1
|
Ye H, Luo G, Liu J, Cao J, Ma Q, Xiao M, Dai J. Decoding genetic diversity through genome engineering in bryophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70103. [PMID: 40089912 DOI: 10.1111/tpj.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Bryophytes, which include mosses, liverworts, and hornworts, have evolved a highly successful strategy for thriving in terrestrial environments, allowing them to occupy nearly every land ecosystem. Their success is due to a unique combination of biochemical adaptations, diverse structural forms, and specialized life cycle strategies. The key to their evolutionary success lies in their genomic diversity. To fully decode this diversity, the use of advanced genome engineering techniques is crucial. In this review, we explore the genomic diversity of bryophytes and the latest advancements in their genome studies and engineering, ranging from precise gene editing to whole-genome synthesis. Notably, the moss Physcomitrium patens stands out as the only land plant capable of efficiently utilizing homologous recombination for precise genome engineering. This capability has heralded a new era in plant synthetic genomics. By focusing on bryophytes, we emphasize the potential benefits of unraveling the genetic traits, which could have significant implications across various scientific fields, from fundamental biology to biotechnological applications.
Collapse
Affiliation(s)
- Hao Ye
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Guangyu Luo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jia Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Jie Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Qilong Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Mengnan Xiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
2
|
Zhang Y, Huang Y, Jiang J, Chen J, Han W, Liu Y, Kong L, Gong J, Su M, Chen D. Transfer, transportation, and adsorption of UV-B by Mg-N co doped carbon quantum dots: Response of growth indicators, antioxidant effect and mechanism explanation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123618. [PMID: 37976574 DOI: 10.1016/j.saa.2023.123618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Mg and N co-doped carbon quantum dots (Mg-N-CQDs) were synthesized and applied to alleviate oxygen toxicity by UV-B radiation and enhance antioxidative responses to wheat seedlings. It showed that Mg-N-CQDs pre-treatment attenuated the UV-B stress effects in a dose-dependent manner, as indicated by enhancing the characteristics of seed germination and early seedling growth parameters. Meanwhile, Mg-N-CQDs can be applied in plant nutrient solutions with nitrogen, phosphorus, potassium, and other fertilizers to promote the growth of seedlings. Furthermore, efficient antioxidant systems, chlorophyll content, and stability of fluorescence intensity were activated by Mg-N-CQDs pre-treatment, which effectively increased the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and eliminate the contents of malondialdehyde (MDA) and hydrogen peroxide, and the production rate of superoxide anion radical in the roots and germs, thereby preventing oxidative damage from UV-B stress. Notably, Mg-N-CQDs pre-treatment significantly increased the expression of related genes to improve the antioxidant capacity of roots and germs, resulting in an increased level of ATPS, CS, and GS. The mechanism study indicated that amino and hydroxyl groups and Mg, N modified CQDs could broaden the light absorption range of CQDs and improve the ability to convert blue light and ultraviolet rays to visible light, which was the main reason why Mg-N-CQDs could relieve wheat seedlings from ultraviolet stress. Therefore, Mg-N-CQDs could serve as a regulator to reduce the damage of UV-B, laying the foundation for their application in environmental protection and agricultural production.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; College of Chemical Engineering, Daqing Normal University, Daqing 163712, PR China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Junhong Jiang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jianbo Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Weixing Han
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yuxian Liu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Linjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Leng F, Zhou G, Shi R, Liu C, Lin Y, Yu X, Zhang Y, He X, Liu Z, Sun M, Bao F, Hu Y, He Y. Development of PEG-mediated genetic transformation and gene editing system of Bryum argenteum as an abiotic stress tolerance model plant. PLANT CELL REPORTS 2024; 43:63. [PMID: 38340191 DOI: 10.1007/s00299-024-03143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE To establish a sterile culture system and protoplast regeneration system for Bryum argenteum, and to establish and apply CRISPR/Cas9 system in Bryum argenteum. Bryum argenteum is a fascinating, cosmopolitan, and versatile moss species that thrives in various disturbed environments. Because of its comprehensive tolerance to the desiccation, high UV and extreme temperatures, it is emerging as a model moss for studying the molecular mechanisms underlying plant responses to abiotic stresses. However, the lack of basic tools such as gene transformation and targeted genome modification has hindered the understanding of the molecular mechanisms underlying the survival of B. argenteum in different environments. Here, we reported the protonema of B. argenteum can survive up to 95.4% water loss. In addition, the genome size of B. argenteum is approximately 313 Mb by kmer analysis, which is smaller than the previously reported 700 Mb. We also developed a simple method for protonema induction and an efficient protoplast isolation and regeneration protocol for B. argenteum. Furthermore, we established a PEG-mediated protoplast transient transfection and stable transformation system for B. argenteum. Two homologues of ABI3(ABA-INSENSITIVE 3) gene were successfully cloned from B. argenteum. To further investigate the function of the ABI3 gene in B. argenteum, we used the CRISPR/Cas9 genetic editing system to target the BaABI3A and BaABI3B gene in B. argenteum protoplasts. This resulted in mutagenesis at the target in about 2-5% of the regenerated plants. The isolated abi3a and abi3b mutants exhibited increased sensitivity to desiccation, suggesting that BaABI3A and BaABI3B play redundant roles in desiccation stress. Overall, our results provide a rapid and simple approach for molecular genetics in B. argenteum. This study contributes to a better understanding of the molecular mechanisms of plant adaptation to extreme environmental.
Collapse
Affiliation(s)
- Fengjun Leng
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Guiwei Zhou
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyuan Shi
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Chengyang Liu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yirui Lin
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xinqiang Yu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yanhua Zhang
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiangxi He
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zhu Liu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Mingming Sun
- Laboratory for Micro-Sized Functional Materials, College of Elementary Education, Capital Normal University, Beijing, 100048, China
| | - Fang Bao
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Yong Hu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Yikun He
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
4
|
Fernandez-Pozo N, Haas FB, Gould SB, Rensing SA. An overview of bioinformatics, genomics, and transcriptomics resources for bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4291-4305. [PMID: 35148385 DOI: 10.1093/jxb/erac052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes are useful models for the study of plant evolution, development, plant-fungal symbiosis, stress responses, and gametogenesis. Additionally, their dominant haploid gametophytic phase makes them great models for functional genomics research, allowing straightforward genome editing and gene knockout via CRISPR or homologous recombination. Until 2016, however, the only bryophyte genome sequence published was that of Physcomitrium patens. Throughout recent years, several other bryophyte genomes and transcriptome datasets became available, enabling better comparative genomics in evolutionary studies. The increase in the number of bryophyte genome and transcriptome resources available has yielded a plethora of annotations, databases, and bioinformatics tools to access the new data, which covers the large diversity of this clade and whose biology comprises features such as association with arbuscular mycorrhiza fungi, sex chromosomes, low gene redundancy, or loss of RNA editing genes for organellar transcripts. Here we provide a guide to resources available for bryophytes with regards to genome and transcriptome databases and bioinformatics tools.
Collapse
Affiliation(s)
- Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Subtropical and Mediterranean Fruit Crops, Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-CSIC-UMA), Málaga, Spain
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Sven B Gould
- Evolutionary Cell Biology, Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
5
|
Jez JM. Structural biology of plant sulfur metabolism: from sulfate to glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4089-4103. [PMID: 30825314 DOI: 10.1093/jxb/erz094] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Sulfur is an essential element for all organisms. Plants must assimilate this nutrient from the environment and convert it into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine and glutathione. This review summarizes structural biology studies on the enzymes involved in plant sulfur assimilation [ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and sulfite reductase], cysteine biosynthesis (serine acetyltransferase and O-acetylserine sulfhydrylase), and glutathione biosynthesis (glutamate-cysteine ligase and glutathione synthetase) pathways. Overall, X-ray crystal structures of enzymes in these core pathways provide molecular-level information on the chemical events that allow plants to incorporate sulfur into essential metabolites and revealed new biochemical regulatory mechanisms, such as structural rearrangements, protein-protein interactions, and thiol-based redox switches, for controlling different steps in these pathways.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Kobayashi Y, Otani T, Ishibashi K, Shikanai T, Nishimura Y. C-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants. Genome Biol Evol 2016; 8:1459-66. [PMID: 27189994 PMCID: PMC4898807 DOI: 10.1093/gbe/evw093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, such as Zea mays and Arabidopsis thaliana To address this discrepancy, we have performed a detailed phylogenetic analysis of SiRs, which shows that cp nucleoid-type SiRs share conserved C-terminally encoded peptides (CEPs). The CEPs are likely to form a bacterial ribbon-helix-helix DNA-binding motif, implying a potential role in attaching SiRs onto cp nucleoids. A proof-of-concept experiment was conducted by fusing the nonnucleoid-type SiR from A. thaliana (AtSiR) with the CEP from the cp nucleoid-type SiR of Phaseolus vulgaris The addition of the CEP drastically altered the intra-cp localization of AtSiR to cp nucleoids. Our analysis supports the possible functions of CEPs in determining the localization of SiRs to cp nucleoids and illuminates a possible evolutionary scenario for SiR as a cp nucleoid protein.
Collapse
Affiliation(s)
| | | | | | | | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Japan
| |
Collapse
|
7
|
Decker EL, Wiedemann G, Reski R. Gene Targeting for Precision Glyco-Engineering: Production of Biopharmaceuticals Devoid of Plant-Typical Glycosylation in Moss Bioreactors. Methods Mol Biol 2015; 1321:213-24. [PMID: 26082225 DOI: 10.1007/978-1-4939-2760-9_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
One of the main challenges for the production of biopharmaceuticals in plant-based systems is the modulation of plant-specific glycosylation patterns towards a humanized form. Posttranslational modifications in plants are similar to those in humans, but several differences affect product quality and efficacy and can also cause immune responses in patients. In the moss Physcomitrella patens highly efficient gene targeting via homologous recombination enables glyco-engineering to obtain suitable platform lines for the production of recombinant proteins and biopharmaceuticals. Here we describe the methods which are effective for creating gene targeting constructs and transgenic moss lines as well as confirming successful homologous integration of the constructs and modification of target gene expression.
Collapse
Affiliation(s)
- Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
8
|
Reduction of EPSP synthase in transgenic wild turnip (Brassica rapa) weed via suppression of aroA. Mol Biol Rep 2014; 41:8177-84. [DOI: 10.1007/s11033-014-3718-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
9
|
Powikrowska M, Oetke S, Jensen PE, Krupinska K. Dynamic composition, shaping and organization of plastid nucleoids. FRONTIERS IN PLANT SCIENCE 2014; 5:424. [PMID: 25237313 PMCID: PMC4154389 DOI: 10.3389/fpls.2014.00424] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/08/2014] [Indexed: 05/18/2023]
Abstract
In this article recent progress on the elucidation of the dynamic composition and structure of plastid nucleoids is reviewed from a structural perspective. Plastid nucleoids are compact structures of multiple copies of different forms of ptDNA, RNA, enzymes for replication and gene expression as well as DNA binding proteins. Although early electron microscopy suggested that plastid DNA is almost free of proteins, it is now well established that the DNA in nucleoids similarly as in the nuclear chromatin is associated with basic proteins playing key roles in organization of the DNA architecture and in regulation of DNA associated enzymatic activities involved in transcription, replication, and recombination. This group of DNA binding proteins has been named plastid nucleoid associated proteins (ptNAPs). Plastid nucleoids are unique with respect to their variable number, genome copy content and dynamic distribution within different types of plastids. The mechanisms underlying the shaping and reorganization of plastid nucleoids during chloroplast development and in response to environmental conditions involve posttranslational modifications of ptNAPs, similarly to those changes known for histones in the eukaryotic chromatin, as well as changes in the repertoire of ptNAPs, as known for nucleoids of bacteria. Attachment of plastid nucleoids to membranes is proposed to be important not only for regulation of DNA availability for replication and transcription, but also for the coordination of photosynthesis and plastid gene expression.
Collapse
Affiliation(s)
- Marta Powikrowska
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Svenja Oetke
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Poul E. Jensen
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Karin Krupinska
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
- *Correspondence: Karin Krupinska, Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany e-mail:
| |
Collapse
|
10
|
Birke H, Müller SJ, Rother M, Zimmer AD, Hoernstein SNW, Wesenberg D, Wirtz M, Krauss GJ, Reski R, Hell R. The relevance of compartmentation for cysteine synthesis in phototrophic organisms. PROTOPLASMA 2012; 249 Suppl 2:S147-55. [PMID: 22543690 DOI: 10.1007/s00709-012-0411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/10/2012] [Indexed: 05/18/2023]
Abstract
In the vascular plant Arabidopsis thaliana, synthesis of cysteine and its precursors O-acetylserine and sulfide is distributed between the cytosol, chloroplasts, and mitochondria. This compartmentation contributes to regulation of cysteine synthesis. In contrast to Arabidopsis, cysteine synthesis is exclusively restricted to chloroplasts in the unicellular green alga Chlamydomonas reinhardtii. Thus, the question arises, whether specification of compartmentation was driven by multicellularity and specified organs and tissues. The moss Physcomitrella patens colonizes land but is still characterized by a simple morphology compared to vascular plants. It was therefore used as model organism to study evolution of compartmented cysteine synthesis. The presence of O-acetylserine(thiol)lyase (OAS-TL) proteins, which catalyze the final step of cysteine synthesis, in different compartments was applied as criterion. Purification and characterization of native OAS-TL proteins demonstrated the presence of five OAS-TL protein species encoded by two genes in Physcomitrella. At least one of the gene products is dual targeted to plastids and cytosol, as shown by combination of GFP fusion localization studies, purification of chloroplasts, and identification of N termini from native proteins. The bulk of OAS-TL protein is targeted to plastids, whereas there is no evidence for a mitochondrial OAS-TL isoform and only a minor part of OAS-TL protein is localized in the cytosol. This demonstrates that subcellular diversification of cysteine synthesis is already initialized in Physcomitrella but appears to gain relevance later during evolution of vascular plants.
Collapse
Affiliation(s)
- Hannah Birke
- Centre for Organismal Studies Heidelberg, Department Plant Molecular Biology, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sugiyama T, Ishida T, Tabei N, Shigyo M, Konishi M, Yoneyama T, Yanagisawa S. Involvement of PpDof1 transcriptional repressor in the nutrient condition-dependent growth control of protonemal filaments in Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3185-97. [PMID: 22345635 PMCID: PMC3350930 DOI: 10.1093/jxb/ers042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/22/2012] [Accepted: 01/26/2012] [Indexed: 05/20/2023]
Abstract
In higher plants, the Dof transcription factors that harbour a conserved plant-specific DNA-binding domain function in the regulation of diverse biological processes that are unique to plants. Although these factors are present in both higher and lower plants, they have not yet been characterized in lower plants. Here six genes encoding Dof transcription factors in the moss Physcomitrella patens are characterized and two of these genes, PpDof1 and PpDof2, are functionally analysed. The targeted disruption of PpDof1 caused delayed or reduced gametophore formation, accompanied by an effect on development of the caulonema from the chloronema. Furthermore, the ppdof1 disruptants were found to form smaller colonies with a reduced frequency of branching of protonemal filaments, depending on the nutrients in the media. Most of these phenotypes were not apparent in the ppdof2 disruptant, although the ppdof2 disruptants also formed smaller colonies on a particular medium. Transcriptional repressor activity of PpDof1 and PpDof2 and modified expression of a number of genes in the ppdof disruptant lines were also shown. These results thus suggest that the PpDof1 transcriptional repressor has a role in controlling nutrient-dependent filament growth.
Collapse
Affiliation(s)
- Takumi Sugiyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Ishida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobumitsu Tabei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikao Shigyo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mineko Konishi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Lang EGE, Mueller SJ, Hoernstein SNW, Porankiewicz-Asplund J, Vervliet-Scheebaum M, Reski R. Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics. PLANT CELL REPORTS 2011; 30:205-15. [PMID: 20960201 PMCID: PMC3020298 DOI: 10.1007/s00299-010-0935-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/16/2010] [Accepted: 09/24/2010] [Indexed: 05/22/2023]
Abstract
The moss Physcomitrella patens is increasingly being used as a model for plant systems biology studies. While genomic and transcriptomic resources are in place, tools and experimental conditions for proteomic studies need to be developed. In the present study we describe a rapid and efficient protocol for the simultaneous isolation of chloroplasts and mitochondria from moss protonema. Routinely, 60-100 μg mitochondrial and 3-5 mg chloroplast proteins, respectively, were obtained from 20 g fresh weight of green moss tissue. Using 14 plant compartment marker antibodies derived from seed plant and algal protein sequences, respectively, the evolutionary conservation of the compartment marker proteins in the moss was demonstrated and purity and intactness of the extracted organelles confirmed. This isolation protocol and these validated compartment markers may serve as basis for sub-cellular proteomics in P. patens and other mosses.
Collapse
Affiliation(s)
- Erika G. E. Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Stefanie J. Mueller
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| | - Sebastian N. W. Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | | | - Marco Vervliet-Scheebaum
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Stumpe M, Göbel C, Faltin B, Beike AK, Hause B, Himmelsbach K, Bode J, Kramell R, Wasternack C, Frank W, Reski R, Feussner I. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. THE NEW PHYTOLOGIST 2010; 188:740-9. [PMID: 20704658 DOI: 10.1111/j.1469-8137.2010.03406.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)-12-oxo-phytodienoic acid (cis-(+)-OPDA), were isolated from the moss Physcomitrella patens. • Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13-hydroperoxy linolenic acid (13-HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12-hydroperoxy arachidonic acid (12-HPETE). • In protonema and gametophores the occurrence of cis-(+)-OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis-(+)-OPDA was detected. • Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.
Collapse
Affiliation(s)
- Michael Stumpe
- Georg-August-University, Albrecht-von-Haller-Institute, Plant Biochemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|