1
|
Uthamacumaran A. Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks. Interdiscip Sci 2025; 17:59-85. [PMID: 39420135 DOI: 10.1007/s12539-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF α , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.
Collapse
Affiliation(s)
- Abicumaran Uthamacumaran
- Department of Physics (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Department of Psychology (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Oxford Immune Algorithmics, Reading, RG1 8EQ, UK.
| |
Collapse
|
2
|
Chirumbolo S, Franzini M, Valdenassi L. About the ozone ability in using adaptive chaos to restore a healthy state in the oxygen-ozone adjunct therapy. Int Immunopharmacol 2025; 147:113967. [PMID: 39740504 DOI: 10.1016/j.intimp.2024.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The action of ozone in medicine is a subject of interest and lively, controversial debates. Its mechanisms of action are still far from fully understood. However, it is possible that ozone triggers a series of dynamics in living organisms related to chaos, multi-stable phenomena, and oscillatory processes. Ozone may be involved in adaptive chaos. Adaptive chaos in health and the reduction of complexity in pathology are interconnected phenomena that describe the functional dynamics of biological systems. Adaptive chaos refers to a state of controlled, complex, and flexible behaviour exhibited by healthy biological systems. It allows for a dynamic balance between order and unpredictability, enabling the system to respond to various internal and external stimuli. In pathological states, the system loses its adaptive chaos, often becoming either too rigid or overly chaotic. This reduction in complexity limits the ability of the system to respond effectively to stimuli, making it prone to dysfunction. This paper addresses the role of ozone in these scenarios.
Collapse
Affiliation(s)
| | - Marianno Franzini
- Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT) and High Master School of Oxygen-Ozone Therapy, University of Pavia, Italy
| | - Luigi Valdenassi
- Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT) and High Master School of Oxygen-Ozone Therapy, University of Pavia, Italy
| |
Collapse
|
3
|
Costa FP, Wiedenmann B, Schöll E, Tuszynski J. Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1483401. [PMID: 39720338 PMCID: PMC11666389 DOI: 10.3389/fnetp.2024.1483401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology. Cancer cells exhibit autonomous oscillations, deviating from normal rhythms. In this context, a shift from a static view of cellular processes is required for a better understanding of the dynamic connections between cellular metabolism, gene expression, cell signaling and membrane polarization as states in constant flux in realistic human models. In oncology, radiofrequency electromagnetic fields have produced sustained responses and improved quality of life in cancer patients with minimal side effects. This review aims to show how non-thermal systemic radiofrequency electromagnetic fields leads to promising therapeutic responses at cellular and tissue levels in humans, supporting this newly emerging cancer treatment modality with early favorable clinical experience specifically in advanced cancer.
Collapse
Affiliation(s)
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
4
|
Ramírez-Ávila GM, Kapitaniak T, Gonze D. Dynamical analysis of a periodically forced chaotic chemical oscillator. CHAOS (WOODBURY, N.Y.) 2024; 34:073154. [PMID: 39047162 DOI: 10.1063/5.0213913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
We present a comprehensive dynamical analysis of a chaotic chemical model referred to as the autocatalator, when subject to a periodic administration of one substrate. Our investigation encompasses the dynamical characterization of both unforced and forced systems utilizing isospikes and largest Lyapunov exponents-based parameter planes, bifurcation diagrams, and analysis of complex oscillations. Additionally, we present a phase diagram showing the effect of the period and amplitude of the forcing signal on the system's behavior. Furthermore, we show how the landscapes of parameter planes are altered in response to forcing application. This analysis contributes to a deeper understanding of the intricate dynamics induced by the periodic forcing of a chaotic system.
Collapse
Affiliation(s)
- Gonzalo Marcelo Ramírez-Ávila
- Namur Institute for Complex Systems (naXys), Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
- Instituto de Investigaciones Físicas, and Planetario Max Schreier, Universidad Mayor de San Andrés, Campus Universitario, C. 27 s/n Cota-Cota, 0000 La Paz, Bolivia
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Didier Gonze
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Jaruszewicz-Błońska J, Kosiuk I, Prus W, Lipniacki T. A plausible identifiable model of the canonical NF-κB signaling pathway. PLoS One 2023; 18:e0286416. [PMID: 37267242 DOI: 10.1371/journal.pone.0286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
An overwhelming majority of mathematical models of regulatory pathways, including the intensively studied NF-κB pathway, remains non-identifiable, meaning that their parameters may not be determined by existing data. The existing NF-κB models that are capable of reproducing experimental data contain non-identifiable parameters, whereas simplified models with a smaller number of parameters exhibit dynamics that differs from that observed in experiments. Here, we reduced an existing model of the canonical NF-κB pathway by decreasing the number of equations from 15 to 6. The reduced model retains two negative feedback loops mediated by IκBα and A20, and in response to both tonic and pulsatile TNF stimulation exhibits dynamics that closely follow that of the original model. We carried out the sensitivity-based linear analysis and Monte Carlo-based analysis to demonstrate that the resulting model is both structurally and practically identifiable given measurements of 5 model variables from a simple TNF stimulation protocol. The reduced model is capable of reproducing different types of responses that are characteristic to regulatory motifs controlled by negative feedback loops: nearly-perfect adaptation as well as damped and sustained oscillations. It can serve as a building block of more comprehensive models of the immune response and cancer, where NF-κB plays a decisive role. Our approach, although may not be automatically generalized, suggests that models of other regulatory pathways can be transformed to identifiable, while retaining their dynamical features.
Collapse
Affiliation(s)
| | - Ilona Kosiuk
- Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Prus
- Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Kumpost V, Hilbert L, Mikut R. Noise facilitates entrainment of a population of uncoupled limit cycle oscillators. J R Soc Interface 2023; 20:20220781. [PMID: 36628527 PMCID: PMC9832296 DOI: 10.1098/rsif.2022.0781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Many biological oscillators share two properties: they are subject to stochastic fluctuations (noise) and they must reliably adjust their period to changing environmental conditions (entrainment). While noise seems to distort the ability of single oscillators to entrain, in populations of uncoupled oscillators noise allows population-level entrainment for a wider range of input amplitudes and periods. Here, we investigate how this effect depends on the noise intensity and the number of oscillators in the population. We have found that, if a population consists of a sufficient number of oscillators, increasing noise intensity leads to faster entrainment after a phase change of the input signal (jet lag) and increases sensitivity to low-amplitude input signals.
Collapse
Affiliation(s)
- Vojtech Kumpost
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Lennart Hilbert
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Systems Biology and Bioinformatics, Zoological Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Uthamacumaran A. Dissecting cell fate dynamics in pediatric glioblastoma through the lens of complex systems and cellular cybernetics. BIOLOGICAL CYBERNETICS 2022; 116:407-445. [PMID: 35678918 DOI: 10.1007/s00422-022-00935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Cancers are complex dynamic ecosystems. Reductionist approaches to science are inadequate in characterizing their self-organized patterns and collective emergent behaviors. Since current approaches to single-cell analysis in cancer systems rely primarily on single time-point multiomics, many of the temporal features and causal adaptive behaviors in cancer dynamics are vastly ignored. As such, tools and concepts from the interdisciplinary paradigm of complex systems theory are introduced herein to decode the cellular cybernetics of cancer differentiation dynamics and behavioral patterns. An intuition for the attractors and complex networks underlying cancer processes such as cell fate decision-making, multiscale pattern formation systems, and epigenetic state-transitions is developed. The applications of complex systems physics in paving targeted therapies and causal pattern discovery in precision oncology are discussed. Pediatric high-grade gliomas are discussed as a model-system to demonstrate that cancers are complex adaptive systems, in which the emergence and selection of heterogeneous cellular states and phenotypic plasticity are driven by complex multiscale network dynamics. In specific, pediatric glioblastoma (GBM) is used as a proof-of-concept model to illustrate the applications of the complex systems framework in understanding GBM cell fate decisions and decoding their adaptive cellular dynamics. The scope of these tools in forecasting cancer cell fate dynamics in the emerging field of computational oncology and patient-centered systems medicine is highlighted.
Collapse
|
8
|
Uthamacumaran A, Zenil H. A Review of Mathematical and Computational Methods in Cancer Dynamics. Front Oncol 2022; 12:850731. [PMID: 35957879 PMCID: PMC9359441 DOI: 10.3389/fonc.2022.850731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/25/2022] [Indexed: 12/16/2022] Open
Abstract
Cancers are complex adaptive diseases regulated by the nonlinear feedback systems between genetic instabilities, environmental signals, cellular protein flows, and gene regulatory networks. Understanding the cybernetics of cancer requires the integration of information dynamics across multidimensional spatiotemporal scales, including genetic, transcriptional, metabolic, proteomic, epigenetic, and multi-cellular networks. However, the time-series analysis of these complex networks remains vastly absent in cancer research. With longitudinal screening and time-series analysis of cellular dynamics, universally observed causal patterns pertaining to dynamical systems, may self-organize in the signaling or gene expression state-space of cancer triggering processes. A class of these patterns, strange attractors, may be mathematical biomarkers of cancer progression. The emergence of intracellular chaos and chaotic cell population dynamics remains a new paradigm in systems medicine. As such, chaotic and complex dynamics are discussed as mathematical hallmarks of cancer cell fate dynamics herein. Given the assumption that time-resolved single-cell datasets are made available, a survey of interdisciplinary tools and algorithms from complexity theory, are hereby reviewed to investigate critical phenomena and chaotic dynamics in cancer ecosystems. To conclude, the perspective cultivates an intuition for computational systems oncology in terms of nonlinear dynamics, information theory, inverse problems, and complexity. We highlight the limitations we see in the area of statistical machine learning but the opportunity at combining it with the symbolic computational power offered by the mathematical tools explored.
Collapse
Affiliation(s)
| | - Hector Zenil
- Machine Learning Group, Department of Chemical Engineering and Biotechnology, The University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
- Oxford Immune Algorithmics, Reading, United Kingdom
- Algorithmic Dynamics Lab, Karolinska Institute, Stockholm, Sweden
- Algorithmic Nature Group, LABORES, Paris, France
| |
Collapse
|
9
|
Heltberg M, von Borries M, Bendix PM, Oddershede LB, Jensen MH. Temperature Controls Onset and Period of NF- κB Oscillations and can Lead to Chaotic Dynamics. Front Cell Dev Biol 2022; 10:910738. [PMID: 35794861 PMCID: PMC9251302 DOI: 10.3389/fcell.2022.910738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
The transcription factor NF-κB plays a vital role in the control of the immune system, and following stimulation with TNF-α its nuclear concentration shows oscillatory behaviour. How environmental factors, in particular temperature, can control the oscillations and thereby affect gene stimulation is still remains to be resolved question. In this work, we reveal that the period of the oscillations decreases with increasing temperature. We investigate this using a mathematical model, and by applying results from statistical physics, we introduce temperature dependency to all rates, resulting in a remarkable correspondence between model and experiments. Our model predicts how temperature affects downstream protein production and find a crossover, where high affinity genes upregulates at high temperatures. Finally, we show how or that oscillatory temperatures can entrain NF-κB oscillations and lead to chaotic dynamics presenting a simple path to chaotic conditions in cellular biology.
Collapse
Affiliation(s)
| | | | | | | | - Mogens H. Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Lang J, Li C. Unraveling the stochastic transition mechanism between oscillation states by landscape and minimum action path theory. Phys Chem Chem Phys 2022; 24:20050-20063. [DOI: 10.1039/d2cp01385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell fate transitions have been studied from various perspectives, such as the transition between stable states, or the transition between stable states and oscillation states. However, there is a lack...
Collapse
|
11
|
Uthamacumaran A. A review of dynamical systems approaches for the detection of chaotic attractors in cancer networks. PATTERNS (NEW YORK, N.Y.) 2021; 2:100226. [PMID: 33982021 PMCID: PMC8085613 DOI: 10.1016/j.patter.2021.100226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancers are complex dynamical systems. They remain the leading cause of disease-related pediatric mortality in North America. To overcome this burden, we must decipher the state-space attractor dynamics of gene expression patterns and protein oscillations orchestrated by cancer stemness networks. The review provides an overview of dynamical systems theory to steer cancer research in pattern science. While most of our current tools in network medicine rely on statistical correlation methods, causality inference remains primitively developed. As such, a survey of attractor reconstruction methods and machine algorithms for the detection of causal structures applicable in experimentally derived time series cancer datasets is presented. A toolbox of complex systems approaches are discussed for reconstructing the signaling state space of cancer networks, interpreting causal relationships in their time series gene expression patterns, and assisting clinical decision making in computational oncology. As a proof of concept, the applicability of some algorithms are demonstrated on pediatric brain cancer datasets and the requirement of their time series analysis is highlighted.
Collapse
|
12
|
Heltberg ML, Krishna S, Kadanoff LP, Jensen MH. A tale of two rhythms: Locked clocks and chaos in biology. Cell Syst 2021; 12:291-303. [PMID: 33887201 DOI: 10.1016/j.cels.2021.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/19/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022]
Abstract
The fundamental mechanisms that control and regulate biological organisms exhibit a surprising level of complexity. Oscillators are perhaps the simplest motifs that produce time-varying dynamics and are ubiquitous in biological systems. It is also known that such biological oscillators interact with each other-for instance, circadian oscillators affect the cell cycle, and somitogenesis clock proteins in adjacent cells affect each other in developing embryos. Therefore, it is vital to understand the effects that can emerge from non-linear interaction between oscillations. Here, we show how oscillations typically arise in biology and take the reader on a tour through the great variety in dynamics that can emerge even from a single pair of coupled oscillators. We explain how chaotic dynamics can emerge and outline the methods of detecting this in experimental time traces. Finally, we discuss the potential role of such complex dynamical features in biological systems.
Collapse
Affiliation(s)
- Mathias L Heltberg
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; Laboratoire de Physique Théorique, Ecole Normale Supérieure, 75 231 Paris Cedex 05, France
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Leo P Kadanoff
- The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Marcinko K, Kot M. A comparative analysis of host-parasitoid models with density dependence preceding parasitism. JOURNAL OF BIOLOGICAL DYNAMICS 2020; 14:479-514. [PMID: 32603259 DOI: 10.1080/17513758.2020.1783005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
We present a systematic comparison and analysis of four discrete-time, host-parasitoid models. For each model, we specify that density-dependent effects occur prior to parasitism in the life cycle of the host. We compare density-dependent growth functions arising from the Beverton-Holt and Ricker maps, as well as parasitism functions assuming either a Poisson or negative binomial distribution for parasitoid attacks. We show that overcompensatory density-dependence leads to period-doubling bifurcations, which may be supercritical or subcritical. Stronger parasitism from the Poisson distribution leads to loss of stability of the coexistence equilibrium through a Neimark-Sacker bifurcation, resulting in population cycles. Our analytic results also revealed dynamics for one of our models that were previously undetected by authors who conducted a numerical investigation. Finally, we emphasize the importance of clearly presenting biological assumptions that are inherent to the structure of a discrete-time model in order to promote communication and broader understanding.
Collapse
Affiliation(s)
- Kelsey Marcinko
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Mark Kot
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Li C, Ye L. Landscape and flux govern cellular mode-hopping between oscillations. J Chem Phys 2019; 151:175101. [PMID: 31703512 DOI: 10.1063/1.5125046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recently, a "mode-hopping" phenomenon has been observed in a NF-κB gene regulatory network with oscillatory tumor necrosis factor (TNF) inputs. It was suggested that noise facilitates the switch between different oscillation modes. However, the underlying mechanism of this noise-induced "cellular mode-hopping" behavior remains elusive. We employed a landscape and flux approach to study the stochastic dynamics and global stability of the NF-κB regulatory system. We used a truncated moment equation approach to calculate the probability distribution and potential landscape for gene regulatory systems. The potential landscape of the NF-κB system exhibits a "double ring valley" shape. Barrier heights from landscape topography provide quantitative measures of the global stability and transition feasibility of the double oscillation system. We found that the landscape and flux jointly govern the dynamical "mode-hopping" behavior of the NF-κB regulatory system. The landscape attracts the system into a "double ring valley," and the flux drives the system to move cyclically. As the external noise increases, relevant barrier heights decrease, and the flux increases. As the amplitude of the TNF input increases, the flux contribution, from the total driving force, increases and the system behavior changes from one to two cycles and ultimately to chaotic dynamics. Therefore, the probabilistic flux may provide an origin of chaotic behavior. We found that the height of the peak of the power spectrum of autocorrelation functions and phase coherence is correlated with barrier heights of the landscape and provides quantitative measures of global stability of the system under intrinsic fluctuations.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Leijun Ye
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
15
|
On chaotic dynamics in transcription factors and the associated effects in differential gene regulation. Nat Commun 2019; 10:71. [PMID: 30622249 PMCID: PMC6325146 DOI: 10.1038/s41467-018-07932-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
The control of proteins by a transcription factor with periodically varying concentration exhibits intriguing dynamical behaviour. Even though it is accepted that transcription factors vary their dynamics in response to different situations, insight into how this affects downstream genes is lacking. Here, we investigate how oscillations and chaotic dynamics in the transcription factor NF-κB can affect downstream protein production. We describe how it is possible to control the effective dynamics of the transcription factor by stimulating it with an oscillating ligand. We find that chaotic dynamics modulates gene expression and up-regulates certain families of low-affinity genes, even in the presence of extrinsic and intrinsic noise. Furthermore, this leads to an increase in the production of protein complexes and the efficiency of their assembly. Finally, we show how chaotic dynamics creates a heterogeneous population of cell states, and describe how this can be beneficial in multi-toxic environments. It is becoming clear that the dynamics of transcription factors may be important for gene regulation. Here, the authors study the implications of oscillatory and chaotic dynamics of NF-κB and demonstrate that it allows a degree of control of gene expression and can generate phenotypic heterogeneity.
Collapse
|
16
|
Lanucara F, Lam C, Mann J, Monie TP, Colombo SAP, Holman SW, Boyd J, Dange MC, Mann DA, White MRH, Eyers CE. Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFα stimulation regulates DNA binding and transcription. Open Biol 2017; 6:rsob.160055. [PMID: 27466442 PMCID: PMC4967822 DOI: 10.1098/rsob.160055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022] Open
Abstract
The NF-κB signalling module controls transcription through a network of protein kinases such as the IKKs, as well as inhibitory proteins (IκBs) and transcription factors including RelA/p65. Phosphorylation of the NF-κB subunits is critical for dictating system dynamics. Using both non-targeted discovery and quantitative selected reaction monitoring-targeted proteomics, we show that the cytokine TNFα induces dynamic multisite phosphorylation of RelA at a number of previously unidentified residues. Putative roles for many of these phosphorylation sites on RelA were predicted by modelling of various crystal structures. Stoichiometry of phosphorylation determination of Ser45 and Ser42 revealed preferential early phosphorylation of Ser45 in response to TNFα. Quantitative analyses subsequently confirmed differential roles for pSer42 and pSer45 in promoter-specific DNA binding and a role for both of these phosphosites in regulating transcription from the IL-6 promoter. These temporal dynamics suggest that RelA-mediated transcription is likely to be controlled by functionally distinct NF-κB proteoforms carrying different combinations of modifications, rather than a simple ‘one modification, one effect’ system.
Collapse
Affiliation(s)
- Francesco Lanucara
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Connie Lam
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jelena Mann
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tom P Monie
- MRC Human Nutrition Research, University of Cambridge, Cambridge CB2 1GA, UK
| | - Stefano A P Colombo
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Stephen W Holman
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - James Boyd
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Manohar C Dange
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Derek A Mann
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Michael R H White
- Systems Microscopy Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
17
|
Mukundarajan H, Bardon TC, Kim DH, Prakash M. Surface tension dominates insect flight on fluid interfaces. ACTA ACUST UNITED AC 2017; 219:752-66. [PMID: 26936640 DOI: 10.1242/jeb.127829] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air.
Collapse
Affiliation(s)
| | | | - Dong Hyun Kim
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Determining the Limitations and Benefits of Noise in Gene Regulation and Signal Transduction through Single Cell, Microscopy-Based Analysis. J Mol Biol 2017; 429:1143-1154. [PMID: 28288800 DOI: 10.1016/j.jmb.2017.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Stochastic fluctuations, termed "noise," in the level of biological molecules can greatly impact cellular functions. While biological noise can sometimes be detrimental, recent studies have provided an increasing number of examples in which biological noise can be functionally beneficial. Rather than provide an exhaustive review of the growing literature in this field, in this review, we focus on single-cell studies based on quantitative microscopy that have generated a deeper understanding of the sources, characteristics, limitations, and benefits of biological noise. Specifically, we highlight studies showing how noise can help coordinate the expression of multiple downstream target genes, impact the channel capacity of signaling networks, and interact synergistically with oscillatory dynamics to enhance the sensitivity of signal processing. We conclude with a discussion of current challenges and future opportunities.
Collapse
|
19
|
Noise Induces the Population-Level Entrainment of Incoherent, Uncoupled Intracellular Oscillators. Cell Syst 2016; 3:521-531.e13. [DOI: 10.1016/j.cels.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/04/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
|
20
|
Heltberg M, Kellogg RA, Krishna S, Tay S, Jensen MH. Noise Induces Hopping between NF-κB Entrainment Modes. Cell Syst 2016; 3:532-539.e3. [PMID: 28009264 PMCID: PMC5783698 DOI: 10.1016/j.cels.2016.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/29/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023]
Abstract
Oscillations and noise drive many processes in biology, but how both affect the activity of the transcription factor nuclear factor κB (NF-κB) is not understood. Here, we observe that when NF-κB oscillations are entrained by periodic tumor necrosis factor (TNF) inputs in experiments, NF-κB exhibits jumps between frequency modes, a phenomenon we call “cellular mode-hopping.” By comparing stochastic simulations of NF-κB oscillations to deterministic simulations conducted inside and outside the chaotic regime of parameter space, we show that noise facilitates mode-hopping in all regimes. However, when the deterministic system is driven by chaotic dynamics, hops between modes are erratic and short-lived, whereas in experiments, the system spends several periods in one entrainment mode before hopping and rarely visits more than two modes. The experimental behavior matches our simulations of noise-induced mode-hopping outside the chaotic regime. We suggest that mode-hopping is a mechanism by which different NF-κB-dependent genes under frequency control can be expressed at different times.
Collapse
Affiliation(s)
- Mathias Heltberg
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ryan A Kellogg
- Department of Biosystems Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Sandeep Krishna
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; Simons Center for the Study of Living Machines, National Center for Biological Sciences, Bangalore 560065, Karnataka, India
| | - Savaş Tay
- Department of Biosystems Science and Engineering, ETH Zürich, 8092 Zürich, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Abstract
We study the regulating mechanism of p53 on the properties of cell cycle dynamics in the light of the proposed model of interacting p53 and cell cycle networks via p53. Irradiation (IR) introduce to p53 compel p53 dynamics to suffer different phases, namely oscillating and oscillation death (stabilized) phases. The IR induced p53 dynamics undergo collapse of oscillation with collapse time Δt which depends on IR strength. The stress p53 via IR drive cell cycle molecular species MPF and cyclin dynamics to different states, namely, oscillation death, oscillations of periods, chaotic and sustain oscillation in their bifurcation diagram. We predict that there could be a critical Δtc induced by p53 via IRc, where, if Δt〈Δtc the cell cycle may come back to normal state, otherwise it will go to cell cycle arrest (apoptosis).
Collapse
|
22
|
Kellogg RA, Tay S. Noise facilitates transcriptional control under dynamic inputs. Cell 2015; 160:381-92. [PMID: 25635454 DOI: 10.1016/j.cell.2015.01.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/02/2014] [Accepted: 01/05/2015] [Indexed: 01/28/2023]
Abstract
Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments.
Collapse
Affiliation(s)
- Ryan A Kellogg
- Department of Biosystems Science and Engineering, ETH Zürich 4058, Switzerland
| | - Savaş Tay
- Department of Biosystems Science and Engineering, ETH Zürich 4058, Switzerland.
| |
Collapse
|
23
|
Wang H, Sun Y, Li Y, Chen Y. Influence of autapse on mode-locking structure of a Hodgkin–Huxley neuron under sinusoidal stimulus. J Theor Biol 2014; 358:25-30. [DOI: 10.1016/j.jtbi.2014.05.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022]
|
24
|
Woller A, Gonze D, Erneux T. The Goodwin model revisited: Hopf bifurcation, limit-cycle, and periodic entrainment. Phys Biol 2014; 11:045002. [PMID: 25075916 DOI: 10.1088/1478-3975/11/4/045002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The three-variable Goodwin oscillator is a minimal model demonstrating the emergence of oscillations in simple biochemical feedback systems. As a prototypical oscillator, this model was extensively studied from a theoretical point of view and applied to various biological systems, including circadian clocks. Here, we reexamine this model, derive analytically the amplitude equation near the Hopf bifurcation and investigate the effect of a periodic modulation of the oscillator. In particular, we compare the entrainment performance when the free oscillator displays either self-sustained or damped oscillations. We discuss the results in the context of circadian oscillators.
Collapse
Affiliation(s)
- Aurore Woller
- Unité Mixte de Recherche 1011, Université Lille 2, INSERM, Institut Pasteur de Lille, Lille, France. Laboratoire de Physique des Lasers, Atomes, Molécules, Unité Mixte de Recherche 8523, Université Lille 1, CNRS, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
25
|
González-Miranda JM. On the effect of circadian oscillations on biochemical cell signaling by NF-κB. J Theor Biol 2013; 335:283-94. [PMID: 23820037 DOI: 10.1016/j.jtbi.2013.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/16/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022]
Abstract
We report the results of a numerical investigation of a mathematical model for NF-κB oscillations, described by a set of ordinary nonlinear differential equations, when perturbed by a circadian oscillation. The main result is that a circadian rhythm, even when it represents a weak perturbation, enhances the signaling capabilities of NF-κB oscillations. This is done by turning rest states into periodic oscillations, and periodic oscillations into quasiperiodic oscillations. Strong perturbations result in complex periodic oscillations and even in chaos. Circadian rhythms would then result in a NF-κB dynamics that is more complex than the simple oscillations and rest states, initially reported for this model. This renders it more amenable for information coding.
Collapse
Affiliation(s)
- J M González-Miranda
- Departamento de Física Fundamental, Universidad de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain.
| |
Collapse
|
26
|
Mitarai N, Alon U, Jensen MH. Entrainment of noise-induced and limit cycle oscillators under weak noise. CHAOS (WOODBURY, N.Y.) 2013; 23:023125. [PMID: 23822490 DOI: 10.1063/1.4808253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Theoretical models that describe oscillations in biological systems are often either a limit cycle oscillator, where the deterministic nonlinear dynamics gives sustained periodic oscillations, or a noise-induced oscillator, where a fixed point is linearly stable with complex eigenvalues, and addition of noise gives oscillations around the fixed point with fluctuating amplitude. We investigate how each class of models behaves under the external periodic forcing, taking the well-studied van der Pol equation as an example. We find that when the forcing is additive, the noise-induced oscillator can show only one-to-one entrainment to the external frequency, in contrast to the limit cycle oscillator which is known to entrain to any ratio. When the external forcing is multiplicative, on the other hand, the noise-induced oscillator can show entrainment to a few ratios other than one-to-one, while the limit cycle oscillator shows entrain to any ratio. The noise blurs the entrainment in general, but clear entrainment regions for limit cycles can be identified as long as the noise is not too strong.
Collapse
Affiliation(s)
- Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100-DK, Denmark
| | | | | |
Collapse
|
27
|
Abstract
Hormesis in ageing is probably represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Mild stress and hormetins may act on bifurcation points in the complex network of cell signaling and transcription factors, often turning homeodynamics to health or survival. Several signaling pathways activated by diverse stimuli and by stress response converge on NF-κB activation, resulting in a regulatory system characterized by high complexity. NF-κB behaves as a chaotic oscillator and it is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. NF-κB is closely related to other important upstream signaling networks, creating chaotic oscillators with other receptor-related kinases and targeting hubs for hormesis. The great bulk of natural hormetins acts on these signaling pathways, while NF-κB appears as a key regulatory factor in this context. Due to its tight relationship with main signaling system NF-κB plays a fundamental role in stress response, apoptosis and autophagy and appears to be a possible target for hormesis in ageing.
Collapse
|