1
|
Tian X, Wei J. Sestrin 2 protects human lens epithelial cells from oxidative stress and apoptosis induced by hydrogen peroxide by regulating the mTOR/Nrf2 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241234741. [PMID: 38379215 PMCID: PMC10880533 DOI: 10.1177/03946320241234741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Ophthalmology, Jinan Aier Eye Hospital, Jinan, China
| | - Jie Wei
- Department of Ophthalmology, No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| |
Collapse
|
2
|
Zambrano K, Barba D, Castillo K, Robayo P, Argueta-Zamora D, Sanon S, Arizaga E, Caicedo A, Gavilanes AWD. The war against Alzheimer, the mitochondrion strikes back! Mitochondrion 2022; 64:125-135. [PMID: 35337984 DOI: 10.1016/j.mito.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative pathology associated with aging worldwide. It is estimated that AD prevalence will increase from 5.8 million people today to 13.8 million by 2050 in the United States alone. AD effects in the brain are well known; however, there is still a lack of knowledge about the cellular mechanisms behind the origin of AD. It is known that AD induces cellular stress affecting the energy metabolism in brain cells. During the pathophysiological advancement of AD, damaged mitochondria enter a vicious cycle, producing reactive oxygen species (ROS), harming mitochondrial DNA and proteins, leading to more ROS and cellular death. Additionally, mitochondria are interconnected with the plaques formed by amyloid-β in AD and have underlying roles in the progression of the disease and severity. For years, the biomedical field struggled to develop new therapeutic options for AD without a significant advancement. However, mitochondria are striking back existing outside cells in a new mechanism of intercellular communication. Extracellular mitochondria are exchanged from healthy to damaged cells to rescue those with a perturbed metabolism in a process that could be applied as a new therapeutic option to repair those brain cells affected by AD. In this review we highlight key aspects of mitochondria's role in CNS' physiology and neurodegenerative disorders, focusing on AD. We also suggest how mitochondria strikes back as a therapeutic target and as a potential agent to be transplanted to repair neurons affected by AD.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador
| | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador
| | | | | | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Sun Y, Liu B, Chen Y, Xing Y, Zhang Y. Multi-Omics Prognostic Signatures Based on Lipid Metabolism for Colorectal Cancer. Front Cell Dev Biol 2022; 9:811957. [PMID: 35223868 PMCID: PMC8874334 DOI: 10.3389/fcell.2021.811957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The potential biological processes and laws of the biological components in malignant tumors can be understood more systematically and comprehensively through multi-omics analysis. This study elaborately explored the role of lipid metabolism in the prognosis of colorectal cancer (CRC) from the metabonomics and transcriptomics. Methods: We performed K-means unsupervised clustering algorithm and t test to identify the differential lipid metabolites determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the serum of 236 CRC patients of the First Hospital of Jilin University (JLUFH). Cox regression analysis was used to identify prognosis-associated lipid metabolites and to construct multi-lipid-metabolite prognostic signature. The composite nomogram composed of independent prognostic factors was utilized to individually predict the outcome of CRC patients. Glycerophospholipid metabolism was the most significant enrichment pathway for lipid metabolites in CRC, whose related hub genes (GMRHGs) were distinguished by gene set variation analysis (GSVA) and weighted gene co-expression network analysis (WGCNA). Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis were utilized to develop the prognostic signature. Results: Six-lipid-metabolite and five-GMRHG prognostic signatures were developed, indicating favorable survival stratification effects on CRC patients. Using the independent prognostic factors as variables, we established a composite nomogram to individually evaluate the prognosis of CRC patients. The AUCs of one-, three-, and five-year ROC curves were 0.815, 0.815, and 0.805, respectively, showing auspicious prognostic accuracy. Furthermore, we explored the potential relationship between tumor microenvironment (TME) and immune infiltration. Moreover, the mutational frequency of TP53 in the high-risk group was significantly higher than that in the low-risk group (p < 0.001), while in the coordinate mutational status of TP53, the overall survival of CRC patients in the high-risk group was significantly lower than that in low-risk group with statistical differences. Conclusion: We identified the significance of lipid metabolism for the prognosis of CRC from the aspects of metabonomics and transcriptomics, which can provide a novel perspective for promoting individualized treatment and revealing the potential molecular biological characteristics of CRC. The composite nomogram including a six-lipid-metabolite prognostic signature is a promising predictor of the prognosis of CRC patients.
Collapse
|
4
|
Mosejová E, Bosnjakovic R, Kubala L, Vašíček O. Pseurotin D Induces Apoptosis through Targeting Redox Sensitive Pathways in Human Lymphoid Leukemia Cells. Antioxidants (Basel) 2021; 10:antiox10101576. [PMID: 34679711 PMCID: PMC8533295 DOI: 10.3390/antiox10101576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/23/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent lymphoid malignancy in many geographical regions of the world. Pseurotin D, a secondary metabolite of fungi, represents a group of bioactive natural products with a newly ascribed range of interesting biological activities. The purpose of this study was to bring new insights into the mechanism behind the effects of pseurotin D on MEC-1 cells as a representative CLL cell line, with a particular focus on selected signaling pathways important in the proliferation of cells and targeting mitochondrial metabolism. Our results showed that pseurotin D was able to significantly inhibit the proliferation of MEC-1 cells and arrested them in the G2/M cell cycle phase. In addition, pseurotin D was able to induce apoptosis. We found that all of these effects were associated with a change in mitochondrial membrane potential and the production of mitochondrial reactive oxygen species (ROS). We showed for the first time that pseurotin D suppresses MEC-1 cell proliferation and induces apoptotic cell death via induction of the collapse of the mitochondria respiratory chain and the ROS-related caspase pathway. Our results show the pseurotins family as promising compounds which could serve as a basis for the development of new compounds in the treatment of lymphoma.
Collapse
Affiliation(s)
- Eva Mosejová
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (E.M.); (R.B.); (L.K.)
| | - Rebeka Bosnjakovic
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (E.M.); (R.B.); (L.K.)
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (E.M.); (R.B.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Ondřej Vašíček
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (E.M.); (R.B.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-541-517-207
| |
Collapse
|
5
|
Lee SY, Song MY, Kim D, Park C, Park DK, Kim DG, Yoo JS, Kim YH. A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer's Disease. Front Pharmacol 2020; 10:1653. [PMID: 32063857 PMCID: PMC7000455 DOI: 10.3389/fphar.2019.01653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous clinical trials of drug candidates for Alzheimer's disease (AD) have failed, and computational drug repositioning approaches using omics data have been proposed as effective alternative approaches to the discovery of drug candidates. However, little multi-omics data is available for AD, due to limited availability of brain tissues. Even if omics data exist, systematic drug repurposing study for AD has suffered from lack of big data, insufficient clinical information, and difficulty in data integration on account of sample heterogeneity derived from poor diagnosis or shortage of qualified post-mortem tissue. In this study, we developed a proteotranscriptomic-based computational drug repositioning method named Drug Repositioning Perturbation Score/Class (DRPS/C) based on inverse associations between disease- and drug-induced gene and protein perturbation patterns, incorporating pharmacogenomic knowledge. We constructed a Drug-induced Gene Perturbation Signature Database (DGPSD) comprised of 61,019 gene signatures perturbed by 1,520 drugs from the Connectivity Map (CMap) and the L1000 CMap. Drugs were classified into three DRPCs (High, Intermediate, and Low) according to DRPSs that were calculated using drug- and disease-induced gene perturbation signatures from DGPSD and The Cancer Genome Atlas (TCGA), respectively. The DRPS/C method was evaluated using the area under the ROC curve, with a prescribed drug list from TCGA as the gold standard. Glioblastoma had the highest AUC. To predict anti-AD drugs, DRPS were calculated using DGPSD and AD-induced gene/protein perturbation signatures generated from RNA-seq, microarray and proteomic datasets in the Synapse database, and the drugs were classified into DRPCs. We predicted 31 potential anti-AD drug candidates commonly belonged to high DRPCs of transcriptomic and proteomic signatures. Of these, four drugs classified into the nervous system group of Anatomical Therapeutic Chemical (ATC) system are voltage-gated sodium channel blockers (bupivacaine, topiramate) and monamine oxidase inhibitors (selegiline, iproniazid), and their mechanism of action was inferred from a potential anti-AD drug perspective. Our approach suggests a shortcut to discover new efficacy of drugs for AD.
Collapse
Affiliation(s)
- Soo Youn Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Min-Young Song
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Dain Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Chaewon Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Da Kyeong Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Dong Geun Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Young Hye Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| |
Collapse
|
6
|
Lahiani-Cohen I, Touloumi O, Lagoudaki R, Grigoriadis N, Rosenmann H. Exposure to 3-Nitropropionic Acid Mitochondrial Toxin Induces Tau Pathology in Tangle-Mouse Model and in Wild Type-Mice. Front Cell Dev Biol 2020; 7:321. [PMID: 32010684 PMCID: PMC6971403 DOI: 10.3389/fcell.2019.00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress, particularly of mitochondrial origin, plays an important role in the pathogenesis of neurodegenerative disorders, including Alzheimer’s disease (AD) and other tauopathies. Controversies regarding the responses of tau phosphorylation state to various stimuli causing oxidative stress have been reported. Here we investigated the effect of 3-nitropropionic acid (3NP), a mitochondrial toxin which induces oxidative stress, on the tangle-pathology in our previously generated double mutant (E257T/P301S, DM) -Tau-tg mice and in WT-mice. We detected an increase in tangle pathology in the hippocampus and cortex of the DM-Tau-tg mice following exposure of the mice to the toxin, as well as generation of tangles in WT-mice. This increase was accompanied with alterations in the level of the glycogen synthase kinase 3β (GSK3β), the kinase which phosphorylates the tau protein, and in the phosphorylation state of this kinase. A response of microglial cells was noticed. These results point to the involvement of mitochondrial dysfunction in the development of the tangle-pathology and may suggest that interfering with mitochondrial dysfunction may have an anti-tangle therapeutic potential.
Collapse
Affiliation(s)
- Inbal Lahiani-Cohen
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Roza Lagoudaki
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Hanna Rosenmann
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
7
|
Gonzalez-Riano C, León-Espinosa G, Regalado-Reyes M, García A, DeFelipe J, Barbas C. Metabolomic Study of Hibernating Syrian Hamster Brains: In Search of Neuroprotective Agents. J Proteome Res 2019; 18:1175-1190. [DOI: 10.1021/acs.jproteome.8b00816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - Mamen Regalado-Reyes
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Calle de Valderrebollo, 5, 28031 Madrid, Spain
| | | |
Collapse
|
8
|
Javidnia M, Hebron ML, Xin Y, Kinney NG, Moussa CEH. Pazopanib Reduces Phosphorylated Tau Levels and Alters Astrocytes in a Mouse Model of Tauopathy. J Alzheimers Dis 2018; 60:461-481. [PMID: 28869476 DOI: 10.3233/jad-170429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperphosphorylation and aggregation of tau protein is a critical factor in many neurodegenerative diseases. These diseases are increasing in prevalence, and there are currently no cures. Previous work from our group and others has shown that tyrosine kinase inhibitors (TKIs) can stimulate autophagy, decrease pathological proteins, and improve symptoms in models of neurodegeneration. Here we examined the role of pazopanib in mouse models that express either human mutant P301L tau (TauP301L) or triple mutant amyloid precursor protein (3x-AβPP). The TauP301L mouse expresses P301L tau under the control of a prion promoter in both neurons and astrocytes, reminiscent of some human tauopathies. Pazopanib crosses the blood-brain barrier with no detectable peripheral off-side effects, and decreases p-tau in TauP301L mice. Pazopanib reaches a brain concentration sufficient for inhibition of several tyrosine kinases, including vascular endothelial growth factor receptors (VEGFRs). Further, pazopanib does not affect microglia but reduces astrocyte levels toward nontransgenic controls in TauP301L mice. Pazopanib does not alter amyloid beta levels or astrocytes in 3x-AβPP mice but modulates a number of inflammatory markers (IP-10, MIP-1α, MIP-1β, and RANTES). These data suggest that pazopanib may be involved in p-tau clearance and modulation of astrocytic activity in models of tauopathies.
Collapse
Affiliation(s)
- Monica Javidnia
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA.,Department of Pharmacologyand Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Michaeline L Hebron
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA
| | - Yue Xin
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA
| | - Nikolas G Kinney
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA
| | - Charbel E-H Moussa
- Department of Neurology, Laboratory for Dementiaand Parkinsonism, Translational Neurotherapeutics Program, Washington, DC, USA
| |
Collapse
|
9
|
Pinto-Almazán R, Segura-Uribe JJ, Soriano-Ursúa MA, Farfán-García ED, Gallardo JM, Guerra-Araiza C. Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone. Neural Regen Res 2018; 13:440-448. [PMID: 29623928 PMCID: PMC5900506 DOI: 10.4103/1673-5374.228726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is a key process in the development of many neurodegenerative diseases, memory disorders, and other pathological processes related to aging. Tibolone (TIB), a synthetic hormone used as a treatment for menopausal symptoms, decreases lipoperoxidation levels, prevents memory impairment and learning disability caused by ozone (O3) exposure. However, it is not clear if TIB could prevent the increase in phosphorylation induced by oxidative stress of the microtubule-associated protein Tau. In this study, the effects of TIB at different times of administration on the phosphorylation of Tau, the activation of glycogen synthase kinase-3β (GSK3β), and the inactivation of Akt and phosphatases PP2A and PTEN induced by O3 exposure were assessed in adult male Wistar rats. Rats were divided into 10 groups: control group (ozone-free air plus vehicle [C]), control + TIB group (ozone-free air plus TIB 1 mg/kg [C + TIB]); 7, 15, 30, and 60 days of ozone exposure groups [O3] and 7, 15, 30, and 60 days of TIB 1 mg/kg before ozone exposure groups [O3 + TIB]. The effects of O3 exposure and TIB administration were assessed by western blot analysis of total and phosphorylated Tau, GSK3β, Akt, PP2A, and PTEN proteins and oxidative stress marker nitrotyrosine, and superoxide dismutase activity and lipid peroxidation of malondialdehyde by two different spectrophotometric methods (Marklund and TBARS, respectively). We observed that O3 exposure increases Tau phosphorylation, which is correlated with decreased PP2A and PTEN protein levels, diminished Akt protein levels, and increased GSK3β protein levels in the hippocampus of adult male rats. The effects of O3 exposure were prevented by the long-term treatment (over 15 days) with TIB. Malondialdehyde and nitrotyrosine levels increased from 15 to 60 days of exposure to O3 in comparison to C group, and superoxide dismutase activity decreased. Furthermore, TIB administration limited the changes induced by O3 exposure. Our results suggest a beneficial use of hormone replacement therapy with TIB to prevent neurodegeneration caused by O3 exposure in rats.
Collapse
Affiliation(s)
- Rodolfo Pinto-Almazán
- Unidad de Investigación Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia J. Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Marvin A. Soriano-Ursúa
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Eunice D. Farfán-García
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás. C. P. 11340. Mexico City, Mexico
| | - Juan M. Gallardo
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330 Col. Doctores. C. P. 06720. Mexico City, Mexico
| |
Collapse
|
10
|
Martín-Maestro P, Gargini R, Perry G, Avila J, García-Escudero V. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease. Hum Mol Genet 2015; 25:792-806. [PMID: 26721933 DOI: 10.1093/hmg/ddv616] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/17/2015] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial anomalies have been previously reported in patients' brain and peripheral tissue, suggesting their relevance in sporadic Alzheimer's disease (AD). The present work evaluates mitochondrial function and recycling in human fibroblasts and brain biopsies. Functional studies using patients' skin fibroblasts showed slower mitochondrial membrane potential recovery after a mitochondrial insult together with alterations in lysosomes and autophagy, accompanied by an increase of oxidized and ubiquitinated proteins. Impairment in mitophagy has been proven in these cells due to diminished PARK2 and insufficient vesicle induction, accumulating depolarized mitochondria and PINK1. Augmented Δ1 PINK1 fragment levels suggest an inhibitory effect over PARK2 translocation to the mitochondria, causing the accumulation of activated PINK1. Moreover, the overexpression of PARK2 diminished ubiquitinated proteins accumulation, improves its targeting to mitochondria and potentiates autophagic vesicle synthesis. This allows the reversion of mitophagy failure reflected in the recovery of membrane potential and the decrease of PINK1 and mitochondria accumulation. Sporadic AD fibroblasts exhibited alterations similar to what it could be found in patients' hippocampal samples at early stages of the disease, where there was an accumulation of PINK1 and Δ1 PINK1 together with abnormally increased mitochondrial content. Our findings indicate that mitophagy alterations can be considered a new hallmark of sporadic AD and validate the use of fibroblasts for modelling this pathology.
Collapse
Affiliation(s)
- Patricia Martín-Maestro
- Centro de Biología Molecular 'Severo Ochoa' (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049 Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031 Madrid, Spain
| | - Ricardo Gargini
- Centro de Biología Molecular 'Severo Ochoa' (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049 Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031 Madrid, Spain, Centro Nacional de Biotecnología (CSIC), Darwin, 3, Cantoblanco, 28049 Madrid, Spain
| | - George Perry
- University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0667, USA and
| | - Jesús Avila
- Centro de Biología Molecular 'Severo Ochoa' (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049 Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031 Madrid, Spain
| | - Vega García-Escudero
- Centro de Biología Molecular 'Severo Ochoa' (UAM-CSIC), Nicolás Cabrera, 1. Cantoblanco, 28049 Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031 Madrid, Spain, Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, UAM, Arzobispo Morcillo, 4, 28029 Madrid, Spain
| |
Collapse
|
11
|
Sun X, Su Y, He Y, Zhang J, Liu W, Zhang H, Hou Z, Liu J, Li J. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators. Cell Cycle 2015; 14:721-31. [PMID: 25590233 PMCID: PMC4615062 DOI: 10.1080/15384101.2014.995496] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It had been known for decades that primordial follicles in mammalian ovaries are assembled with definite numbers and represent the ovarian reserve throughout the reproductive life. Intra-oocyte PI3K/mTOR pathways have been indicated to play a central role on the activation of primordial follicles. Genetic modified mouse models with chronic activation of PI3K/mTOR signals in primordial oocytes showed premature activation of all primordial follicles and eventually their exhaustion. On the other hand, this may suggest that, unlike chronic activation of PI3K/mTOR, its acute activation in infertility would activate primordial follicles, permitting fertility during the treatment. Previously, PI3K stimulators were reported as a temporary measure to accelerate primordial follicle activation and follicular development in both mouse and human, and were applied in the treatment of infertility in premature ovarian failure (POF) patients. To address whether mTOR stimulators could play similar role in the process, we transiently treated neonatal and aged mouse ovaries with mTOR stimulators-phosphatidic acid (PA) and propranolol. Our results demonstrated the stimulators increased activation of primordial follicles and the production of progeny. Human ovarian cortex cubes were also treated with mTOR or/and PI3K stimulators in vitro. When they were used separately, both of them showed similar promotive effects on primordial follicles. Surprisingly, after joint-treatment with the 2 kinds of stimulators together, synergistic effects on follicular development were observed. Based on increased efficiency of follicular activation in humans, here we propose in vitro transient treatment with mTOR and PI3K stimulators as an optimized protocol for the application in different clinical conditions with limited follicle reserve.
Collapse
Affiliation(s)
- Xinhui Sun
- a State Key Laboratory of Reproductive Medicine ; Nanjing Medical University ; Nanjing , China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
13
|
Nagayasu Y, Morita SY, Hayashi H, Miura Y, Yokoyama K, Michikawa M, Ito JI. Increasing cellular level of phosphatidic acid enhances FGF-1 production in long term-cultured rat astrocytes. Brain Res 2014; 1563:31-40. [DOI: 10.1016/j.brainres.2014.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 03/22/2014] [Indexed: 11/15/2022]
|
14
|
García-Escudero V, Martín-Maestro P, Perry G, Avila J. Deconstructing mitochondrial dysfunction in Alzheimer disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:162152. [PMID: 23840916 PMCID: PMC3693159 DOI: 10.1155/2013/162152] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/23/2013] [Indexed: 11/17/2022]
Abstract
There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.
Collapse
Affiliation(s)
- Vega García-Escudero
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Patricia Martín-Maestro
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - George Perry
- University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jesús Avila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
15
|
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99:128-48. [PMID: 22980037 PMCID: PMC3479314 DOI: 10.1016/j.pneurobio.2012.08.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders affect a significant portion of the world's population leading to either disability or death for almost 30 million individuals worldwide. One novel therapeutic target that may offer promise for multiple disease entities that involve Alzheimer's disease, Parkinson's disease, epilepsy, trauma, stroke, and tumors of the nervous system is the mammalian target of rapamycin (mTOR). mTOR signaling is dependent upon the mTORC1 and mTORC2 complexes that are composed of mTOR and several regulatory proteins including the tuberous sclerosis complex (TSC1, hamartin/TSC2, tuberin). Through a number of integrated cell signaling pathways that involve those of mTORC1 and mTORC2 as well as more novel signaling tied to cytokines, Wnt, and forkhead, mTOR can foster stem cellular proliferation, tissue repair and longevity, and synaptic growth by modulating mechanisms that foster both apoptosis and autophagy. Yet, mTOR through its proliferative capacity may sometimes be detrimental to central nervous system recovery and even promote tumorigenesis. Further knowledge of mTOR and the critical pathways governed by this serine/threonine protein kinase can bring new light for neurodegeneration and other related diseases that currently require new and robust treatments.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- Cancer Institute of New Jersey, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| |
Collapse
|
16
|
Mammalian target of rapamycin: A valid therapeutic target through the autophagy pathway for alzheimer's disease? J Neurosci Res 2012; 90:1105-18. [DOI: 10.1002/jnr.23011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/28/2011] [Accepted: 11/18/2011] [Indexed: 12/15/2022]
|