascular injury by regulating VSMC proliferation and VPC mobilization. Therefore, Syn4 may be a novel therapeutic target for preventing arterial restenosis after angioplasty.
Collapse
Affiliation(s)
- Masahiro Ikesue
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Yutaka Matsui
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Daichi Ohta
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Keiko Danzaki
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Koyu Ito
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Masashi Kanayama
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Daisuke Kurotaki
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Junko Morimoto
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Tetsuhito Kojima
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Hiroyuki Tsutsui
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Toshimitsu Uede
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| |
Collapse
|