1
|
Weber F, Utpatel K, Evert K, Weiss TS, Buechler C. Hepatic Bone Morphogenetic Protein and Activin Membrane-Bound Inhibitor Levels Decline in Hepatitis C but Are Not Associated with Progression of Hepatocellular Carcinoma. Biomedicines 2024; 12:2397. [PMID: 39457709 PMCID: PMC11504530 DOI: 10.3390/biomedicines12102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) is an antagonist of transforming growth factor (TGF)-β type 1 signaling. BAMBI functions as an anti-fibrotic protein and exerts pro- as well as anti-cancerogenic activities. Our study aimed to correlate hepatocyte BAMBI protein levels in hepatocellular carcinoma (HCC) with T stage, lymph node invasion, vessel invasion, grading, tumor size and Union for International Cancer Control (UICC) stage, as well as with liver inflammation and fibrosis stages. METHODS Hepatocyte BAMBI protein expression was assessed by immunohistochemistry in HCC tissues of 320 patients and non-tumor tissues of 51 patients. RESULTS In the HCC tissues of the whole cohort and sex-specific analysis, BAMBI protein was not related to T stage, vessel invasion, lymph node invasion, histologic grade, UICC stage and tumor size. Accordingly, BAMBI was not associated with overall survival, recurrence-free and metastasis-free survival. BAMBI protein levels in tumor and non-tumor tissues were not related to inflammation and fibrosis grade. BAMBI protein levels in HCC tissues and non-tumor tissues from HCC patients, which were analyzed by immunoblot in a small cohort and by immunohistochemistry in the tissues of patients described above, were similar. Notably, BAMBI protein was low-abundant in HCC tissues of hepatitis C virus (HCV) compared to hepatitis B virus (HBV)-infected patients with comparable disease severity. Immunoblot analysis revealed reduced BAMBI protein in non-tumor tissues of patients with HCV in comparison to patients with HBV and normal human liver tissues. CONCLUSIONS In summary, this analysis showed that hepatocyte BAMBI protein levels of patients with HCC are related to HCV infection rather than the severity of the underlying liver disease and cancer staging.
Collapse
Affiliation(s)
- Florian Weber
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.W.); (K.U.); (K.E.)
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.W.); (K.U.); (K.E.)
| | - Katja Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.W.); (K.U.); (K.E.)
| | - Thomas S. Weiss
- Children’s University Hospital (KUNO), Regensburg University Hospital, 93053 Regensburg, Germany;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Chen X, Li J, Xiang A, Guan H, Su P, Zhang L, Zhang D, Yu Q. BMP and activin receptor membrane bound inhibitor: BAMBI has multiple roles in gene expression and diseases (Review). Exp Ther Med 2024; 27:28. [PMID: 38125356 PMCID: PMC10728939 DOI: 10.3892/etm.2023.12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023] Open
Abstract
BMP and activin membrane-bound inhibitor (BAMBI) is a transmembrane glycoprotein, known as a pseudo-receptor for TGFβ, as, while its extracellular domain is similar to that of type I TGFβ receptors, its intracellular structure is shorter and lacks a serine/threonine phosphokinase signaling motif. BAMBI can regulate numerous biological phenomena, including glucose and lipid metabolism, inflammatory responses, and cell proliferation and differentiation. Furthermore, abnormal expression of BAMBI at the mRNA and protein levels contributes to various human pathologies, including obesity and cancer. In the present review, the structure of BAMBI is briefly introduced and its associated signaling pathways and physiological functions are described. Understanding of BAMBI structure and function may contribute to knowledge regarding the occurrence of diseases, including obesity and diabetes, among others. The present review provides a theoretical foundation for the development of BAMBI as a potential biomarker or therapeutic target.
Collapse
Affiliation(s)
- Xiaochang Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jue Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Aoqi Xiang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Peihong Su
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Lusha Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Dian Zhang
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
3
|
Li X, Chen R, Kemper S, Brigstock DR. Production, Exacerbating Effect, and EV-Mediated Transcription of Hepatic CCN2 in NASH: Implications for Diagnosis and Therapy of NASH Fibrosis. Int J Mol Sci 2023; 24:12823. [PMID: 37629004 PMCID: PMC10454308 DOI: 10.3390/ijms241612823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, hepatocyte ballooning, and inflammation and may progress to include increasingly severe fibrosis, which portends more serious disease and is predictive of patient mortality. Diagnostic and therapeutic options for NASH fibrosis are limited, and the underlying fibrogenic pathways are under-explored. Cell communication network factor 2 (CCN2) is a well-characterized pro-fibrotic molecule, but its production in and contribution to NASH fibrosis requires further study. Hepatic CCN2 expression was significantly induced in NASH patients with F3-F4 fibrosis and was positively correlated with hepatic Col1A1, Col1A2, Col3A1, or αSMA expression. When wild-type (WT) or transgenic (TG) Swiss mice expressing enhanced green fluorescent protein (EGFP) under the control of the CCN2 promoter were fed up to 7 weeks with control or choline-deficient, amino-acid-defined diet with high (60%) fat (CDAA-HF), the resulting NASH-like hepatic pathology included a profound increase in CCN2 or EGFP immunoreactivity in activated hepatic stellate cells (HSC) and in fibroblasts and smooth muscle cells of the vasculature, with little or no induction of CCN2 in other liver cell types. In the context of CDAA-HF diet-induced NASH, Balb/c TG mice expressing human CCN2 under the control of the albumin promoter exhibited exacerbated deposition of interstitial hepatic collagen and activated HSC compared to WT mice. In vitro, palmitic acid-treated hepatocytes produced extracellular vesicles (EVs) that induced CCN2, Col1A1, and αSMA in HSC. Hepatic CCN2 may aid the assessment of NASH fibrosis severity and, together with pro-fibrogenic EVs, is a therapeutic target for reducing NASH fibrosis.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - Ruju Chen
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
4
|
Expression and Function of BMP and Activin Membrane-Bound Inhibitor (BAMBI) in Chronic Liver Diseases and Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24043473. [PMID: 36834884 PMCID: PMC9964332 DOI: 10.3390/ijms24043473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) is a transmembrane pseudoreceptor structurally related to transforming growth factor (TGF)-β type 1 receptors (TGF-β1Rs). BAMBI lacks a kinase domain and functions as a TGF-β1R antagonist. Essential processes such as cell differentiation and proliferation are regulated by TGF-β1R signaling. TGF-β is the best-studied ligand of TGF-βRs and has an eminent role in inflammation and fibrogenesis. Liver fibrosis is the end stage of almost all chronic liver diseases, such as non-alcoholic fatty liver disease, and at the moment, there is no effective anti-fibrotic therapy available. Hepatic BAMBI is downregulated in rodent models of liver injury and in the fibrotic liver of patients, suggesting that low BAMBI has a role in liver fibrosis. Experimental evidence convincingly demonstrated that BAMBI overexpression is able to protect against liver fibrosis. Chronic liver diseases have a high risk of hepatocellular carcinoma (HCC), and BAMBI was shown to exert tumor-promoting as well as tumor-protective functions. This review article aims to summarize relevant studies on hepatic BAMBI expression and its role in chronic liver diseases and HCC.
Collapse
|
5
|
Hoang NTD, Hassan G, Suehiro T, Mine Y, Matsuki T, Fujii M. BMP and activin membrane-bound inhibitor regulate connective tissue growth factor controlling mesothelioma cell proliferation. BMC Cancer 2022; 22:984. [PMID: 36109807 PMCID: PMC9479400 DOI: 10.1186/s12885-022-10080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Malignant mesothelioma (MM) is an aggressive mesothelial cell cancer type linked mainly to asbestos inhalation. MM characterizes by rapid progression and resistance to standard therapeutic modalities such as surgery, chemotherapy, and radiotherapy. Our previous studies have suggested that tumor cell-derived connective tissue growth factor (CTGF) regulates the proliferation of MM cells as well as the tumor growth in mouse xenograft models. Methods In this study, we knock downed the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) and CTGF in MM cells and investigated the relationship between both and their impact on the cell cycle and cell proliferation. Results The knockdown of CTGF or BAMBI reduced MM cell proliferation. In contrast to CTGF knockdown which decreased BAMBI, knockdown of BAMBI increased CTGF levels. Knockdown of either BAMBI or CTGF reduced expression of the cell cycle regulators; cyclin D3, cyclin-dependent kinase (CDK)2, and CDK4. Further, in silico analysis revealed that higher BAMBI expression was associated with shorter overall survival rates among MM patients. Conclusions Our findings suggest that BAMBI is regulated by CTGF promoting mesothelioma growth by driving cell cycle progression. Therefore, the crosstalk between BAMBI and CTGF may be an effective therapeutic target for MM treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10080-x.
Collapse
|
6
|
Liver Lipids of Patients with Hepatitis B and C and Associated Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22105297. [PMID: 34069902 PMCID: PMC8157577 DOI: 10.3390/ijms22105297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still remains a difficult to cure malignancy. In recent years, the focus has shifted to lipid metabolism for the treatment of HCC. Very little is known about hepatitis B virus (HBV) and C virus (HCV)-related hepatic lipid disturbances in non-malignant and cancer tissues. The present study showed that triacylglycerol and cholesterol concentrations were similar in tumor adjacent HBV and HCV liver, and were not induced in the HCC tissues. Higher levels of free cholesterol, polyunsaturated phospholipids and diacylglycerol species were noted in non-tumorous HBV compared to HCV liver. Moreover, polyunsaturated phospholipids and diacylglycerols, and ceramides declined in tumors of HBV infected patients. All of these lipids remained unchanged in HCV-related HCC. In HCV tumors, polyunsaturated phosphatidylinositol levels were even induced. There were no associations of these lipid classes in non-tumor tissues with hepatic inflammation and fibrosis scores. Moreover, these lipids did not correlate with tumor grade or T-stage in HCC tissues. Lipid reprogramming of the three analysed HBV/HCV related tumors mostly resembled HBV-HCC. Indeed, lipid composition of non-tumorous HCV tissue, HCV tumors, HBV tumors and HBV/HCV tumors was highly similar. The tumor suppressor protein p53 regulates lipid metabolism. The p53 and p53S392 protein levels were induced in the tumors of HBV, HCV and double infected patients, and this was significant in HBV infection. Negative correlation of tumor p53 protein with free cholesterol indicates a role of p53 in cholesterol metabolism. In summary, the current study suggests that therapeutic strategies to target lipid metabolism in chronic viral hepatitis and associated cancers have to consider disease etiology.
Collapse
|
7
|
Yang X, Ning Y, Mei C, Zhang W, Sun J, Wang S, Zan L. The role of BAMBI in regulating adipogenesis and myogenesis and the association between its polymorphisms and growth traits in cattle. Mol Biol Rep 2020; 47:5963-5974. [PMID: 32740798 DOI: 10.1007/s11033-020-05670-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein that affects the growth, development and muscle regeneration of the body by regulating the TGF-β, BMP and Wnt signaling pathways. Studies have found that BAMBI has important regulatory functions in skeletal muscle and preadipocytes in vivo and in vitro. However, research on this protein in cattle is lacking. In this study, to determine the role of BAMBI in the growth and development of cattle, we first found that the expression of BAMBI in adipose tissue and longissimus muscle of newborn and adult Qinchuan beef cattle was significantly different. Then we showed that BAMBI knockdown promoted the differentiation of bovine preadipocytes and suppressed myoblast myogenesis, as indicated by the increased lipid droplets and the decreased myotubes, as well as the corresponding significant changes in the expression of PPARγ, C/EBPα, C/EBPβ, FABP4, MyoD, MyoG and Myf6. Finally, to further verify the effect of BAMBI on the growth performance of cattle, we identified seven novel SNPs in the BAMBI genomic region, which were significantly correlated with one or more growth traits (p < 0.05). Furthermore, individuals with haplotype H1H4 (TC-GA-CT-CA-AT-AT-AG) had a higher body and carcass quality than those with other haplotypes (p < 0.05). In brief, BAMBI may be a functional gene for the differentiation of bovine preadipocytes and myoblasts, and variations in the BAMBI genomic region, especially the combined haplotype H1H4, may benefit marker-assisted selection in cattle.
Collapse
Affiliation(s)
- Xinran Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yue Ning
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China.,National Beef Cattle Improvement Center, Yangling, 712100, Shaanxi, China
| | - Weiyi Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jingchun Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China. .,National Beef Cattle Improvement Center, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Alpha-syntrophin deficiency protects against non-alcoholic steatohepatitis associated increase of macrophages, CD8 + T-cells and galectin-3 in the liver. Exp Mol Pathol 2019; 113:104363. [PMID: 31881201 DOI: 10.1016/j.yexmp.2019.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by immune cell infiltration. Loss of the scaffold protein alpha-syntrophin (SNTA) protected mice from hepatic inflammation in the methionine-choline-deficient (MCD) diet model. Here, we determined increased numbers of macrophages and CD8+ T-cells in MCD diet induced NASH liver of wild type mice. In the mutant animals these NASH associated changes in immune cell composition were less pronounced. Further, there were more γδ T-cells in the NASH liver of the null mice. Galectin-3 protein in the hepatic non-parenchymal cell fraction was strongly induced in MCD diet fed wild type but not mutant mice. Antioxidant enzymes declined in NASH liver with no differences between the genotypes. To identify the target cells responsive to SNTA loss in-vitro experiments were performed. In the human hepatic stellate cell line LX-2, SNTA did not regulate pro-fibrotic or antioxidant proteins like alpha-smooth muscle actin or catalase. Soluble galectin-3 was, however, reduced upon SNTA knock-down and increased upon SNTA overexpression. SNTA deficiency neither affected cell proliferation nor cell death of LX-2 cells. In the macrophage cell line RAW264.7 low SNTA indeed caused higher galectin-3 production whereas release of TNF and cell viability were normal. Moreover, SNTA had no effect on hepatocyte chemerin and CCL2 expression. Overall, SNTA loss improved NASH without causing major effects in macrophage, hepatocyte and hepatic stellate cell lines. SNTA null mice fed the MCD diet had less body weight loss and this seems to contribute to improved liver health of the mutant mice.
Collapse
|
9
|
Vidhya S, Ramya R, Coral K, Sulochana KN, Bharathidevi SR. Free amino acids hydroxyproline, lysine, and glycine promote differentiation of retinal pericytes to adipocytes: A protective role against proliferative diabetic retinopathy. Exp Eye Res 2018; 173:179-187. [PMID: 29752946 DOI: 10.1016/j.exer.2018.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
AIM This study was conducted to estimate the aminoacid levels in the vitreous of patients with proliferative diabetic retinopathy, and to correlate it with the adiponectin levels. Secondly to test if these amino acids can alter or induce adiponectin levels and its related factors in retinal cells like pericyte as an in vitro model. METHODS All human studies were done as per declaration of Helsinki with institutional approval and after obtaining consent from participating individuals. The vitreous amino acids were estimated in PDR (Proliferative diabetic retinopathy) and MH (Macular Hole) as disease control using HPLC. Bovine retinal pericytes (BRP) were cultured in DMEM/F12 medium and treated with 0.5 mM of any one of the individual amino acids (proline, hydroxyproline, phenylalanine, alanine, serine, glycine, lysine, isoleucine or valine) along with 100 nM insulin for 14 days in high glucose (25 mM) condition. The mRNA expression profile of adipogenic markers (such as Pref1, APN, ZAG and PPARγ), angiogenic markers (VEGF, MMP-2 and MMP-9, TGF-β) and antioxidant markers (Nrf2 and UCP-2) were evaluated by qPCR. Adipogenesis was further confirmed by adipogenesis assay, secretion of adiponectin in medium and triglyceride accumulation by Oil red O staining in Bovine retinal pericytes. RESULTS Amino acids valine (p < 0.004), isoleucine (p < 0.0007), leucine (p < 0.022), serine (p < 0.0007), glycine (p < 0.001), alanine (p < 0.017), phenylalanine (p < 0.013), and lysine (p < 0.001) were significantly elevated in the vitreous of PDR group (n = 30) when compared to macular hole (n = 20). There was a significant positive correlation between serine (p < 0.021), alanine (p < 0.00016), phenylalanine (p < 0.04), isoleucine (p < 0.023), leucine (p < 0.043), and lysine (p < 0.026) with adiponectin level in the vitreous. The amino acids hydroxyproline, proline, lysine, glycine and alanine induced the triglyceride accumulation and expression of Adiponectin. VEGF and MMP-9 expression was decreased with all the amino acids treated and PEDF was significantly increased with phenylalanine treatment. TGFβ mRNA expression showed a significant decrease with proline, alanine, glycine, lysine and isoleucine. The Nrf2 expression was significantly increased in alanine and serine when compared to control. The UCP-2 gene showed a significant increase in proline and lysine treatment. DISCUSSION AND CONCLUSION Our results suggest that amino acids hydroxyproline, proline, lysine, glycine and alanine which are elevated in the PDR vitreous show a tendency to induce adipogenic effects in retinal pericytes by triggering the accumulation of triglycerides and adiponectin. Hence we hypothesize that these aminoacids when elevated along with insulin and glucose can induce metabolic changes in pericytes. The functional implications of these changes tend to be protective as it increases the antioxidant potential and decreases the angiogenesis markers which are potentially pathogenic.
Collapse
Affiliation(s)
- S Vidhya
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India
| | - R Ramya
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India
| | - K Coral
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India
| | - K N Sulochana
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India
| | - S R Bharathidevi
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India.
| |
Collapse
|
10
|
Hernandez H, Millar JC, Curry SM, Clark AF, McDowell CM. BMP and Activin Membrane Bound Inhibitor Regulates the Extracellular Matrix in the Trabecular Meshwork. Invest Ophthalmol Vis Sci 2018; 59:2154-2166. [PMID: 29801150 PMCID: PMC5915111 DOI: 10.1167/iovs.17-23282] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023] Open
Abstract
Purpose The trabecular meshwork (TM) has an important role in the regulation of aqueous humor outflow and IOP. Regulation of the extracellular matrix (ECM) by TGFβ2 has been studied extensively. Bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI) has been shown to inhibit or modulate TGFβ2 signaling. We investigate the role of TGFβ2 and BAMBI in the regulation of TM ECM and ocular hypertension. Methods Mouse TM (MTM) cells were isolated from B6;129S1-Bambitm1Jian/J flox mice, characterized for TGFβ2 and dexamethasone (DEX)-induced expression of fibronectin, collagen-1, collagen-4, laminin, α-smooth muscle actin, cross-linked actin networks (CLANs) formation, and DEX-induced myocilin (MYOC) expression. MTM cells were transduced with Ad5.GFP to identify transduction efficiency. MTM cells and mouse eyes were transduced with Ad5.Null, Ad5.Cre, Ad5.TGFβ2, or Ad5.TGFβ2 + Ad5.Cre to evaluate the effect on ECM production, IOP, and outflow facility. Results MTM cells express TM markers and respond to DEX and TGFβ2. Ad5.GFP at 100 MOI had the highest transduction efficiency. Bambi knockdown by Ad5.Cre and Ad5.TGFβ2 increased fibronectin, collagen-1, and collagen-4 in TM cells in culture and tissue. Ad5.Cre, Ad5.TGFβ2, and Ad5.TGFβ2 + Ad5.Cre each significantly induced ocular hypertension and lowered aqueous humor outflow facility in transduced eyes. Conclusions We show for the first time to our knowledge that knockdown of Bambi alters ECM expression in cultured cells and mouse TM, reduces outflow facility, and causes ocular hypertension. These data provide a novel insight into the development of glaucomatous TM damage and identify BAMBI as an important regulator of TM ECM and ocular hypertension.
Collapse
Affiliation(s)
- Humberto Hernandez
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - J. Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Stacy M. Curry
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F. Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Colleen M. McDowell
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
11
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
12
|
Bai L, Chu G, Wang W, Xiang A, Yang G. BAMBI promotes porcine granulosa cell steroidogenesis involving TGF-β signaling. Theriogenology 2017; 100:24-31. [DOI: 10.1016/j.theriogenology.2017.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/01/2022]
|
13
|
Van Camp JK, De Freitas F, Zegers D, Beckers S, Verhulst SL, Van Hoorenbeeck K, Massa G, Verrijken A, Desager KN, Van Gaal LF, Van Hul W. Investigation of common and rare genetic variation in the BAMBI genomic region in light of human obesity. Endocrine 2016; 52:277-86. [PMID: 26499194 DOI: 10.1007/s12020-015-0778-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
The aim of this study was to confirm the previously identified link between BAMBI and human obesity by means of a genetic and functional analysis. We performed both a mutation analysis, using high-resolution melting curve analysis, and a genetic association study, including 8 common tagSNPs in the BAMBI gene region. Three of the identified genetic variants (R151W, H201R, and C229R) were evaluated for their Wnt signaling enhancing capacity in a Wnt luciferase reporter assay. Mutation screening of the BAMBI coding region and exon-intron boundaries on our population of 677 obese children and adolescents and 529 lean control subjects resulted in the identification of 18 variants, 10 of which were not previously reported and 12 of which were exclusively found in obese individuals. The difference in variant frequency, not taking into account common polymorphisms, between obese (3.1 %) and lean (0.9 %) subjects was statistically significant (p = 0.004). Our Wnt luciferase assay, using WT and mutant BAMBI constructs, showed a significantly reduced activity for all of the investigated variants. Logistic and linear regression analysis on our Caucasian population of 1022 obese individuals and 606 lean controls, did not identify associations with obesity parameters (p values >0.05). We found several rare genetic variations, which represent the first naturally occurring missense variants of BAMBI in obese patients. Three variants (R151W, H201R, and C229R) were shown to reduce Wnt signaling enhancing capacity of BAMBI and we believe this result should encourage further study of this gene in other obese populations. In addition, we did not find evidence for the involvement of BAMBI common variation in human obesity in our population.
Collapse
Affiliation(s)
- Jasmijn K Van Camp
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Fenna De Freitas
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Doreen Zegers
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sigri Beckers
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Stijn L Verhulst
- Department of Paediatrics, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Kim Van Hoorenbeeck
- Department of Paediatrics, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Guy Massa
- Department of Paediatrics, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Kristine N Desager
- Department of Paediatrics, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Luc F Van Gaal
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
14
|
Altered Expression of Bone Morphogenetic Protein Accessory Proteins in Murine and Human Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:600-15. [PMID: 26765958 DOI: 10.1016/j.ajpath.2015.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/07/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis is a chronic, progressive fibrotic disease with a poor prognosis. The balance between transforming growth factor β1 and bone morphogenetic protein (BMP) signaling plays an important role in tissue homeostasis, and alterations can result in pulmonary fibrosis. We hypothesized that multiple BMP accessory proteins may be responsible for maintaining this balance in the lung. Using the bleomycin mouse model for fibrosis, we examined an array of BMP accessory proteins for changes in mRNA expression. We report significant increases in mRNA expression of gremlin 1, noggin, follistatin, and follistatin-like 1 (Fstl1), and significant decreases in mRNA expression of chordin, kielin/chordin-like protein, nephroblastoma overexpressed gene, and BMP and activin membrane-bound inhibitor (BAMBI). Protein expression studies demonstrated increased levels of noggin, BAMBI, and FSTL1 in the lungs of bleomycin-treated mice and in the lungs of idiopathic pulmonary fibrosis patients. Furthermore, we demonstrated that transforming growth factor β stimulation resulted in increased expression of noggin, BAMBI, and FSTL1 in human small airway epithelial cells. These results provide the first evidence that multiple BMP accessory proteins are altered in fibrosis and may play a role in promoting fibrotic injury.
Collapse
|
15
|
Ruiz-Castañeda G, Dominguez-Avila N, González-Ramírez J, Fernandez-Jaramillo N, Escoto-Herrera J, Sánchez-Muñoz F, Amezcua-Guerra LM, Marquez-Velasco R, Bojalil R, Espinosa-Cervantes R, Sánchez F. Myocardial expression of transforming growth factor beta family and endothelin-1 in the progression from heart failure to ascites in broilers with cold-induced pulmonary hypertension. J Recept Signal Transduct Res 2015; 36:389-394. [DOI: 10.3109/10799893.2015.1108336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Jia Z, Liu Y, Cui S. Adiponectin induces breast cancer cell migration and growth factor expression. Cell Biochem Biophys 2015; 70:1239-45. [PMID: 24906235 DOI: 10.1007/s12013-014-0047-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adiponectin, the hormone produced and secreted by adipocytes, has been shown to promote migration of the epithelial cells and angiogenesis in these cells. We sought to determine if adiponectin could induce the cellular migration and growth factor expression in breast cancer cells grown in vitro. The breast cancer cell lines MDA-MB-436 and MFM-223 (estrogen-independent) were treated with adiponectin for different time periods. Supernatants of the cell cultures were obtained by centrifugation and were assayed for growth factor expression by the enzyme-linked immunosorbent assay (ELISA). Becton-Dickinson-Falcon Transwell systems were used to assay adiponectin-induced migration. Adiponectin significantly induced the expression of various growth factors, including vascular endothelial growth factor, transforming growth factor-β1, and basic fibroblast growth factor in MDA-MB-436 and MFM-223 cells. Adiponectin also enhanced the migration of breast cancer cells which were inhibited about 50-70 % by the inhibitors of mitogen-activated protein kinase and phosphatidylinositol 3-kinase (PI3K). Adiponectin treatment of the cancer cell induced an increased expression of different growth factors and migration of the cells. These effects are likely to contribute to the progression of breast cancer, implying that change in adiponectin levels associated with obesity may be considered as a high risk factor in breast cancer patients.
Collapse
Affiliation(s)
- Zhongming Jia
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Binzhou Medical College, Binzhou, 256610, People's Republic of China,
| | | | | |
Collapse
|
17
|
Pohl R, Rein-Fischboeck L, Meier EM, Eisinger K, Krautbauer S, Buechler C. Resolvin E1 and chemerin C15 peptide do not improve rodent non-alcoholic steatohepatitis. Exp Mol Pathol 2015; 98:295-9. [DOI: 10.1016/j.yexmp.2015.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 02/07/2023]
|
18
|
Mai Y, Zhang Z, Yang H, Dong P, Chu G, Yang G, Sun S. BMP and activin membrane-bound inhibitor (BAMBI) inhibits the adipogenesis of porcine preadipocytes through Wnt/β-catenin signaling pathway. Biochem Cell Biol 2014; 92:172-82. [PMID: 24798646 DOI: 10.1139/bcb-2014-0011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The process of differentiation from preadipocytes to adipocytes contributes to adipose tissue expansion in obesity. Blocking adipogenesis may be conducive to the etiology of obesity-related diseases. BMP and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein, which was identified as a target of β-catenin in colorectal and hepatocellular tumor cells. However, whether BAMBI affects adipogenesis by Wnt/β-catenin signaling remains to be explored. In this study, we distinguish BAMBI as an inhibitor of preadipocytes differentiation. We found that BAMBI was downregulated during preadipocytes differentiation. Knockdown of BAMBI increased adipogenesis and blocked Wnt/β-catenin signaling by repressing β-catenin accumulation. In BAMBI overexpression cells, lipid accumulation was reduced by promoting nuclear translocation of β-catenin. Lithium chloride (LiCl) is an activator of Wnt/β-catenin signaling, which is an inhibitor of glycogen synthetase kinase-3 (GSK-3), maintaining the stability of β-catenin in cytosolic. We showed BAMBI strengthened the anti-adipogenic effects of LiCl. In addition, the results indicated that BAMBI was upregulated by β-catenin. These observations illuminated that BAMBI inhibits adipogenesis by a feedback loop (BAMBI→β-catenin nuclear translocation→BAMBI), which forms with Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yin Mai
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein related to the transforming growth factor-β superfamily, and is highly expressed in platelets and endothelial cells. We previously demonstrated its positive role in thrombus formation using a zebrafish thrombosis model. In the present study, we used Bambi-deficient mice and radiation chimeras to evaluate the function of this receptor in the regulation of both hemostasis and thrombosis. We show that Bambi(-/-) and Bambi(+/-) mice exhibit mildly prolonged bleeding times compared with Bambi(+/+) littermates. In addition, using 2 in vivo thrombosis models in mesenterium or cremaster muscle arterioles, we demonstrate that Bambi-deficient mice form unstable thrombi compared with Bambi(+/+) mice. No defects in thrombin generation in Bambi(-/-) mouse plasma could be detected ex vivo. Moreover, the absence of BAMBI had no effect on platelet counts, platelet activation, aggregation, or platelet procoagulant function. Similar to Bambi(-/-) mice, Bambi(-/-) transplanted with Bambi(+/+) bone marrow formed unstable thrombi in the laser-induced thrombosis model that receded more rapidly than thrombi that formed in Bambi(+/+) mice receiving Bambi(-/-) bone marrow transplants. Taken together, these results provide strong evidence for an important role of endothelium rather than platelet BAMBI as a positive regulator of both thrombus formation and stability.
Collapse
|
20
|
Over, and underexpression of endothelin 1 and TGF-beta family ligands and receptors in lung tissue of broilers with pulmonary hypertension. BIOMED RESEARCH INTERNATIONAL 2013; 2013:190382. [PMID: 24286074 PMCID: PMC3826341 DOI: 10.1155/2013/190382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/13/2013] [Accepted: 09/10/2013] [Indexed: 12/26/2022]
Abstract
Transforming growth factor beta (TGF β ) is a family of genes that play a key role in mediating tissue remodeling in various forms of acute and chronic lung disease. In order to assess their role on pulmonary hypertension in broilers, we determined mRNA expression of genes of the TGF β family and endothelin 1 in lung samples from 4-week-old chickens raised either under normal or cold temperature conditions. Both in control and cold-treated groups of broilers, endothelin 1 mRNA expression levels in lungs from ascitic chickens were higher than levels from healthy birds (P < 0.05), whereas levels in animals with cardiac failure were intermediate. Conversely, TGF β 2 and TGF β 3 gene expression in lungs were higher in healthy animals than in ascitic animals in both groups (P < 0.05). TGF β 1, T β RI, and T β RII mRNA gene expression among healthy, ascitic, and chickens with cardiac failure showed no differences (P > 0.05). BAMBI mRNA gene expression was lowest in birds with ascites only in the control group as compared with the values from healthy birds (P < 0.05).
Collapse
|
21
|
Krautbauer S, Wanninger J, Eisinger K, Hader Y, Beck M, Kopp A, Schmid A, Weiss TS, Dorn C, Buechler C. Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp Mol Pathol 2013; 95:199-205. [DOI: 10.1016/j.yexmp.2013.07.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
|
22
|
Kim HG, Han JM, Lee HW, Lee JS, Son SW, Choi MK, Lee DS, Wang JH, Son CG. CGX, a multiple herbal drug, improves cholestatic liver fibrosis in a bile duct ligation-induced rat model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:653-662. [PMID: 23228913 DOI: 10.1016/j.jep.2012.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/13/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE CGX is a modification of a traditional herbal medicine that has been used for various liver disorders as a meaning of "cleaning the liver". The cholestatic liver disorders become prevalent. BACK GROUND AND AIM: This study aimed to investigate the anti-hepatic fibrosis effects of CGX and its underlying mechanisms in a rat model of bile duct ligation (BDL). MATERIALS AND METHODS BDL was conducted in SD rats except shame operation group. The rats were orally administrated with distilled water, CGX (25 or 50 mg/kg) or ursodeoxycholic acid (UDCA, 25 mg/kg) for two weeks. The pharmaceutical effects and mechanisms were analyzed in histopathology, biochemistry, oxidative stress/antioxidant biomarkers and hepatic fibrogenic cytokines levels. RESULTS BDL markedly elevated white blood cell (WBC) counts as well as changed subset proportions such as increased neutrophils and decreased lymphocytes in peripheral blood. BDL drastically elevated the serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, and hepatic tissue levels of hydroxyproline and malondialdehyde (MDA), while it reduced the total glutathione (GSH) content and the activities of GSH-redox system enzymes such as GSH-peroxidase, GSH-reductase and GSH-S-transferase. These alterations were significantly attenuated by CGX treatment (mainly 50 mg/kg). CGX treatment normalized both the accumulation of collagen in hepatic tissue and the increased levels of profibrogenic cytokine including transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). Moreover, CGX treatment enhanced interferon-gamma (IFN-γ) expression compare to the BDL group at the protein and gene level. CONCLUSION These results suggest that CGX exerts anti-hepatofibrotic effect in rat BDL model, and the responsible mechanisms involve the inhibition of hepatic fibrogenic cytokines and oxidative stress.
Collapse
Affiliation(s)
- Hyeong-Geug Kim
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon, 301-724, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Adiponectin: a key playmaker adipocytokine in non-alcoholic fatty liver disease. Clin Exp Med 2013; 14:121-31. [PMID: 23292294 DOI: 10.1007/s10238-012-0227-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/20/2012] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and can progress to cirrhosis, liver failure, and hepatocellular carcinoma. In the last two decades, the prevalence of NAFLD has been growing in most developed countries, mainly as a consequence of its close association with obesity and diabetes mellitus. The exact pathogenesis of NAFLD and especially the mechanisms leading to disease progression have not been completely understood. Adipocytes produce and secrete several bioactive substances known as adipocytokines which are implicated in the pathogenesis of the disease. Among them, adiponectin is an insulin-sensitizing adipocytokine possessing multiple beneficial effects on obesity-related medical complication. This review focuses on the role of adiponectin in NAFLD pathogenesis and its potential use as a diagnostic tool but also as therapeutic target for NAFLD management.
Collapse
|
24
|
Wei J, Bhattacharyya S, Jain M, Varga J. Regulation of Matrix Remodeling by Peroxisome Proliferator-Activated Receptor-γ: A Novel Link Between Metabolism and Fibrogenesis. Open Rheumatol J 2012; 6:103-15. [PMID: 22802908 PMCID: PMC3396343 DOI: 10.2174/1874312901206010103] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023] Open
Abstract
The intractable process of fibrosis underlies the pathogenesis of systemic sclerosis (SSc) and other diseases, and in aggregate contributes to 45% of deaths worldwide. Because currently there is no effective anti-fibrotic therapy, a better understanding of the pathways and cellular differentiation programs underlying fibrosis are needed. Emerging evidence points to a fundamental role of the nuclear hormone receptor peroxisome proliferator activated receptor-γ (PPAR-γ) in modulating fibrogenesis. While PPAR-γ has long been known to be important in lipid metabolism and in glucose homeostasis, its role in regulating mesenchymal cell biology and its association with pathological fibrosis had not been appreciated until recently. This article highlights recent studies revealing a consistent association of fibrosis with aberrant PPAR-γ expression and activity in various forms of human fibrosis and in rodent models, and reviews studies linking genetic manipulation of the PPAR-γ pathway in rodents and fibrosis. We survey the broad range of anti-fibrotic activities associated with PPAR-γ and the underlying mechanisms. We also summarize the emerging data linking PPAR-γ dysfunction and pulmonary arterial hypertension (PAH), which together with fibrosis is responsible for the mortality in patients in SSc. Finally, we consider current and potential future strategies for targeting PPAR-γ activity or expression as a therapy for controlling fibrosis.
Collapse
Affiliation(s)
- Jun Wei
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Swati Bhattacharyya
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Manu Jain
- Respiratory and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - John Varga
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
25
|
Subramaniam N, Sherman MH, Rao R, Wilson C, Coulter S, Atkins AR, Evans RM, Liddle C, Downes M. Metformin-mediated Bambi expression in hepatic stellate cells induces prosurvival Wnt/β-catenin signaling. Cancer Prev Res (Phila) 2012; 5:553-61. [PMID: 22406377 PMCID: PMC3324648 DOI: 10.1158/1940-6207.capr-12-0053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) regulates lipid, cholesterol, and glucose metabolism in specialized metabolic tissues, such as muscle, liver, and adipose tissue. Agents that activate AMPK, such as metformin and 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), have beneficial effects on liver glucose and lipid metabolism. In addition, AMPK activation in proliferating hepatic stellate cells (HSC) induces growth arrest and inhibits hepatic fibrosis. As metformin and AICAR act in different ways to achieve their effects, our aim was to examine the effects of AMPK activation in quiescent HSCs with these two agents on HSC function. We found that phospho-AMPK levels were markedly upregulated by both AICAR and metformin in quiescent HSCs. However, although AICAR treatment induced cell death, cells treated with metformin did not differ from untreated controls. AICAR-mediated HSC cell death was paralleled by loss of expression of the TGF-β decoy receptor Bambi, whereas metformin increased Bambi expression. Transfection of siRNA-Bambi into HSCs also induced cell death, mimicking the effects of AICAR, whereas overexpression of Bambi partially rescued AICAR-treated cells. As Bambi has previously been shown to promote cell survival through Wnt/β-catenin signaling, a reporter incorporating binding sites for a downstream target of this pathway was transfected into HSCs and was induced. We conclude that although AICAR and metformin both activate AMPK in quiescent HSCs, AICAR rapidly induced cell death, whereas metformin-treated cells remained viable. The finding that metformin increases Bambi expression and activates Wnt/β-catenin signaling provides a possible mechanistic explanation for this observation. These results suggest that AICAR and metformin may confer disease-specific therapeutic benefits.
Collapse
Affiliation(s)
- Nanthakumar Subramaniam
- Storr Liver Unit, Westmead Millennium Institute and Sydney Medical School, University of Sydney, Westmead NSW, Australia
| | - Mara H. Sherman
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla CA, USA
| | - Renuka Rao
- Storr Liver Unit, Westmead Millennium Institute and Sydney Medical School, University of Sydney, Westmead NSW, Australia
| | - Caroline Wilson
- Storr Liver Unit, Westmead Millennium Institute and Sydney Medical School, University of Sydney, Westmead NSW, Australia
| | - Sally Coulter
- Storr Liver Unit, Westmead Millennium Institute and Sydney Medical School, University of Sydney, Westmead NSW, Australia
| | - Annette R. Atkins
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla CA, USA
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute and Sydney Medical School, University of Sydney, Westmead NSW, Australia
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla CA, USA
| |
Collapse
|
26
|
Roderburg C, Mollnow T, Bongaerts B, Elfimova N, Vargas Cardenas D, Berger K, Zimmermann H, Koch A, Vucur M, Luedde M, Hellerbrand C, Odenthal M, Trautwein C, Tacke F, Luedde T. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One 2012; 7:e32999. [PMID: 22412969 PMCID: PMC3296762 DOI: 10.1371/journal.pone.0032999] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/02/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Micro-RNAs (miRNAs) have recently emerged as crucial modulators of molecular processes involved in chronic liver diseases. The few miRNAs with previously proposed roles in liver cirrhosis were identified in screening approaches on liver parenchyma, mostly in rodent models. Therefore, in the present study we performed a systematic screening approach in order to identify miRNAs with altered levels in the serum of patients with chronic liver disease and liver cirrhosis. METHODS We performed a systematic, array-based miRNA expression analysis on serum samples from patients with liver cirrhosis. In functional experiments we evaluated the relationship between alterations of miRNA serum levels and their role in distinct cellular compartments involved in hepatic cirrhosis. RESULTS The array analysis and the subsequent confirmation by qPCR in a larger patient cohort identified significant alterations in serum levels of miR-513-3p, miR-571 and miR-652, three previously uncharacterized miRNAs, in patients with alcoholic or hepatitis C induced liver cirrhosis. Of these, miR-571 serum levels closely correlated with disease stages, thus revealing potential as a novel biomarker for hepatic cirrhosis. Further analysis revealed that up-regulation of miR-571 in serum reflected a concordant regulation in cirrhotic liver tissue. In isolated primary human liver cells, miR-571 was up-regulated in human hepatocytes and hepatic stellate cells in response to the pro-fibrogenic cytokine TGF-β. In contrast, alterations in serum levels of miR-652 were stage-independent, reflecting a concordant down-regulation of this miRNA in circulating monocytes of patients with liver cirrhosis, which was inducible by proinflammatory stimuli like bacterial lipopolysaccharide. CONCLUSION Alterations of miR571 and miR-652 serum levels in patients with chronic liver disease reflect their putative roles in the mediation of fibrogenic and inflammatory processes in distinct cellular compartments involved in the pathogenesis of liver cirrhosis.
Collapse
Affiliation(s)
- Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Mollnow
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Brenda Bongaerts
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Natalia Elfimova
- Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Katharina Berger
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Henning Zimmermann
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Mihael Vucur
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Mark Luedde
- Department of Cardiology and Angiology, University of Kiel, Kiel, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
| | | | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- * E-mail:
| |
Collapse
|
27
|
Walter R, Wanninger J, Bauer S, Eisinger K, Neumeier M, Weiss TS, Amann T, Hellerbrand C, Schäffler A, Schölmerich J, Buechler C. Adiponectin reduces connective tissue growth factor in human hepatocytes which is already induced in non-fibrotic non-alcoholic steatohepatitis. Exp Mol Pathol 2011; 91:740-4. [PMID: 21946149 DOI: 10.1016/j.yexmp.2011.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/04/2011] [Indexed: 12/16/2022]
Abstract
Connective tissue growth factor (CTGF) is induced in liver fibrosis and enhances the activity of transforming growth factor β (TGFβ). Recently we have shown that the hepatoprotective adipokine adiponectin downregulates CTGF in primary human hepatocytes (PHH). In the current study, the mechanisms mediating suppression of CTGF by adiponectin and the well described downstream effector of adiponectin receptor 2 (AdipoR2), peroxisome proliferator activated receptor α (PPARα), were analyzed in more detail. Adiponectin downregulated CTGF mRNA and protein in primary human hepatocytes (PHH) and suppression was blocked by a PPARα antagonist indicating that AdipoR2 is involved. The PPARα agonists fenofibrate and WY14643 also reduced CTGF protein in these cells. Adiponectin further impaired TGFβ-mediated upregulation of CTGF. Phosphorylation of the TGFβ downstream effectors SMAD2 and -3 was reduced in PHH incubated with adiponectin or PPARα agonists suggesting that early steps in TGFβ signal transduction are impaired. CTGF and TGFβ mRNA levels were increased in human non-fibrotic non-alcoholic steatohepatitis (NASH), and here AdipoR2 expression was significantly reduced. Current data show that CTGF and TGFβ are already induced in non-fibrotic NASH and this may be partly explained by low adiponectin bioactivity which interferes with TGFβ signaling by reducing phosphorylation of SMAD2/3 and by downregulating CTGF.
Collapse
Affiliation(s)
- Roland Walter
- Department of Internal Medicine I, University Hospital of Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wanninger J, Walter R, Bauer S, Eisinger K, Schäffler A, Dorn C, Weiss TS, Hellerbrand C, Buechler C. MMP-9 activity is increased by adiponectin in primary human hepatocytes but even negatively correlates with serum adiponectin in a rodent model of non-alcoholic steatohepatitis. Exp Mol Pathol 2011; 91:603-7. [PMID: 21791204 DOI: 10.1016/j.yexmp.2011.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 01/22/2023]
Abstract
Adiponectin protects from inflammation and fibrosis in metabolic liver disease. In the present study we analyzed whether this adipokine may directly affect the activity of matrix metalloproteinases (MMPs), central regulators of fibrinolysis, in hepatocytes. Global gene expression analysis indicated upregulation of MMP-9 and tissue inhibitor of metalloproteinases-1 (TIMP-1) expression in primary human hepatocytes (PHH) in response to stimulation with adiponectin, and these results were confirmed by real-time RT-PCR. Furthermore, gelatin zymography revealed that MMP-9 activity was significantly induced in supernatants of adiponectin stimulated PHHs. In a murine model of hepatic steatosis and in human steatotic liver samples hepatic MMP-9 activity was not significantly altered. However, in two different murine models of non-alcoholic steatohepatitis (NASH) MMP-9 activity was significantly elevated compared to chow fed control mice. Of note, MMP-9 activity did not or even negatively, respectively, correlate with adiponectin serum levels in these models. The current data indicate that in NASH hepatic inflammation and fibrosis but not hepatic steatosis induce liver MMP-9 activity, and this induction seems to be related to the anti-inflammatory activity of adiponectin rather than its effect on hepatocellular MMP-9 expression.
Collapse
Affiliation(s)
- Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|